organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Methyl-5-nitro-1H-imidazol-1-yl)propan-2-yl acetate

aDepartment of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology Gulshan-e-Iqbal, Karachi 75300, Pakistan, and bH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 3 February 2014; accepted 4 February 2014; online 15 February 2014)

In the title compound, C9H13N3O4, an ester of the anti-infection drug secnidazole, the dihedral angle between the nitro­imidazole mean plane (r.m.s. deviation = 0.028 Å) and the pendant acetate group is 43.17 (11)°. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions generate R22(10) loops and further C—H⋯O hydrogen bonds link the dimers into [100] chains. Weak aromatic ππ stacking inter­actions with a centroid–centroid distance of 3.7623 (11) Å are also observed.

Related literature

For background to the anti­bacterial properties of nitro­imidazole and secnidazole-like compounds, see: Mital (2009[Mital, A. (2009). Sci. Pharm. 77, 497-520.]); Edwards (1993[Edwards, D. I. (1993). J. Antimicrob. Chemother. 31, 9-20.]); Crozet et al. (2009[Crozet, M. D., Botta, C., Gasquet, M., Curti, C., Rémusat, V., Hutter, S., Chapelle, O., Azas, N., De Méo, M. & Vanelle, P. (2009). Eur. J. Med. Chem. 44, 653-659.]). For the crystal structures of related compounds, see: Yousuf et al. (2013[Yousuf, S., Khan, K. M., Naz, F., Perveen, S. & Miana, G. A. (2013). Acta Cryst. E69, o552.]); Tao et al. (2008[Tao, X., Yuan, L., Zhang, X.-Q. & Wang, J.-T. (2008). Acta Cryst. E64, o472.]);Zeb et al. (2012[Zeb, A., Yousuf, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1218.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13N3O4

  • Mr = 227.22

  • Monoclinic, P 21 /n

  • a = 6.1771 (5) Å

  • b = 8.9928 (7) Å

  • c = 20.3736 (16) Å

  • β = 90.978 (2)°

  • V = 1131.58 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 K

  • 0.45 × 0.27 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.994

  • 6541 measured reflections

  • 2042 independent reflections

  • 1567 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.02

  • 2042 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.93 2.45 3.369 (2) 168
C6—H6A⋯O4ii 0.97 2.53 3.460 (2) 161
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) is an ester derivative of well known 5-nitroimidazole drug i.e secnidazole. The worthwhile use of nitroimidazole derivatives is in the treatment of diseases caused by protozoa and anaerobic bacteria (Mital, 2009). Members of nitroimidazole drugs are pronounced in thier wide-range activities and in addition during their use the rate of resistance in anaerobes is still very low (Edwards, 1993). Antiprotozoal and bactericidal properties of nitroimidazoles are associated with their aromatic nitro group. The Secnidazole like chemotherapeutic agents inhibit the growth of both anaerobic bacteria and some anaerobic protozoa (Crozet et al. 2009).

The structure of the title compound (I) is similar to our previously reported compound 1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone with the difference that acetone moiety is replaced by propyl acetate group (C6—C10/O3,O4)(Yousuf et al. 2013);. It also exhibits bond lengths and angles that are of normal range (Yousuf et al. 2013); A three dimensional consolidated architecture is formed by the non-covalent interactions of molecules in the crystal via C4– H4A···O1 [2.45 Å], and C6– H6A···O4 [2.53 Å] hydrogen bonding with R22(10) ring motifs. Possible weak pi-pi interactions (Cg1···Cg1) with minimum centroid-centroid distance of 3.7623 (11) Å are also observed.

Related literature top

For background to the antibacterial properties of nitroimidazole and secnidazole-like compounds, see: Mital (2009); Edwards (1993); Crozet et al. (2009). For the crystal structures of related compounds, see: Yousuf et al. (2013); Tao et al. (2008); Yousuf et al. (2013); Zeb et al. (2012). [Scheme incorrect: extra Me group, missing acetate O atom. Please redraw]

Experimental top

The title compound was synthesized by adding acetic anhydride (1.2 ml, 12.70 mmol)to a hot (70 °C) stired solution of secnidazole (2 g m, 10.8 mmol) in pyridine (2 ml) and toluene (10 ml). The reaction mixture was further processed to refluxed for 5 hrs, cooled, treated with water and then organic phase was evaporated to obtain solid product which was recrystallized from chloroform and toluene solution to yield greenish plates in 81% yield. Melting point 346–348 K. 1H NMR (300 MHz, DMSO-d6): δ 8.006 (s, 1 H, imidazole H), 5.162–5.089 (m, 1 H, CH), 4.573–4.322 (m, 2 H, CH2), 3.300 (s, 3 H, CH3), 1.856 (s, 3 H CH3), 1.265–1.244 (d, J=6.3 Hz, 3 H, CH3). 13C NMR (75 MHz, DMSO-d6): δ 169.35 (C=O), 151.52 (N=C), 138.40 (C—NO2), 133.01 (N—CH), 68.64 (O—CH), 49.31 (N—CH2), 20.44 (CH3), 17.11 (CH3), 13.93 (CH3). IR (neat, cm-1): 3434, 3122, 2994, 1732, 1532, 1368, 1140, 1080.

Refinement top

The hydrogen atoms are positioned at their calculated positions geometrically with C—H = 0.9300 Å, 0.9600 Å, 0.9700 Å, 0.9800 Å for aromatic, methyl, methylen, and methin H respectively. These are constrained to ride on their parent atoms during subsequent refinement with Uiso(H) = 1.2Ueq(C) for methyl, and Uiso(H) = 1.5eq(C) for rest of the H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Fig:1 The molecular structure of title compound I, showing displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Fig: 2 Crystal packing diagram, showing intermolecular hydrogen bonding as dashed lines.
1-(2-Methyl-5-nitro-1H-imidazol-1-yl)propan-2-yl acetate top
Crystal data top
C9H13N3O4F(000) = 480
Mr = 227.22Dx = 1.334 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1771 (5) ÅCell parameters from 1751 reflections
b = 8.9928 (7) Åθ = 2.5–22.3°
c = 20.3736 (16) ŵ = 0.11 mm1
β = 90.978 (2)°T = 273 K
V = 1131.58 (16) Å3Plate, colourless
Z = 40.45 × 0.27 × 0.06 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2042 independent reflections
Radiation source: fine-focus sealed tube1567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scanθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.954, Tmax = 0.994k = 1010
6541 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.1628P]
where P = (Fo2 + 2Fc2)/3
2042 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C9H13N3O4V = 1131.58 (16) Å3
Mr = 227.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1771 (5) ŵ = 0.11 mm1
b = 8.9928 (7) ÅT = 273 K
c = 20.3736 (16) Å0.45 × 0.27 × 0.06 mm
β = 90.978 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2042 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1567 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.994Rint = 0.025
6541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2042 reflectionsΔρmin = 0.12 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9023 (2)0.57210 (19)0.08857 (8)0.0881 (5)
O20.6626 (3)0.55701 (17)0.16347 (8)0.0834 (5)
O30.48247 (17)0.11443 (13)0.18968 (6)0.0498 (3)
O40.8273 (2)0.17014 (17)0.16857 (8)0.0744 (5)
N20.7361 (3)0.51890 (17)0.11093 (9)0.0604 (5)
N30.5484 (3)0.2475 (2)0.00606 (8)0.0658 (5)
N10.4442 (2)0.33433 (15)0.09081 (7)0.0476 (4)
C50.6300 (3)0.40876 (19)0.07274 (9)0.0497 (5)
C40.6890 (3)0.3540 (2)0.01383 (10)0.0599 (5)
H4A0.80880.38510.00950.072*
C20.4036 (3)0.2373 (2)0.04109 (10)0.0552 (5)
C110.2199 (3)0.1309 (3)0.03950 (12)0.0744 (6)
H11A0.22370.07380.00030.112*
H11B0.08590.18480.04120.112*
H11C0.23120.06540.07660.112*
C60.3239 (3)0.3431 (2)0.15215 (9)0.0517 (5)
H6A0.18260.29790.14550.062*
H6B0.30180.44680.16330.062*
C70.4387 (3)0.26641 (19)0.20886 (9)0.0489 (5)
H7A0.57480.31780.21930.059*
C80.2980 (4)0.2624 (2)0.26847 (10)0.0674 (6)
H8A0.37410.21340.30380.101*
H8B0.16700.20920.25830.101*
H8C0.26330.36220.28140.101*
C90.6837 (3)0.0809 (2)0.17030 (9)0.0514 (5)
C100.7003 (3)0.0780 (2)0.15128 (12)0.0731 (6)
H10A0.84520.09890.13770.110*
H10B0.60070.09820.11570.110*
H10C0.66580.13950.18820.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0725 (10)0.0951 (12)0.0972 (12)0.0330 (9)0.0186 (9)0.0015 (10)
O20.1073 (12)0.0620 (9)0.0817 (11)0.0251 (8)0.0283 (10)0.0176 (8)
O30.0430 (6)0.0450 (7)0.0615 (8)0.0013 (5)0.0057 (6)0.0015 (6)
O40.0452 (7)0.0801 (10)0.0982 (12)0.0049 (7)0.0122 (7)0.0021 (9)
N20.0624 (10)0.0496 (9)0.0693 (12)0.0064 (8)0.0080 (9)0.0057 (8)
N30.0700 (11)0.0718 (11)0.0558 (11)0.0022 (9)0.0071 (9)0.0034 (9)
N10.0473 (8)0.0420 (7)0.0536 (9)0.0043 (6)0.0056 (7)0.0033 (7)
C50.0488 (9)0.0452 (10)0.0551 (12)0.0015 (8)0.0040 (9)0.0065 (8)
C40.0565 (11)0.0639 (12)0.0595 (13)0.0037 (10)0.0109 (10)0.0096 (10)
C20.0551 (11)0.0536 (11)0.0570 (12)0.0043 (8)0.0002 (9)0.0004 (9)
C110.0676 (13)0.0759 (14)0.0794 (16)0.0104 (11)0.0022 (12)0.0129 (12)
C60.0461 (9)0.0476 (10)0.0618 (12)0.0042 (8)0.0119 (9)0.0012 (9)
C70.0482 (9)0.0444 (9)0.0544 (11)0.0031 (8)0.0073 (8)0.0037 (8)
C80.0717 (13)0.0701 (13)0.0609 (13)0.0068 (10)0.0190 (11)0.0045 (10)
C90.0445 (9)0.0612 (11)0.0486 (11)0.0040 (9)0.0015 (8)0.0070 (9)
C100.0706 (13)0.0668 (13)0.0820 (16)0.0185 (11)0.0043 (12)0.0038 (12)
Geometric parameters (Å, º) top
O1—N21.2276 (19)C11—H11B0.9600
O2—N21.219 (2)C11—H11C0.9600
O3—C91.3447 (19)C6—C71.512 (3)
O3—C71.448 (2)C6—H6A0.9700
O4—C91.197 (2)C6—H6B0.9700
N2—C51.414 (2)C7—C81.506 (2)
N3—C21.327 (2)C7—H7A0.9800
N3—C41.351 (3)C8—H8A0.9600
N1—C21.357 (2)C8—H8B0.9600
N1—C51.384 (2)C8—H8C0.9600
N1—C61.467 (2)C9—C101.485 (3)
C5—C41.353 (3)C10—H10A0.9600
C4—H4A0.9300C10—H10B0.9600
C2—C111.484 (3)C10—H10C0.9600
C11—H11A0.9600
C9—O3—C7117.93 (13)C7—C6—H6A109.0
O2—N2—O1122.85 (18)N1—C6—H6B109.0
O2—N2—C5120.29 (15)C7—C6—H6B109.0
O1—N2—C5116.86 (17)H6A—C6—H6B107.8
C2—N3—C4105.66 (17)O3—C7—C8107.95 (14)
C2—N1—C5104.86 (14)O3—C7—C6108.15 (14)
C2—N1—C6125.45 (14)C8—C7—C6110.95 (15)
C5—N1—C6129.44 (15)O3—C7—H7A109.9
C4—C5—N1107.28 (17)C8—C7—H7A109.9
C4—C5—N2127.87 (17)C6—C7—H7A109.9
N1—C5—N2124.84 (16)C7—C8—H8A109.5
N3—C4—C5110.04 (17)C7—C8—H8B109.5
N3—C4—H4A125.0H8A—C8—H8B109.5
C5—C4—H4A125.0C7—C8—H8C109.5
N3—C2—N1112.15 (17)H8A—C8—H8C109.5
N3—C2—C11123.62 (19)H8B—C8—H8C109.5
N1—C2—C11124.23 (17)O4—C9—O3123.20 (17)
C2—C11—H11A109.5O4—C9—C10125.65 (18)
C2—C11—H11B109.5O3—C9—C10111.14 (16)
H11A—C11—H11B109.5C9—C10—H10A109.5
C2—C11—H11C109.5C9—C10—H10B109.5
H11A—C11—H11C109.5H10A—C10—H10B109.5
H11B—C11—H11C109.5C9—C10—H10C109.5
N1—C6—C7112.86 (13)H10A—C10—H10C109.5
N1—C6—H6A109.0H10B—C10—H10C109.5
C2—N1—C5—C40.4 (2)C5—N1—C2—N30.6 (2)
C6—N1—C5—C4174.87 (16)C6—N1—C2—N3175.27 (16)
C2—N1—C5—N2178.36 (17)C5—N1—C2—C11179.00 (18)
C6—N1—C5—N23.9 (3)C6—N1—C2—C114.3 (3)
O2—N2—C5—C4179.99 (19)C2—N1—C6—C7100.0 (2)
O1—N2—C5—C40.1 (3)C5—N1—C6—C773.4 (2)
O2—N2—C5—N11.5 (3)C9—O3—C7—C8139.19 (17)
O1—N2—C5—N1178.41 (17)C9—O3—C7—C6100.71 (17)
C2—N3—C4—C50.1 (2)N1—C6—C7—O355.09 (18)
N1—C5—C4—N30.2 (2)N1—C6—C7—C8173.30 (14)
N2—C5—C4—N3178.55 (18)C7—O3—C9—O40.4 (3)
C4—N3—C2—N10.4 (2)C7—O3—C9—C10178.99 (16)
C4—N3—C2—C11179.12 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.453.369 (2)168
C6—H6A···O4ii0.972.533.460 (2)161
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.453.369 (2)168
C6—H6A···O4ii0.972.533.460 (2)161
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z.
 

Acknowledgements

The authors acknowledge Nabiqasim Pharmaceutical Industries (Pvt) Ltd for financial support during the research work.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrozet, M. D., Botta, C., Gasquet, M., Curti, C., Rémusat, V., Hutter, S., Chapelle, O., Azas, N., De Méo, M. & Vanelle, P. (2009). Eur. J. Med. Chem. 44, 653–659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdwards, D. I. (1993). J. Antimicrob. Chemother. 31, 9–20.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMital, A. (2009). Sci. Pharm. 77, 497–520.  CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, X., Yuan, L., Zhang, X.-Q. & Wang, J.-T. (2008). Acta Cryst. E64, o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousuf, S., Khan, K. M., Naz, F., Perveen, S. & Miana, G. A. (2013). Acta Cryst. E69, o552.  CSD CrossRef IUCr Journals Google Scholar
First citationZeb, A., Yousuf, S. & Basha, F. Z. (2012). Acta Cryst. E68, o1218.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds