organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Fluoro­phen­yl)-3-phenyl-7H-1,2,4-tri­azolo[3,4-b][1,3,4]thia­diazine

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore Mysore, Karnataka, India, bDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, and cDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

(Received 11 February 2014; accepted 13 February 2014; online 28 February 2014)

In the title compound, C16H11FN4S, the dihedral angles between the triazole ring and the phenyl and fluoro­benzene rings are 23.22 (17) and 18.06 (17)°, respectively. The six-membered heterocyclic ring adopts a distorted envelope conformation, with the methyl­ene C atom as the flap. In the crystal, the mol­ecules are linked by two C—H⋯N and C—H⋯F inter­actions along [010], forming C(5), C(8) and C(13) chains repectively. C—H⋯π inter­actions involving the phenyl ring and ππ inter­actions [centroid–centroid separation for triazole rings = 3.5660 (18) Å] are also observed.

Related literature

For the anti­fungal activity of nitro­gen-containing heterocylces, see: Mathew et al. (2007[Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823-840.]) and for their anti­bacterial activity, see: Demirbas et al. (2005[Demirbas, N., Demibras, A., Karaoglu, S. A. & Celik, E. (2005). Arkivoc, 1, 75-91.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11FN4S

  • Mr = 310.35

  • Monoclinic, P 21 /c

  • a = 15.088 (2) Å

  • b = 13.464 (2) Å

  • c = 7.0557 (12) Å

  • β = 91.076 (3)°

  • V = 1433.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 294 K

  • 0.27 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007)[Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.] Tmin = 0.939, Tmax = 0.958

  • 9962 measured reflections

  • 2154 independent reflections

  • 1630 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.134

  • S = 0.94

  • 2154 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N2i 0.97 2.36 3.301 (3) 164
C12—H12⋯N2i 0.93 2.47 3.393 (4) 173
C4—H4⋯F1ii 0.93 2.57 3.475 (4) 164
C1—H1⋯Cg3iii 0.93 2.93 3.598 (3) 130
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrogen containing heterocyclic molecules show a broad spectrum of pharmacological properties like antifungal (Mathew et al., 2007), antibacterial (Demirbas et al., 2005) activities. As part of our studies in this area, the title compound was synthesized and its crystal structure determined.

In the title compound, C14H11FN4S, the dihedral angle between the ring pairs A—B, A—C, A—D, B—C, B—D and C—D are 23.22 (16)°, 16.62 (13)°, 29.83 (16)°, 9.86 (14)°, 18.06 (16)° and 14.61 (14)° respectively. In the crystal, the molecules are linked into one another through C9—H9···N2, C12—H12···N2 and C4—H4···F1 interactions along [010] forming C(5), C(8) and C(13) chains repectively. The structure is further stabilized by C—H···π and π···π interactions [centroid-centroid separation = 3.5660 Å] along [001] leading to a two dimensional architecture.

Related literature top

For the antifungal activity of nitrogen-containing heterocylces, see: Mathew et al. (2007) and for their antibacterial activity, see: Demirbas et al. (2005).

Experimental top

An equimolar mixture of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (1 mmole) and 2-chloro-1-(4-fluorophenyl)ethanone (1 mmole) and sodium acetate (2.5 mmol) in absolute ethanol (10 ml) were refluxed for 2 h and completion of the reaction was monitored by TLC. Reaction mixture was cooled to room temperature, the solvent was removed under vacuum and the precipitate obtained was filtered, washed with water and dried to get crude product. The Crude solid was further purified by column chromatography using dichloromethane/methanol (9:1) as eluent and was later recrystallized from dichloromethane/methanol solvent system to get colorless prisms of the title compound.

Refinement top

The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2–1.5 times of the U eq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Formation of C(5), C(8) and C(13)chains through C—H···N and C—H···F hydrogen bonds.
[Figure 3] Fig. 3. Display of C—H···π and π···π interactions in the crystal structure.
6-(4-Fluorophenyl)-3-phenyl-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazine top
Crystal data top
C16H11FN4SPrism
Mr = 310.35Dx = 1.438 Mg m3
Monoclinic, P21/cMelting point: 523 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.088 (2) ÅCell parameters from 199 reflections
b = 13.464 (2) Åθ = 1.2–26°
c = 7.0557 (12) ŵ = 0.24 mm1
β = 91.076 (3)°T = 294 K
V = 1433.0 (4) Å3Prism, colourless
Z = 40.27 × 0.23 × 0.18 mm
F(000) = 640
Data collection top
Bruker APEXII CCD
diffractometer
2154 independent reflections
Radiation source: fine-focus sealed tube1630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 1.6 pixels mm-1θmax = 26.0°, θmin = 2.0°
phi and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1616
Tmin = 0.939, Tmax = 0.958l = 88
9962 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0688P)2]
where P = (Fo2 + 2Fc2)/3
2154 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
11 constraints
Crystal data top
C16H11FN4SV = 1433.0 (4) Å3
Mr = 310.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.088 (2) ŵ = 0.24 mm1
b = 13.464 (2) ÅT = 294 K
c = 7.0557 (12) Å0.27 × 0.23 × 0.18 mm
β = 91.076 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2154 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1630 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.958Rint = 0.060
9962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.94Δρmax = 0.19 e Å3
2154 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.01380 (5)0.90521 (5)0.19233 (12)0.0434 (2)
N30.86107 (14)0.80121 (14)0.1963 (3)0.0328 (5)
N20.97880 (15)0.70583 (16)0.2103 (4)0.0444 (6)
N10.90331 (15)0.64596 (17)0.2066 (4)0.0416 (6)
N40.80738 (14)0.88156 (15)0.1519 (3)0.0330 (5)
C100.83938 (16)0.96827 (18)0.1890 (4)0.0321 (6)
C70.83399 (17)0.70319 (18)0.1968 (4)0.0340 (6)
C60.74169 (17)0.66820 (19)0.1859 (4)0.0351 (6)
C90.92724 (16)0.9844 (2)0.2857 (4)0.0391 (6)
H9A0.92150.97150.42020.047*
H9B0.94441.05330.27090.047*
C110.78112 (17)1.05326 (18)0.1437 (4)0.0343 (6)
C80.95214 (16)0.79732 (19)0.2038 (4)0.0357 (6)
F10.61197 (13)1.28437 (13)0.0296 (4)0.0784 (7)
C50.7266 (2)0.5726 (2)0.1183 (4)0.0450 (7)
H50.77390.53260.08410.054*
C150.6392 (2)1.1137 (2)0.0357 (5)0.0543 (8)
H150.58221.10190.01140.065*
C10.67026 (18)0.7263 (2)0.2400 (5)0.0432 (7)
H10.68000.78970.28810.052*
C160.69570 (18)1.0365 (2)0.0751 (5)0.0458 (7)
H160.67640.97160.05560.055*
C20.5845 (2)0.6898 (2)0.2223 (6)0.0571 (9)
H20.53660.72890.25700.068*
C120.80794 (19)1.1509 (2)0.1700 (5)0.0473 (7)
H120.86531.16400.21390.057*
C30.5708 (2)0.5959 (2)0.1535 (6)0.0597 (9)
H30.51330.57140.14120.072*
C140.6683 (2)1.2082 (2)0.0669 (5)0.0510 (8)
C130.7514 (2)1.2285 (2)0.1325 (6)0.0559 (9)
H130.76971.29380.15170.067*
C40.6409 (2)0.5377 (2)0.1024 (5)0.0583 (9)
H40.63060.47390.05660.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (3)0.0420 (4)0.0614 (5)0.0019 (3)0.0009 (3)0.0042 (3)
N30.0284 (11)0.0298 (11)0.0401 (12)0.0015 (9)0.0039 (9)0.0011 (9)
N20.0332 (12)0.0383 (13)0.0616 (16)0.0045 (10)0.0029 (11)0.0027 (11)
N10.0375 (12)0.0335 (12)0.0535 (14)0.0038 (10)0.0051 (11)0.0004 (11)
N40.0289 (11)0.0295 (11)0.0406 (12)0.0041 (9)0.0034 (9)0.0001 (9)
C100.0302 (12)0.0313 (13)0.0349 (13)0.0028 (10)0.0005 (11)0.0021 (11)
C70.0375 (14)0.0303 (13)0.0340 (13)0.0012 (11)0.0024 (11)0.0027 (10)
C60.0353 (13)0.0323 (13)0.0376 (14)0.0041 (11)0.0029 (11)0.0018 (11)
C90.0326 (13)0.0348 (14)0.0494 (16)0.0012 (11)0.0055 (12)0.0004 (12)
C110.0322 (13)0.0318 (13)0.0387 (14)0.0002 (11)0.0001 (11)0.0007 (11)
C80.0286 (13)0.0366 (14)0.0418 (15)0.0009 (11)0.0015 (11)0.0019 (11)
F10.0629 (12)0.0484 (11)0.123 (2)0.0259 (9)0.0115 (13)0.0061 (12)
C50.0494 (17)0.0335 (14)0.0520 (18)0.0018 (13)0.0006 (14)0.0031 (13)
C150.0394 (16)0.0508 (18)0.072 (2)0.0069 (14)0.0123 (16)0.0005 (16)
C10.0391 (14)0.0401 (15)0.0504 (17)0.0038 (12)0.0037 (13)0.0075 (13)
C160.0376 (15)0.0344 (14)0.065 (2)0.0021 (12)0.0100 (15)0.0013 (13)
C20.0392 (16)0.059 (2)0.073 (2)0.0003 (15)0.0022 (16)0.0074 (17)
C120.0388 (15)0.0372 (15)0.0656 (19)0.0006 (13)0.0069 (14)0.0013 (15)
C30.0426 (17)0.061 (2)0.075 (2)0.0164 (15)0.0093 (17)0.0050 (18)
C140.0467 (16)0.0428 (16)0.064 (2)0.0178 (14)0.0001 (15)0.0044 (15)
C130.0521 (17)0.0326 (15)0.083 (2)0.0020 (13)0.0015 (18)0.0027 (15)
C40.061 (2)0.0440 (17)0.070 (2)0.0170 (16)0.0060 (18)0.0085 (16)
Geometric parameters (Å, º) top
S1—C81.728 (3)F1—C141.354 (3)
S1—C91.819 (3)C5—C41.378 (4)
N3—C81.375 (3)C5—H50.9300
N3—C71.382 (3)C15—C141.362 (4)
N3—N41.384 (3)C15—C161.370 (4)
N2—C81.296 (3)C15—H150.9300
N2—N11.395 (3)C1—C21.388 (4)
N1—C71.300 (3)C1—H10.9300
N4—C101.288 (3)C16—H160.9300
C10—C111.474 (3)C2—C31.369 (4)
C10—C91.495 (3)C2—H20.9300
C7—C61.471 (4)C12—C131.371 (4)
C6—C11.391 (4)C12—H120.9300
C6—C51.390 (4)C3—C41.371 (5)
C9—H9A0.9700C3—H30.9300
C9—H9B0.9700C14—C131.356 (5)
C11—C161.387 (4)C13—H130.9300
C11—C121.387 (4)C4—H40.9300
C8—S1—C994.87 (13)C4—C5—H5120.3
C8—N3—C7105.0 (2)C6—C5—H5120.3
C8—N3—N4128.2 (2)C14—C15—C16118.6 (3)
C7—N3—N4125.1 (2)C14—C15—H15120.7
C8—N2—N1107.2 (2)C16—C15—H15120.7
C7—N1—N2108.3 (2)C6—C1—C2120.2 (3)
C10—N4—N3116.5 (2)C6—C1—H1119.9
N4—C10—C11116.1 (2)C2—C1—H1119.9
N4—C10—C9123.4 (2)C15—C16—C11121.2 (3)
C11—C10—C9120.4 (2)C15—C16—H16119.4
N1—C7—N3109.2 (2)C11—C16—H16119.4
N1—C7—C6125.0 (2)C3—C2—C1119.6 (3)
N3—C7—C6125.8 (2)C3—C2—H2120.2
C1—C6—C5119.5 (3)C1—C2—H2120.2
C1—C6—C7122.9 (2)C13—C12—C11121.1 (3)
C5—C6—C7117.6 (2)C13—C12—H12119.4
C10—C9—S1112.70 (19)C11—C12—H12119.4
C10—C9—H9A109.1C2—C3—C4120.6 (3)
S1—C9—H9A109.1C2—C3—H3119.7
C10—C9—H9B109.1C4—C3—H3119.7
S1—C9—H9B109.1F1—C14—C13119.1 (3)
H9A—C9—H9B107.8F1—C14—C15118.5 (3)
C16—C11—C12117.9 (3)C13—C14—C15122.4 (3)
C16—C11—C10119.7 (2)C14—C13—C12118.7 (3)
C12—C11—C10122.4 (2)C14—C13—H13120.6
N2—C8—N3110.3 (2)C12—C13—H13120.6
N2—C8—S1129.3 (2)C3—C4—C5120.7 (3)
N3—C8—S1120.31 (19)C3—C4—H4119.6
C4—C5—C6119.4 (3)C5—C4—H4119.6
C8—N2—N1—C70.4 (3)C7—N3—C8—N20.6 (3)
C8—N3—N4—C1028.0 (4)N4—N3—C8—N2166.4 (3)
C7—N3—N4—C10168.8 (2)C7—N3—C8—S1176.35 (19)
N3—N4—C10—C11179.2 (2)N4—N3—C8—S110.5 (4)
N3—N4—C10—C93.7 (4)C9—S1—C8—N2158.0 (3)
N2—N1—C7—N30.8 (3)C9—S1—C8—N325.7 (2)
N2—N1—C7—C6178.6 (3)C1—C6—C5—C41.3 (5)
C8—N3—C7—N10.9 (3)C7—C6—C5—C4178.8 (3)
N4—N3—C7—N1167.3 (2)C5—C6—C1—C21.5 (5)
C8—N3—C7—C6178.5 (3)C7—C6—C1—C2178.6 (3)
N4—N3—C7—C612.1 (4)C14—C15—C16—C110.6 (5)
N1—C7—C6—C1157.2 (3)C12—C11—C16—C150.4 (5)
N3—C7—C6—C123.5 (4)C10—C11—C16—C15178.5 (3)
N1—C7—C6—C522.7 (4)C6—C1—C2—C30.8 (5)
N3—C7—C6—C5156.5 (3)C16—C11—C12—C131.1 (5)
N4—C10—C9—S144.7 (3)C10—C11—C12—C13177.9 (3)
C11—C10—C9—S1140.1 (2)C1—C2—C3—C40.2 (6)
C8—S1—C9—C1048.7 (2)C16—C15—C14—F1179.3 (3)
N4—C10—C11—C163.3 (4)C16—C15—C14—C131.1 (6)
C9—C10—C11—C16172.2 (3)F1—C14—C13—C12180.0 (3)
N4—C10—C11—C12177.8 (3)C15—C14—C13—C120.5 (6)
C9—C10—C11—C126.7 (4)C11—C12—C13—C140.6 (5)
N1—N2—C8—N30.1 (3)C2—C3—C4—C50.4 (6)
N1—N2—C8—S1176.5 (2)C6—C5—C4—C30.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···N2i0.972.363.301 (3)164
C12—H12···N2i0.932.473.393 (4)173
C4—H4···F1ii0.932.573.475 (4)164
C1—H1···Cg3iii0.932.933.598 (3)130
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y1, z; (iii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···N2i0.972.363.301 (3)164
C12—H12···N2i0.932.473.393 (4)173
C4—H4···F1ii0.932.573.475 (4)164
C1—H1···Cg3iii0.932.933.598 (3)130
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y1, z; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank H. T. Srinivasa, Raman Research Institute, Bangalore, India for useful discussions.

References

First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirbas, N., Demibras, A., Karaoglu, S. A. & Celik, E. (2005). Arkivoc, 1, 75–91.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds