organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o289-o290

(E)-N-(4-{[1-(Prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]meth­­oxy}benzyl­­idene)morpholin-4-amine

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 5 February 2014; accepted 7 February 2014; online 12 February 2014)

The asymmetric unit of the title compound, C17H21N5O2, contains two crystallographically independent mol­ecules, which are linked by a C—H⋯N hydrogen bond. The morpholine rings of both mol­ecules adopt distorted chair conformations. The dihedral angles between the triazole and benzene rings are 12.8 (3)° in the first independent molecule in which the –N=C– group between the morpholine and benzene rings is disordered [site-occupancy ratio = 0.576 (7):0.424 (7)] and 88.1 (2)° in the second independent mol­ecule. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds along the [100] direction. In addition, one weak C—H⋯π inter­action and two weak ππ stacking inter­actions [centroid–centroid distances = 3.840 (3) and 3.823 (2) Å] between the triazole rings of adjacent mol­ecules are observed. The atoms of the terminal propenyl groups in both mol­ecules are disordered over two sets of sites [site-occupancy ratios = 0.691 (10):0.309 (10) and 0.705 (15):0.295 (15)].

Related literature

For the biological activity of triazole derivatives, see: Bringmann et al. (2004[Bringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D. & Jaroszewski, J. W. (2004). J. Nat. Prod. 67, 743-748.]); Nelson et al. (2004[Nelson, T. D., Rosen, J. D., Brands, K. M. J., Craig, B., Huffman, M. A. & McNamara, J. M. (2004). Tetrahedron Lett. 45, 8917-8920.]); Nithinchandra et al. (2013[Nithinchandra, B. K., Shobhitha, S. & Babu, M. (2013). J. Chem. Pharm. Res. 5, 307-313.]); Sherement et al. (2004[Sherement, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594-595.]); Singh et al. (2012[Singh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594-600.]). For similar structures, see: Akkurt et al. (2013a[Akkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Tahir, M. N. (2013a). Acta Cryst. E69, o247.],b[Akkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Büyükgüngör, O. (2013b). Acta Cryst. E69, o1576.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21N5O2

  • Mr = 327.39

  • Triclinic, [P \overline 1]

  • a = 10.5992 (8) Å

  • b = 11.6351 (10) Å

  • c = 14.8758 (13) Å

  • α = 95.811 (7)°

  • β = 100.724 (6)°

  • γ = 99.838 (6)°

  • V = 1759.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.58 × 0.34 × 0.13 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.968, Tmax = 0.990

  • 18485 measured reflections

  • 6210 independent reflections

  • 2458 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.224

  • S = 0.90

  • 6210 reflections

  • 419 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N8 0.93 2.49 3.385 (6) 162
C15A—H15B⋯N3i 0.97 2.59 3.355 (18) 136
C31—H31⋯N3ii 0.93 2.54 3.323 (5) 141
C31—H31⋯N4ii 0.93 2.40 3.326 (5) 171
C24—H24⋯Cg3iii 0.93 2.92 3.710 (5) 144
Symmetry codes: (i) -x+2, -y+2, -z; (ii) x-1, y, z; (iii) -x+1, -y+2, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases are present in various natural, semi-synthetic, and synthetic compounds and have been demonstrated to be essential for their biological activities (Bringmann et al., 2004). Triazoles constitute an important class of heterocycles because of their varied biological activities (Singh et al., 2012). 1,2,3-Triazoles are attractive constructs, because of their unique chemical properties and they find many applications in organic and medicinal chemistry (Nithinchandra et al., 2013). They are found to be potent antimicrobial and antiviral agents (Sherement et al., 2004). The morpholine moiety has been utilized extensively by the pharmaceutical industry in drug design, often because of the improvement in pharmacokinetic properties it can confer. The biological utility of molecules containing the morpholine moiety is wide-ranging (Nelson et al., 2004). Therefore, compound (I), which has the triazole and the morpholine moieties in one molecule, has beeb synthesized and its X-ray studies is reported here.

Fig. 1 shows two crystallographically independent molecules in the asymmetric unit of the title compound. The morpholine rings of both molecules adopts distorted chair conformations [puckering parameters (Cremer & Pople, 1975) are QT = 0.415 (6) Å, θ = 4.2 (7)°, φ = 5(10)° and QT = 0.519 (6) Å, θ = 173.1 (7)°, φ = 169 (6)°, respectively]. The dihedral angles between the triazole and benzene rings of both molecules are 12.8 (3) and 88.1 (2) °, respectively. All bond lengths and bond angles in (I) are normal and comparable to those given for the similar compounds (Akkurt et al., 2013a,b).

In the crystal, molecules are linked by C—H···N hydrogen bonds (Table 1 and Fig. 2) along the [100] direction. Furthermore, one weak C—H···π interaction and two weak π-π stacking interactions [Cg1···Cg1(2 - x, 2 - y, -z) = 3.840 (3) Å and Cg4···Cg4(1 - x, 2 - y, -z) = 3.823 (2) Å; where Cg1 and Cg4 are the centroids of the N3—N5/C13/C14 and N8—N10/C30/C31 triazole rings of the two molecules in the asymmetric unit, respectively] between the triazole rings of the adjacent molecules help to stabilize the crystal structure.

Related literature top

For the biological activity of triazole derivatives, see: Bringmann et al. (2004); Nelson et al. (2004); Nithinchandra et al. (2013); Sherement et al. (2004); Singh et al. (2012). For similar structures, see: Akkurt et al. (2013a,b). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Reaction of 4-((1-allyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (1.00 mmol) with morpholin-4-amine (1.00 mmol) in refluxing ethanol gave the title compound. Recrystallization from ethanol gave colourless prisms in 75% yield. Mp: 410–412 K. IR (KBr, cm-1):1612 (C=N). 1H-NMR (250 MHz, CDCl3), δ (p.p.m.): 3.15 (CH2—N morpholine, t, 4H, J=5 Hz), 3.89 (CH2—O morpholine, t, 4H, J=5 Hz), 4.96 (d, 2H, J=5 Hz), 5.26 (s, 2H), 5.35 (m, 2H), 6.01 (m, 1H), 6.96 (aromatic H, d, 2H, J=10 Hz), 5.55 (aromatic H, d, 2H, J=7.5 Hz), 7.64 (H triazole, s, 1H), 7.75 (C=N, s, 1H). 13C-NMR (62.9 MHz, CDCl3), δ (p.p.m.): 52.3 (CH2—N morpholine), 52.7 (CH2—N), 62.0 (CH2—O morpholine), 66.1(CH2—O), 114.9–131.0 (aromatic carbons and C=C triazole), 159.2 (C=N).

Refinement top

H atoms were located geometrically and were refined using a riding model with Uiso(H) = 1.2Ueq(C). The atoms of the terminal propenyl groups of the two molecules in the asymmetric unit are disordered over two sets of sites, with the site-occupancy ratios of 0.691 (10): 0.309 (10) and 0.705 (15): 0.295 (15), respectively. The –N2C5– group between the morpholine and benzene rings of the one molecule is also disordered over two positions [site-occupancy ratio = 0.576 (7): 0.424 (7)]. The small proportion of reflections observed is a result of the rather poor quality of the very thin crystals obtained.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The title molecule (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Only major disorder component is shown.
[Figure 2] Fig. 2. View of the hydrogen bonding and molecular packing of (I) along the b axis. H atoms involved in H bonding and only major disorder component of disorder are shown.
(E)-N-(4-{[1-(Prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]methoxy}benzylidene)morpholin-4-amine top
Crystal data top
C17H21N5O2Z = 4
Mr = 327.39F(000) = 696
Triclinic, P1Dx = 1.236 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5992 (8) ÅCell parameters from 12937 reflections
b = 11.6351 (10) Åθ = 1.4–27.9°
c = 14.8758 (13) ŵ = 0.08 mm1
α = 95.811 (7)°T = 296 K
β = 100.724 (6)°Prism, colourless
γ = 99.838 (6)°0.58 × 0.34 × 0.13 mm
V = 1759.1 (3) Å3
Data collection top
Stoe IPDS 2
diffractometer
6210 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2458 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.097
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 1.4°
ω scansh = 1212
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.968, Tmax = 0.990l = 1717
18485 measured reflections
Refinement top
Refinement on F218 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.1115P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
6210 reflectionsΔρmax = 0.59 e Å3
419 parametersΔρmin = 0.25 e Å3
Crystal data top
C17H21N5O2γ = 99.838 (6)°
Mr = 327.39V = 1759.1 (3) Å3
Triclinic, P1Z = 4
a = 10.5992 (8) ÅMo Kα radiation
b = 11.6351 (10) ŵ = 0.08 mm1
c = 14.8758 (13) ÅT = 296 K
α = 95.811 (7)°0.58 × 0.34 × 0.13 mm
β = 100.724 (6)°
Data collection top
Stoe IPDS 2
diffractometer
6210 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2458 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.990Rint = 0.097
18485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08018 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 0.90Δρmax = 0.59 e Å3
6210 reflectionsΔρmin = 0.25 e Å3
419 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6237 (5)0.4832 (3)0.7915 (3)0.1443 (19)
O20.8543 (3)0.9516 (3)0.26209 (19)0.1045 (14)
N10.6676 (6)0.6509 (4)0.6716 (3)0.126 (2)
N2A0.6643 (8)0.6924 (8)0.5811 (6)0.094 (3)0.576 (7)
N31.0870 (3)1.0861 (4)0.1389 (3)0.1039 (16)
N41.0574 (3)1.1331 (3)0.0639 (3)0.1043 (16)
N50.9289 (3)1.1321 (3)0.0491 (2)0.0815 (12)
C10.5505 (6)0.5636 (6)0.6529 (4)0.133 (3)
C20.5181 (6)0.5210 (5)0.7387 (4)0.141 (3)
C30.7331 (7)0.5754 (5)0.8149 (4)0.148 (3)
C40.7744 (6)0.6183 (5)0.7315 (4)0.136 (3)
C5A0.7787 (8)0.7292 (7)0.5672 (6)0.092 (3)0.576 (7)
C60.7697 (11)0.7785 (5)0.4807 (4)0.153 (4)
C70.8949 (9)0.8212 (5)0.4742 (4)0.151 (4)
C80.9304 (5)0.8784 (4)0.4061 (3)0.1147 (19)
C90.8325 (5)0.8945 (4)0.3350 (3)0.0918 (19)
C100.7034 (6)0.8523 (4)0.3372 (3)0.110 (2)
C110.6738 (6)0.7962 (5)0.4088 (4)0.126 (3)
C120.9829 (4)1.0002 (4)0.2566 (3)0.0962 (17)
C130.9784 (4)1.0560 (3)0.1722 (3)0.0797 (17)
C140.8776 (4)1.0853 (3)0.1152 (3)0.0802 (16)
C15A0.8680 (19)1.1698 (15)0.0364 (9)0.090 (3)0.691 (10)
C16A0.9190 (18)1.2977 (16)0.0298 (7)0.150 (5)0.691 (10)
C17A0.9566 (11)1.3396 (12)0.1022 (8)0.225 (7)0.691 (10)
C5B0.6811 (13)0.7108 (13)0.5400 (8)0.092 (3)0.424 (7)
C15B0.855 (4)1.187 (4)0.023 (2)0.090 (3)0.309 (10)
C16B0.930 (5)1.283 (4)0.065 (2)0.150 (5)0.309 (10)
C17B0.853 (3)1.359 (3)0.0446 (19)0.225 (7)0.309 (10)
N2B0.7456 (10)0.7084 (11)0.6185 (7)0.094 (3)0.424 (7)
O30.0840 (5)0.5145 (4)0.7668 (3)0.1466 (19)
O40.3815 (3)0.9503 (2)0.23393 (16)0.0879 (10)
N60.1978 (4)0.6094 (3)0.6291 (3)0.1035 (11)
N70.2177 (4)0.6515 (3)0.5472 (2)0.1035 (11)
N80.5704 (3)1.1125 (3)0.1342 (3)0.0960 (16)
N90.5726 (3)1.1426 (3)0.0521 (3)0.1002 (16)
N100.4507 (3)1.1526 (3)0.0151 (2)0.0797 (12)
C180.1177 (6)0.4959 (4)0.6103 (3)0.123 (2)
C190.1057 (6)0.4407 (5)0.6941 (4)0.122 (3)
C200.1672 (6)0.6226 (5)0.7861 (3)0.127 (2)
C210.1826 (5)0.6855 (4)0.7056 (3)0.113 (2)
C220.2493 (4)0.7587 (4)0.5465 (3)0.0929 (6)
C230.2813 (4)0.8062 (4)0.4627 (3)0.0929 (6)
C240.3134 (4)0.9242 (4)0.4648 (3)0.0929 (6)
C250.3459 (4)0.9759 (4)0.3907 (3)0.0929 (6)
C260.3471 (4)0.9074 (4)0.3098 (3)0.0929 (6)
C270.3138 (4)0.7870 (4)0.3061 (3)0.0929 (6)
C280.2819 (4)0.7383 (4)0.3821 (3)0.0929 (6)
C290.4144 (4)1.0752 (3)0.2382 (2)0.0812 (16)
C300.4472 (3)1.1038 (3)0.1500 (2)0.0691 (12)
C310.3727 (3)1.1294 (3)0.0736 (2)0.0750 (14)
C32A0.4142 (19)1.1840 (16)0.0775 (8)0.098 (3)0.705 (15)
C33A0.4217 (15)1.3152 (11)0.0709 (7)0.141 (5)0.705 (15)
C34A0.3135 (19)1.3541 (19)0.0881 (16)0.205 (9)0.705 (15)
C33B0.343 (3)1.278 (2)0.074 (2)0.141 (5)0.295 (15)
C34B0.379 (6)1.384 (3)0.094 (4)0.205 (9)0.295 (15)
C32B0.440 (5)1.195 (5)0.076 (2)0.098 (3)0.295 (15)
H3A0.805200.548500.851600.1770*
H3B0.712600.640100.852300.1770*
H1A0.560700.497500.611500.1600*
H1B0.478600.596300.622000.1600*
H2A0.493900.584100.775700.1700*
H2B0.443300.456300.722200.1700*
H100.636800.862000.289800.1320*
H110.586300.768700.409600.1520*
H12A1.034400.938900.255000.1160*
H12B1.023401.058100.310300.1160*
H140.790601.074800.120900.0960*
H15A0.773601.154400.043700.1080*0.691 (10)
H15B0.890101.127500.089100.1080*0.691 (10)
H16A0.924501.347800.024200.1800*0.691 (10)
H17A0.950801.288900.155900.2710*0.691 (10)
H17B0.988901.419800.099200.2710*0.691 (10)
H4A0.845700.685800.750600.1630*
H4B0.806000.556800.698100.1630*
H5A0.856500.725200.606600.1100*0.576 (7)
H70.961500.809800.520800.1810*
H81.018100.906400.406500.1380*
H5B0.592900.677300.519300.1100*0.424 (7)
H15C0.790101.220700.003800.1080*0.309 (10)
H15D0.808201.125500.072000.1080*0.309 (10)
H16B1.001001.287000.094100.1800*0.309 (10)
H17C0.785301.336400.014400.2710*0.309 (10)
H17D0.867801.435100.060600.2710*0.309 (10)
H19A0.034000.373200.678000.1470*
H20A0.252900.611800.816300.1520*
H20B0.135800.672600.829700.1520*
H19B0.185200.411800.715100.1470*
H18A0.153800.445700.569800.1480*
H18B0.031200.501500.577900.1480*
H240.313400.972600.518500.1110*
H250.367301.057500.395300.1110*
H270.312700.738200.252400.1110*
H280.260100.656800.378200.1110*
H29A0.488601.106900.288600.0970*
H29B0.341001.110100.249400.0970*
H310.283701.130500.063900.0900*
H32A0.326001.143200.106200.1170*0.705 (15)
H32B0.473101.160500.115400.1170*0.705 (15)
H33A0.502001.367000.054900.1690*0.705 (15)
H34A0.233801.301400.104100.2460*0.705 (15)
H34B0.315501.434600.084500.2460*0.705 (15)
H21A0.106400.720100.687400.1350*
H21B0.258600.748900.723400.1350*
H220.253200.810400.599300.1110*
H32C0.406901.129900.125300.1170*0.295 (15)
H32D0.523901.236300.083000.1170*0.295 (15)
H33B0.262401.253500.059200.1690*0.295 (15)
H34C0.460101.406900.109100.2460*0.295 (15)
H34D0.322101.437300.094100.2460*0.295 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.168 (4)0.110 (3)0.171 (3)0.029 (3)0.055 (3)0.055 (3)
O20.075 (2)0.138 (3)0.0951 (19)0.0063 (17)0.0098 (15)0.0294 (19)
N10.160 (4)0.103 (3)0.142 (4)0.044 (3)0.072 (3)0.036 (3)
N2A0.091 (6)0.091 (4)0.109 (6)0.028 (5)0.032 (4)0.017 (5)
N30.057 (2)0.125 (3)0.129 (3)0.011 (2)0.024 (2)0.017 (2)
N40.060 (2)0.122 (3)0.138 (3)0.016 (2)0.039 (2)0.020 (3)
N50.060 (2)0.078 (2)0.107 (2)0.0106 (16)0.0241 (18)0.0067 (18)
C10.144 (5)0.132 (5)0.143 (4)0.038 (4)0.051 (4)0.050 (4)
C20.140 (5)0.142 (5)0.164 (5)0.038 (4)0.054 (4)0.064 (4)
C30.173 (6)0.102 (4)0.171 (5)0.017 (4)0.040 (4)0.042 (4)
C40.149 (5)0.091 (4)0.179 (5)0.018 (3)0.056 (4)0.038 (4)
C5A0.072 (5)0.087 (5)0.103 (6)0.012 (5)0.001 (4)0.014 (5)
C60.324 (12)0.073 (4)0.089 (4)0.056 (5)0.089 (6)0.019 (3)
C70.274 (10)0.095 (4)0.087 (4)0.059 (5)0.019 (5)0.019 (3)
C80.134 (4)0.099 (3)0.096 (3)0.023 (3)0.005 (3)0.004 (3)
C90.102 (4)0.092 (3)0.076 (3)0.017 (3)0.013 (2)0.000 (2)
C100.115 (4)0.123 (4)0.092 (3)0.017 (3)0.031 (3)0.007 (3)
C110.178 (6)0.104 (4)0.108 (4)0.017 (4)0.069 (4)0.012 (3)
C120.069 (3)0.104 (3)0.107 (3)0.013 (2)0.009 (2)0.002 (3)
C130.065 (3)0.079 (3)0.091 (3)0.012 (2)0.016 (2)0.004 (2)
C140.055 (2)0.085 (3)0.102 (3)0.010 (2)0.025 (2)0.010 (2)
C15A0.079 (5)0.088 (7)0.109 (5)0.016 (3)0.036 (4)0.013 (5)
C16A0.182 (8)0.171 (9)0.089 (10)0.013 (7)0.012 (8)0.052 (9)
C17A0.183 (12)0.242 (12)0.222 (12)0.052 (9)0.013 (8)0.156 (11)
C5B0.072 (5)0.087 (5)0.103 (6)0.012 (5)0.001 (4)0.014 (5)
C15B0.079 (5)0.088 (7)0.109 (5)0.016 (3)0.036 (4)0.013 (5)
C16B0.182 (8)0.171 (9)0.089 (10)0.013 (7)0.012 (8)0.052 (9)
C17B0.183 (12)0.242 (12)0.222 (12)0.052 (9)0.013 (8)0.156 (11)
N2B0.091 (6)0.091 (4)0.109 (6)0.028 (5)0.032 (4)0.017 (5)
O30.215 (4)0.118 (3)0.116 (3)0.025 (3)0.052 (3)0.039 (2)
O40.109 (2)0.0753 (18)0.0840 (16)0.0220 (15)0.0296 (14)0.0079 (13)
N60.116 (2)0.098 (2)0.1014 (18)0.0198 (16)0.0324 (15)0.0202 (15)
N70.116 (2)0.098 (2)0.1014 (18)0.0198 (16)0.0324 (15)0.0202 (15)
N80.057 (2)0.132 (3)0.104 (3)0.0254 (19)0.0182 (17)0.025 (2)
N90.057 (2)0.145 (3)0.104 (3)0.020 (2)0.0252 (18)0.026 (2)
N100.058 (2)0.096 (2)0.089 (2)0.0163 (16)0.0205 (16)0.0189 (17)
C180.174 (5)0.084 (3)0.105 (3)0.015 (3)0.021 (3)0.017 (3)
C190.151 (5)0.100 (4)0.121 (4)0.019 (3)0.044 (3)0.022 (3)
C200.172 (5)0.111 (4)0.099 (3)0.013 (4)0.044 (3)0.020 (3)
C210.158 (5)0.092 (3)0.087 (3)0.028 (3)0.017 (3)0.015 (3)
C220.1033 (12)0.0795 (9)0.0963 (11)0.0200 (9)0.0218 (9)0.0087 (7)
C230.1033 (12)0.0795 (9)0.0963 (11)0.0200 (9)0.0218 (9)0.0087 (7)
C240.1033 (12)0.0795 (9)0.0963 (11)0.0200 (9)0.0218 (9)0.0087 (7)
C250.1033 (12)0.0795 (9)0.0963 (11)0.0200 (9)0.0218 (9)0.0087 (7)
C260.1033 (12)0.0795 (9)0.0963 (11)0.0200 (9)0.0218 (9)0.0087 (7)
C270.1033 (12)0.0795 (9)0.0963 (11)0.0200 (9)0.0218 (9)0.0087 (7)
C280.1033 (12)0.0795 (9)0.0963 (11)0.0200 (9)0.0218 (9)0.0087 (7)
C290.082 (3)0.078 (3)0.081 (2)0.018 (2)0.013 (2)0.002 (2)
C300.059 (2)0.070 (2)0.080 (2)0.0165 (18)0.0180 (18)0.0055 (18)
C310.053 (2)0.093 (3)0.087 (2)0.0212 (19)0.025 (2)0.019 (2)
C32A0.082 (8)0.124 (6)0.093 (3)0.019 (6)0.027 (3)0.031 (3)
C33A0.153 (12)0.128 (9)0.151 (6)0.015 (8)0.038 (8)0.073 (6)
C34A0.26 (2)0.202 (15)0.223 (10)0.107 (14)0.117 (16)0.121 (10)
C33B0.153 (12)0.128 (9)0.151 (6)0.015 (8)0.038 (8)0.073 (6)
C34B0.26 (2)0.202 (15)0.223 (10)0.107 (14)0.117 (16)0.121 (10)
C32B0.082 (8)0.124 (6)0.093 (3)0.019 (6)0.027 (3)0.031 (3)
Geometric parameters (Å, º) top
O1—C21.405 (8)C8—H80.9300
O1—C31.402 (8)C10—H100.9300
O2—C91.363 (5)C11—H110.9300
O2—C121.404 (6)C12—H12A0.9700
O3—C201.377 (8)C12—H12B0.9700
O3—C191.390 (8)C14—H140.9300
O4—C261.364 (5)C15A—H15B0.9700
O4—C291.427 (4)C15A—H15A0.9700
N1—N2A1.472 (10)C15B—H15D0.9600
N1—C11.426 (9)C15B—H15C0.9700
N1—C41.435 (8)C16A—H16A0.9300
N1—N2B1.384 (13)C16B—H16B0.9300
N2A—C5A1.277 (12)C17A—H17A0.9300
N2B—C5B1.244 (16)C17A—H17B0.9300
N3—C131.343 (6)C17B—H17D0.9400
N3—N41.302 (6)C17B—H17C0.9300
N4—N51.337 (5)C18—C191.475 (7)
N5—C141.329 (5)C20—C211.485 (7)
N5—C15B1.47 (4)C22—C231.486 (6)
N5—C15A1.460 (15)C23—C241.353 (7)
N6—N71.396 (5)C23—C281.369 (6)
N6—C181.413 (6)C24—C251.379 (6)
N6—C211.421 (6)C25—C261.378 (6)
N7—C221.237 (6)C26—C271.378 (7)
N8—N91.307 (6)C27—C281.386 (6)
N8—C301.358 (5)C29—C301.474 (4)
N9—N101.336 (5)C30—C311.349 (4)
N10—C311.324 (4)C32A—C33A1.51 (2)
N10—C32A1.460 (13)C32B—C33B1.53 (6)
N10—C32B1.48 (4)C33A—C34A1.30 (3)
C1—C21.492 (8)C33B—C34B1.31 (4)
C3—C41.494 (8)C18—H18A0.9700
C5A—C61.455 (10)C18—H18B0.9700
C5B—C61.574 (16)C19—H19A0.9700
C6—C111.390 (11)C19—H19B0.9700
C6—C71.360 (14)C20—H20A0.9700
C7—C81.343 (8)C20—H20B0.9700
C8—C91.389 (7)C21—H21A0.9700
C9—C101.380 (8)C21—H21B0.9700
C10—C111.362 (7)C22—H220.9300
C12—C131.468 (6)C24—H240.9300
C13—C141.350 (6)C25—H250.9300
C15A—C16A1.48 (3)C27—H270.9300
C15B—C16B1.51 (6)C28—H280.9300
C16A—C17A1.325 (19)C29—H29A0.9700
C16B—C17B1.35 (6)C29—H29B0.9700
C1—H1B0.9700C31—H310.9300
C1—H1A0.9700C32A—H32A0.9700
C2—H2A0.9700C32A—H32B0.9700
C2—H2B0.9700C32B—H32C0.9700
C3—H3A0.9700C32B—H32D0.9600
C3—H3B0.9700C33A—H33A0.9300
C4—H4B0.9700C33B—H33B0.9300
C4—H4A0.9700C34A—H34A0.9300
C5A—H5A0.9300C34A—H34B0.9300
C5B—H5B0.9300C34B—H34C0.9300
C7—H70.9300C34B—H34D0.9400
C2—O1—C3109.9 (4)H15A—C15A—H15B109.00
C9—O2—C12119.7 (4)C16A—C15A—H15A110.00
C19—O3—C20114.1 (5)C16B—C15B—H15D108.00
C26—O4—C29117.3 (3)N5—C15B—H15D108.00
N2A—N1—C4128.8 (6)N5—C15B—H15C107.00
C1—N1—C4113.2 (5)H15C—C15B—H15D107.00
N2B—N1—C494.6 (6)C16B—C15B—H15C107.00
N2B—N1—C1135.3 (6)C17A—C16A—H16A121.00
N2A—N1—C1101.4 (5)C15A—C16A—H16A121.00
N1—N2A—C5A112.4 (8)C17B—C16B—H16B134.00
N1—N2B—C5B110.8 (11)C15B—C16B—H16B134.00
N4—N3—C13109.1 (3)H17A—C17A—H17B120.00
N3—N4—N5107.0 (3)C16A—C17A—H17B120.00
N4—N5—C15B125.8 (17)C16A—C17A—H17A120.00
C14—N5—C15A131.4 (8)H17C—C17B—H17D119.00
N4—N5—C14110.4 (3)C16B—C17B—H17D120.00
N4—N5—C15A118.0 (8)C16B—C17B—H17C121.00
C14—N5—C15B123.4 (17)N6—C18—C19113.3 (4)
C18—N6—C21117.0 (4)O3—C19—C18114.8 (5)
N7—N6—C21121.4 (3)O3—C20—C21115.9 (4)
N7—N6—C18110.7 (4)N6—C21—C20112.1 (4)
N6—N7—C22119.6 (3)N7—C22—C23121.1 (4)
N9—N8—C30109.5 (3)C22—C23—C24118.9 (4)
N8—N9—N10106.7 (3)C22—C23—C28124.4 (4)
N9—N10—C31110.3 (3)C24—C23—C28116.7 (4)
N9—N10—C32B113 (2)C23—C24—C25122.9 (4)
C31—N10—C32A127.0 (8)C24—C25—C26120.4 (4)
N9—N10—C32A122.7 (9)O4—C26—C25124.6 (4)
C31—N10—C32B137 (2)O4—C26—C27117.8 (4)
N1—C1—C2112.2 (5)C25—C26—C27117.6 (4)
O1—C2—C1112.0 (5)C26—C27—C28120.3 (4)
O1—C3—C4112.1 (5)C23—C28—C27122.2 (4)
N1—C4—C3111.1 (6)O4—C29—C30109.1 (3)
N2A—C5A—C6110.1 (9)N8—C30—C29122.4 (3)
N2B—C5B—C6110.5 (11)N8—C30—C31106.7 (3)
C5B—C6—C7144.9 (8)C29—C30—C31130.9 (3)
C5A—C6—C7106.1 (7)N10—C31—C30106.8 (3)
C7—C6—C11115.1 (6)N10—C32A—C33A109.2 (10)
C5B—C6—C11100.0 (9)N10—C32B—C33B104 (3)
C5A—C6—C11138.8 (9)C32A—C33A—C34A118.4 (16)
C6—C7—C8125.5 (7)C32B—C33B—C34B117 (4)
C7—C8—C9118.2 (6)N6—C18—H18A109.00
O2—C9—C8124.4 (5)N6—C18—H18B109.00
C8—C9—C10119.2 (4)C19—C18—H18A109.00
O2—C9—C10116.4 (4)C19—C18—H18B109.00
C9—C10—C11119.8 (5)H18A—C18—H18B108.00
C6—C11—C10122.3 (7)O3—C19—H19A109.00
O2—C12—C13108.5 (4)O3—C19—H19B109.00
N3—C13—C12120.9 (4)C18—C19—H19A109.00
C12—C13—C14131.0 (4)C18—C19—H19B109.00
N3—C13—C14108.1 (4)H19A—C19—H19B108.00
N5—C14—C13105.4 (4)O3—C20—H20A108.00
N5—C15A—C16A106.9 (11)O3—C20—H20B108.00
N5—C15B—C16B118 (3)C21—C20—H20A108.00
C15A—C16A—C17A118.9 (12)C21—C20—H20B108.00
C15B—C16B—C17B92 (4)H20A—C20—H20B107.00
N1—C1—H1A109.00N6—C21—H21A109.00
N1—C1—H1B109.00N6—C21—H21B109.00
C2—C1—H1A109.00C20—C21—H21A109.00
C2—C1—H1B109.00C20—C21—H21B109.00
H1A—C1—H1B108.00H21A—C21—H21B108.00
H2A—C2—H2B108.00N7—C22—H22119.00
O1—C2—H2A109.00C23—C22—H22119.00
C1—C2—H2B109.00C23—C24—H24119.00
C1—C2—H2A109.00C25—C24—H24119.00
O1—C2—H2B109.00C24—C25—H25120.00
C4—C3—H3A109.00C26—C25—H25120.00
O1—C3—H3B109.00C26—C27—H27120.00
O1—C3—H3A109.00C28—C27—H27120.00
H3A—C3—H3B108.00C23—C28—H28119.00
C4—C3—H3B109.00C27—C28—H28119.00
H4A—C4—H4B108.00O4—C29—H29A110.00
C3—C4—H4B109.00O4—C29—H29B110.00
N1—C4—H4A109.00C30—C29—H29A110.00
N1—C4—H4B109.00C30—C29—H29B110.00
C3—C4—H4A109.00H29A—C29—H29B108.00
C6—C5A—H5A125.00N10—C31—H31127.00
N2A—C5A—H5A125.00C30—C31—H31127.00
N2B—C5B—H5B125.00N10—C32A—H32A110.00
C6—C5B—H5B125.00N10—C32A—H32B110.00
C6—C7—H7117.00C33A—C32A—H32A110.00
C8—C7—H7117.00C33A—C32A—H32B110.00
C7—C8—H8121.00H32A—C32A—H32B108.00
C9—C8—H8121.00C33B—C32B—H32C111.00
C11—C10—H10120.00C33B—C32B—H32D111.00
C9—C10—H10120.00H32C—C32B—H32D110.00
C10—C11—H11119.00N10—C32B—H32D111.00
C6—C11—H11119.00N10—C32B—H32C111.00
H12A—C12—H12B108.00C32A—C33A—H33A121.00
C13—C12—H12B110.00C34A—C33A—H33A121.00
O2—C12—H12A110.00C32B—C33B—H33B121.00
O2—C12—H12B110.00C34B—C33B—H33B122.00
C13—C12—H12A110.00C33A—C34A—H34A120.00
N5—C14—H14127.00C33A—C34A—H34B120.00
C13—C14—H14127.00H34A—C34A—H34B120.00
N5—C15A—H15A110.00C33B—C34B—H34C121.00
C16A—C15A—H15B110.00C33B—C34B—H34D120.00
N5—C15A—H15B110.00H34C—C34B—H34D119.00
C3—O1—C2—C158.0 (6)N9—N10—C32A—C33A94.1 (14)
C2—O1—C3—C459.2 (7)C31—N10—C32A—C33A86.5 (14)
C12—O2—C9—C10178.0 (4)N1—C1—C2—O152.9 (7)
C9—O2—C12—C13180.0 (4)O1—C3—C4—N154.6 (7)
C12—O2—C9—C81.0 (7)N2A—C5A—C6—C7176.6 (7)
C19—O3—C20—C2148.3 (7)N2A—C5A—C6—C110.8 (13)
C20—O3—C19—C1848.2 (7)C7—C6—C11—C100.0 (9)
C26—O4—C29—C30179.5 (3)C5A—C6—C11—C10177.2 (8)
C29—O4—C26—C27179.3 (4)C11—C6—C7—C80.9 (10)
C29—O4—C26—C252.1 (6)C5A—C6—C7—C8177.3 (6)
N2A—N1—C4—C3177.2 (6)C6—C7—C8—C91.1 (9)
C1—N1—N2A—C5A150.7 (7)C7—C8—C9—C100.5 (7)
C1—N1—C4—C348.8 (6)C7—C8—C9—O2179.5 (5)
N2A—N1—C1—C2170.2 (6)C8—C9—C10—C110.3 (7)
C4—N1—N2A—C5A18.0 (11)O2—C9—C10—C11178.8 (5)
C4—N1—C1—C248.3 (7)C9—C10—C11—C60.5 (8)
N1—N2A—C5A—C6175.1 (6)O2—C12—C13—N3165.0 (4)
C13—N3—N4—N50.4 (5)O2—C12—C13—C1414.3 (6)
N4—N3—C13—C140.2 (5)N3—C13—C14—N50.1 (5)
N4—N3—C13—C12179.7 (4)C12—C13—C14—N5179.3 (4)
N3—N4—N5—C15A174.1 (8)N5—C15A—C16A—C17A135.4 (15)
N3—N4—N5—C140.5 (5)N6—C18—C19—O344.6 (7)
C14—N5—C15A—C16A118.4 (12)O3—C20—C21—N644.0 (7)
C15A—N5—C14—C13173.3 (9)N7—C22—C23—C281.6 (7)
N4—N5—C15A—C16A68.3 (14)N7—C22—C23—C24179.0 (4)
N4—N5—C14—C130.4 (4)C22—C23—C28—C27179.3 (4)
C21—N6—C18—C1942.0 (7)C22—C23—C24—C25179.3 (4)
C18—N6—C21—C2041.2 (6)C24—C23—C28—C270.1 (7)
N7—N6—C18—C19173.2 (5)C28—C23—C24—C250.2 (7)
C18—N6—N7—C22157.9 (5)C23—C24—C25—C260.1 (7)
C21—N6—N7—C2215.0 (7)C24—C25—C26—C270.6 (7)
N7—N6—C21—C20178.0 (4)C24—C25—C26—O4178.0 (4)
N6—N7—C22—C23175.2 (4)C25—C26—C27—C280.7 (6)
C30—N8—N9—N100.3 (4)O4—C26—C27—C28178.0 (4)
N9—N8—C30—C310.3 (4)C26—C27—C28—C230.4 (7)
N9—N8—C30—C29177.8 (3)O4—C29—C30—N888.2 (4)
N8—N9—N10—C32A179.3 (9)O4—C29—C30—C3194.2 (5)
N8—N9—N10—C310.2 (4)N8—C30—C31—N100.1 (4)
C32A—N10—C31—C30179.5 (9)C29—C30—C31—N10177.8 (4)
N9—N10—C31—C300.1 (4)N10—C32A—C33A—C34A109.6 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N80.932.493.385 (6)162
C15A—H15B···N3i0.972.593.355 (18)136
C31—H31···N3ii0.932.543.323 (5)141
C31—H31···N4ii0.932.403.326 (5)171
C24—H24···Cg3iii0.932.923.710 (5)144
Symmetry codes: (i) x+2, y+2, z; (ii) x1, y, z; (iii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N80.932.493.385 (6)162
C15A—H15B···N3i0.972.593.355 (18)136
C31—H31···N3ii0.932.543.323 (5)141
C31—H31···N4ii0.932.403.326 (5)171
C24—H24···Cg3iii0.932.923.710 (5)144
Symmetry codes: (i) x+2, y+2, z; (ii) x1, y, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ, MMC and PS thank the Shiraz University Research Council for financial support (grant No. 92-GR—SC-23).

References

First citationAkkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Büyükgüngör, O. (2013b). Acta Cryst. E69, o1576.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Tahir, M. N. (2013a). Acta Cryst. E69, o247.  CSD CrossRef IUCr Journals Google Scholar
First citationBringmann, G., Dreyer, M., Faber, J. H., Dalsgaard, P. W., Staerk, D. & Jaroszewski, J. W. (2004). J. Nat. Prod. 67, 743–748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNelson, T. D., Rosen, J. D., Brands, K. M. J., Craig, B., Huffman, M. A. & McNamara, J. M. (2004). Tetrahedron Lett. 45, 8917–8920.  Web of Science CrossRef CAS Google Scholar
First citationNithinchandra, B. K., Shobhitha, S. & Babu, M. (2013). J. Chem. Pharm. Res. 5, 307-313.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherement, E. A., Tomanov, R. I., Trukhin, E. V. & Berestovitskaya, V. M. (2004). Russ. J. Org. Chem. 40, 594–595.  Google Scholar
First citationSingh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594–600.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o289-o290
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds