organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Formyl-2-nitro­phenyl benzoate

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 4 February 2014; accepted 5 February 2014; online 8 February 2014)

In the title nitroaryl benzoate derivative, C14H9NO5, the aromatic rings form a dihedral angle of 46.37 (8)°. The central ester moiety, —C—(C=O)—O—, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0283 Å) and forms a dihedral angle of 54.06 (9)° with the 4-formyl-2-nitro­phenyl ring and 7.99 (19)° with the benzoate ring. In the crystal, mol­ecules are inter­twined by weak C—H⋯O inter­actions, forming helical chains along [100].

Related literature

For similar esters, see: Moreno-Fuquen et al. (2013a[Moreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013a). Acta Cryst. E69, o793.],b[Moreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013b). Acta Cryst. E69, o1806.], 2014[Moreno-Fuquen, R., Hernández, G. & Kennedy, A. R. (2014). Acta Cryst. E70, o17.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and for hydrogen-bond motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9NO5

  • Mr = 271.22

  • Monoclinic, P 21 /c

  • a = 11.3478 (11) Å

  • b = 3.7101 (5) Å

  • c = 27.723 (2) Å

  • β = 94.979 (9)°

  • V = 1162.8 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.02 mm−1

  • T = 123 K

  • 0.21 × 0.12 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.813, Tmax = 1.000

  • 4231 measured reflections

  • 2213 independent reflections

  • 1403 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.190

  • S = 0.99

  • 2213 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O4i 0.95 2.50 3.343 (4) 148
C12—H12⋯O5ii 0.95 2.62 3.346 (4) 134
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound 4-formyl-2-nitrophenyl benzoate (I), is part of a series of studies on the structural properties of the formyl nitro aryl benzoates developed by our research group. The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles show marked similarity with the 4-formyl-2-nitrophenyl 4-bromo benzoate (F4BrB) (Moreno-Fuquen et al., 2013a), 4-formyl-2-nitrophenyl 4-cloro benzoate (F4ClB) (Moreno-Fuquen et al., 2013b) and 4-formyl-2-nitrophenyl 3-nitro-2-methyl benzoate (F3N2MB) (Moreno-Fuquen et al., 2014) reported earlier jobs. The benzene rings of (I) form a dihedral angle of 46.36 (8)°. This value is quite different when compared to the systems F4BrB [62.90 (7)°], F4ClB [19.55 (9)°] and F3N2MB [4.96 (3)°]. Substituents on the rings of each system are crucial in defining the values of this angle. The central ester moiety, C1-(C7=O1)-O2-C8, is essentially planar (rms deviation for all non-H atoms = 0.0283 Å) and it forms dihedral angles of 54.06 (9)° with the formyl nitro aryl ring and 7.99 (19)° with the benzoate ring. The nitro group forms a dihedral angle with the adjacent benzene ring of 39.66 (12)°. In the crystal, the C10 and C12 atoms of the formyl nitro aryl ring at (x, y, z) act as a hydrogen-bond donors to atom O4 at (-x+1,+y+1/2,-z+1/2) and to atom O5 at (-x+2,+y-1/2,-z+1/2) forming C(5) and C(7) helical chains (Etter, 1990), along [100] (See Fig. 2). These interactions are presented in Table 1. (Nardelli, 1995).

Related literature top

For similar esters, see: Moreno-Fuquen et al. (2013a,b, 2014). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond motifs, see: Etter (1990).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich-Sigma Chemical Co., and were used without additional purification. In a 25 ml round bottom flask, 4-hydroxy-3-nitrobenzaldehyde (0.201 g, 0.571 mmol) and benzoyl chloride in equimolar amounts, were dissolved in 20 mL of acetonitrile. After a short period of time, 0.03 ml of pyridine were added. Then the mixture was left to reflux in constant stirring for about two hours. A colourless solid was obtained after leaving the solvent to evaporate. m.p 384 (1)K.

Refinement top

All H-atoms were positioned at geometrically idealized positions with C—H distances of 0.95 Å and Uiso(H) = 1.2 times Ueq of the parent C-atoms. The H14 atom was found from difference Fourier map and its coordinates were refined freely.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of helical chains which running along [100]. Symmetry code: (i) -x+1,+y+1/2,-z+1/2; (ii) -x+2,+y-1/2,-z+1/2.
4-Formyl-2-nitrophenyl benzoate top
Crystal data top
C14H9NO5F(000) = 560
Mr = 271.22Dx = 1.549 Mg m3
Monoclinic, P21/cMelting point: 457(1) K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54180 Å
a = 11.3478 (11) ÅCell parameters from 977 reflections
b = 3.7101 (5) Åθ = 3.9–73.3°
c = 27.723 (2) ŵ = 1.02 mm1
β = 94.979 (9)°T = 123 K
V = 1162.8 (2) Å3Plate, colourless
Z = 40.21 × 0.12 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2213 independent reflections
Radiation source: fine-focus sealed tube1403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 70.0°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
h = 1013
Tmin = 0.813, Tmax = 1.000k = 44
4231 measured reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0857P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2213 reflectionsΔρmax = 0.37 e Å3
186 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (7)
Crystal data top
C14H9NO5V = 1162.8 (2) Å3
Mr = 271.22Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.3478 (11) ŵ = 1.02 mm1
b = 3.7101 (5) ÅT = 123 K
c = 27.723 (2) Å0.21 × 0.12 × 0.02 mm
β = 94.979 (9)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2213 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1403 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.049
4231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.37 e Å3
2213 reflectionsΔρmin = 0.28 e Å3
186 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89645 (19)0.3296 (7)0.43051 (7)0.0419 (7)
O20.73248 (18)0.0150 (7)0.40350 (7)0.0398 (6)
O50.8819 (2)0.0584 (8)0.18661 (8)0.0510 (8)
O30.5482 (2)0.4580 (8)0.37507 (8)0.0457 (7)
O40.46029 (19)0.1854 (8)0.31290 (7)0.0462 (7)
N10.5497 (2)0.2761 (9)0.33830 (9)0.0374 (7)
C70.8124 (3)0.1534 (10)0.43947 (10)0.0356 (8)
C10.7763 (3)0.0601 (10)0.48775 (11)0.0363 (8)
C20.6678 (3)0.1079 (9)0.49328 (11)0.0370 (8)
H20.61640.17070.46570.044*
C30.6360 (3)0.1820 (11)0.53964 (11)0.0404 (8)
H30.56260.29560.54390.048*
C40.7118 (3)0.0895 (10)0.57954 (12)0.0441 (9)
H40.68970.13820.61120.053*
C50.8190 (3)0.0722 (11)0.57390 (11)0.0436 (9)
H50.87080.13060.60160.052*
C60.8514 (3)0.1497 (10)0.52809 (11)0.0393 (8)
H60.92490.26410.52430.047*
C80.7551 (3)0.0466 (10)0.35567 (11)0.0353 (8)
C90.6635 (3)0.1614 (10)0.32282 (11)0.0345 (8)
C100.6769 (3)0.1666 (10)0.27316 (11)0.0364 (8)
H100.61380.24470.25080.044*
C110.7821 (3)0.0577 (10)0.25704 (11)0.0369 (8)
C120.8741 (3)0.0597 (10)0.29011 (11)0.0375 (8)
H120.94690.13420.27880.045*
C130.8601 (3)0.0684 (10)0.33923 (11)0.0380 (8)
H130.92240.15300.36150.046*
C140.7966 (3)0.0616 (11)0.20439 (11)0.0399 (9)
H140.731 (3)0.180 (10)0.1847 (11)0.039 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (13)0.0533 (16)0.0313 (12)0.0048 (12)0.0026 (10)0.0012 (11)
O20.0384 (12)0.0560 (16)0.0233 (11)0.0044 (11)0.0075 (9)0.0031 (11)
O50.0475 (15)0.072 (2)0.0329 (12)0.0034 (14)0.0016 (11)0.0037 (13)
O30.0450 (14)0.0584 (18)0.0329 (12)0.0017 (12)0.0009 (10)0.0091 (12)
O40.0376 (13)0.0667 (19)0.0322 (12)0.0026 (12)0.0085 (10)0.0034 (12)
N10.0377 (15)0.0472 (18)0.0259 (12)0.0007 (13)0.0056 (11)0.0023 (13)
C70.0355 (17)0.043 (2)0.0264 (15)0.0041 (15)0.0074 (13)0.0006 (15)
C10.0355 (17)0.045 (2)0.0271 (16)0.0055 (15)0.0036 (13)0.0026 (15)
C20.0397 (18)0.041 (2)0.0283 (16)0.0030 (15)0.0070 (13)0.0004 (15)
C30.0380 (17)0.047 (2)0.0353 (17)0.0033 (16)0.0003 (14)0.0018 (16)
C40.047 (2)0.054 (2)0.0310 (16)0.0024 (18)0.0013 (14)0.0038 (17)
C50.0449 (19)0.055 (2)0.0281 (16)0.0046 (17)0.0122 (14)0.0049 (16)
C60.0365 (17)0.048 (2)0.0320 (16)0.0003 (16)0.0038 (13)0.0022 (16)
C80.0381 (17)0.0407 (19)0.0258 (15)0.0061 (15)0.0051 (13)0.0036 (14)
C90.0332 (16)0.0404 (19)0.0285 (15)0.0025 (15)0.0051 (12)0.0003 (15)
C100.0362 (17)0.044 (2)0.0266 (15)0.0005 (16)0.0091 (13)0.0055 (15)
C110.0383 (18)0.044 (2)0.0271 (15)0.0036 (15)0.0043 (13)0.0019 (15)
C120.0363 (17)0.042 (2)0.0333 (16)0.0043 (15)0.0043 (13)0.0043 (15)
C130.0384 (17)0.044 (2)0.0292 (16)0.0008 (15)0.0087 (13)0.0034 (15)
C140.0382 (18)0.050 (2)0.0301 (17)0.0024 (16)0.0064 (14)0.0008 (16)
Geometric parameters (Å, º) top
O1—C71.200 (4)C4—H40.9500
O2—C81.377 (4)C5—C61.383 (5)
O2—C71.387 (3)C5—H50.9500
O5—C141.208 (4)C6—H60.9500
O3—N11.224 (3)C8—C131.380 (5)
O4—N11.231 (3)C8—C91.388 (4)
N1—C91.459 (4)C9—C101.398 (4)
C7—C11.475 (4)C10—C111.372 (4)
C1—C61.387 (4)C10—H100.9500
C1—C21.399 (5)C11—C121.398 (4)
C2—C31.392 (4)C11—C141.483 (4)
C2—H20.9500C12—C131.385 (4)
C3—C41.384 (4)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.377 (5)C14—H140.99 (3)
C8—O2—C7119.7 (3)C5—C6—H6120.1
O3—N1—O4123.9 (3)C1—C6—H6120.1
O3—N1—C9118.8 (2)O2—C8—C13122.0 (3)
O4—N1—C9117.3 (3)O2—C8—C9117.8 (3)
O1—C7—O2122.3 (3)C13—C8—C9119.8 (3)
O1—C7—C1127.2 (3)C8—C9—C10120.8 (3)
O2—C7—C1110.5 (3)C8—C9—N1121.9 (3)
C6—C1—C2120.2 (3)C10—C9—N1117.4 (3)
C6—C1—C7118.4 (3)C11—C10—C9119.3 (3)
C2—C1—C7121.4 (3)C11—C10—H10120.4
C3—C2—C1119.3 (3)C9—C10—H10120.4
C3—C2—H2120.3C10—C11—C12120.0 (3)
C1—C2—H2120.3C10—C11—C14119.5 (3)
C4—C3—C2119.7 (3)C12—C11—C14120.5 (3)
C4—C3—H3120.1C13—C12—C11120.6 (3)
C2—C3—H3120.1C13—C12—H12119.7
C5—C4—C3120.7 (3)C11—C12—H12119.7
C5—C4—H4119.6C8—C13—C12119.6 (3)
C3—C4—H4119.6C8—C13—H13120.2
C4—C5—C6120.2 (3)C12—C13—H13120.2
C4—C5—H5119.9O5—C14—C11124.0 (3)
C6—C5—H5119.9O5—C14—H14122.0 (19)
C5—C6—C1119.8 (3)C11—C14—H14114.0 (19)
C8—O2—C7—O16.7 (5)O2—C8—C9—N15.3 (5)
C8—O2—C7—C1174.7 (3)C13—C8—C9—N1178.3 (3)
O1—C7—C1—C67.0 (6)O3—N1—C9—C840.2 (5)
O2—C7—C1—C6174.5 (3)O4—N1—C9—C8140.5 (3)
O1—C7—C1—C2171.6 (4)O3—N1—C9—C10140.6 (3)
O2—C7—C1—C26.9 (5)O4—N1—C9—C1038.6 (5)
C6—C1—C2—C30.3 (5)C8—C9—C10—C110.2 (5)
C7—C1—C2—C3178.2 (3)N1—C9—C10—C11179.4 (3)
C1—C2—C3—C40.1 (5)C9—C10—C11—C120.5 (5)
C2—C3—C4—C50.6 (6)C9—C10—C11—C14179.8 (3)
C3—C4—C5—C61.1 (6)C10—C11—C12—C130.2 (5)
C4—C5—C6—C10.8 (6)C14—C11—C12—C13179.1 (3)
C2—C1—C6—C50.1 (6)O2—C8—C13—C12174.3 (3)
C7—C1—C6—C5178.7 (3)C9—C8—C13—C121.6 (5)
C7—O2—C8—C1353.3 (5)C11—C12—C13—C81.3 (5)
C7—O2—C8—C9133.8 (3)C10—C11—C14—O5173.3 (4)
O2—C8—C9—C10173.9 (3)C12—C11—C14—O55.9 (6)
C13—C8—C9—C100.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O4i0.952.503.343 (4)148
C12—H12···O5ii0.952.623.346 (4)134
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O4i0.952.503.343 (4)148.0
C12—H12···O5ii0.952.623.346 (4)133.9
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAgilent (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013a). Acta Cryst. E69, o793.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013b). Acta Cryst. E69, o1806.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Hernández, G. & Kennedy, A. R. (2014). Acta Cryst. E70, o17.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds