organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phthalamide

aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 February 2014; accepted 10 February 2014; online 15 February 2014)

In the title compound, C8H7N3O4 (systematic name: 4-nitro­benzene-1,2-dicarboxamide), each of the substituents is twisted out of the plane of the benzene ring to which it is attached [dihedral angles of 11.36 (2)° for the nitro group, and 60.89 (6) and 34.39 (6)° for the amide groups]. The amide groups are orientated to either side of the least-squares plane through the benzene ring with the amine groups being directed furthest apart. In the crystal, a three-dimensional architecture is established by a network of N—H⋯O hydrogen bonds.

Related literature

For background to the synthesis of functional phthalocyanines, see: Chin et al. (2012[Chin, Y. J., Tan, A. L., Wimmer, F. L., Mirza, A. H., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2293-o2294.]). For the structure of the 1,2-dicarboxamide derivative, see: Hamada et al. (2012[Hamada, A., Boudinar, Y., Beghidja, A. & Boutebdja, M. (2012). Acta Cryst. E68, o2710.]). For the synthesis, see: Rasmussen et al. (1978[Rasmussen, C. R., Gardocki, J. F., Plampin, J. N., Twardzik, B. L., Reynolds, B. E., Molinari, A. J., Schwartz, N., Bennetts, W. W., Price, B. E. & Marakowski, J. (1978). J. Med. Chem. 21, 1044-1054.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7N3O4

  • Mr = 209.17

  • Monoclinic, P 21 /c

  • a = 7.7425 (2) Å

  • b = 9.6634 (2) Å

  • c = 12.1276 (3) Å

  • β = 106.008 (3)°

  • V = 872.19 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.13 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.668, Tmax = 1.000

  • 7908 measured reflections

  • 1821 independent reflections

  • 1748 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.090

  • S = 1.03

  • 1821 reflections

  • 164 parameters

  • 4 restraints

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1i 0.87 (1) 2.22 (1) 3.0718 (13) 164 (2)
N2—H22⋯O3ii 0.88 (1) 2.10 (1) 2.9628 (12) 168 (2)
N3—H31⋯O1iii 0.88 (1) 2.42 (1) 3.1288 (13) 138 (1)
N3—H31⋯O3iv 0.88 (1) 2.35 (1) 3.0979 (12) 143 (1)
N3—H32⋯O4v 0.87 (1) 2.00 (1) 2.8498 (13) 167 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

As part of our on-going study of functional phthalocyanines, we have previously reported the synthesis and structure of 4-(prop-2-ylnyl­oxy)phthalo­nitrile, prepared from 4-nitro­phthalo­nitrile (Chin et al. (2012). The latter, in turn, is prepared by dehydration of the title compound. As the structure of the title compound is not reported, herein its crystal structure determination is described.

In the title compound, Fig. 1, each of the nitro [the O1—N1—C1—C2 torsion angle is 168.48 (10)°], N2-amide [C3—C4—C7—O3 114.92 (12)°] and N3-amide [C6—C5—C8—O4 142.80 (11)°] groups are twisted out of the plane of the benzene ring to which they are attached. The relative orientation of the amide-O atoms places them in positions on either side of the benzene ring, with the amine groups similarly orientated but directed away from each other. As such, there are no intra­molecular hydrogen bonding contacts. Very similar conformations were found for the two independent molecules comprising the asymmetric unit of the 1,2–dicarboxamide parent compound (Hamada et al., 2012).

In the crystal packing, each N—H H atoms forms a N—H···O hydrogen bond with H31 being bifurcated (Table 1); both O1 and O3 accept two hydrogen bonds. The result is a three-dimensional architecture that can be described globally as comprising columns of molecules aligned along the a axis (Fig. 2).

Synthesis and crystallization top

The title compound was prepared by modification of a literature procedure (Rasmussen et al., 1978). 4-Nitro­phthalimide and concentrated NH4OH were stirred at room temperature for 24 h. The precipitate (an off-white powder) was filtered under vacuum and washed with cold water to provide the title compound in 0.68 g yield (63.8 %). M.pt: 465–469 K (literature: 462–464 K). Crystals for the X-ray study were grown from slow evaporation of its aqueous solution.

Refinement top

All C-bound H atoms were refined freely. The N—H atoms were located from difference map and refined with N—H = 0.88±0.01 Å, and with unrestrained Uiso(H).

Related literature top

For background to the synthesis of functional phthalocyanines, see: Chin et al. (2012). For the structure of the 1,2-dicarboxamide derivative, see: Hamada et al. (2012). For the synthesis, see: Rasmussen et al. (1978).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents of (I) in projection down the a axis. The N—H···O hydrogen bonds are shown as orange dashed lines.
4-Nitrobenzene-1,2-dicarboxamide top
Crystal data top
C8H7N3O4F(000) = 432
Mr = 209.17Dx = 1.593 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 4480 reflections
a = 7.7425 (2) Åθ = 3.8–76.2°
b = 9.6634 (2) ŵ = 1.13 mm1
c = 12.1276 (3) ÅT = 100 K
β = 106.008 (3)°Prism, colourless
V = 872.19 (4) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1821 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1748 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 76.4°, θmin = 6.0°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1112
Tmin = 0.668, Tmax = 1.000l = 1415
7908 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.2944P]
where P = (Fo2 + 2Fc2)/3
1821 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.33 e Å3
4 restraintsΔρmin = 0.25 e Å3
Crystal data top
C8H7N3O4V = 872.19 (4) Å3
Mr = 209.17Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.7425 (2) ŵ = 1.13 mm1
b = 9.6634 (2) ÅT = 100 K
c = 12.1276 (3) Å0.40 × 0.30 × 0.20 mm
β = 106.008 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1821 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1748 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 1.000Rint = 0.029
7908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.090All H-atom parameters refined
S = 1.03Δρmax = 0.33 e Å3
1821 reflectionsΔρmin = 0.25 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61481 (11)0.80745 (8)0.55898 (7)0.0202 (2)
O20.54207 (13)0.79742 (9)0.37347 (8)0.0266 (2)
O31.04596 (10)0.17952 (8)0.51619 (7)0.0160 (2)
O40.91323 (12)0.23508 (8)0.72189 (7)0.0192 (2)
N10.60572 (12)0.74606 (10)0.46837 (8)0.0177 (2)
N20.76591 (13)0.09066 (10)0.45344 (8)0.0171 (2)
H210.6511 (13)0.1037 (17)0.4443 (14)0.025 (4)*
H220.809 (2)0.0070 (11)0.4535 (14)0.025 (4)*
N31.04060 (14)0.44255 (10)0.77908 (8)0.0182 (2)
H311.096 (2)0.4063 (17)0.8462 (10)0.027 (4)*
H321.050 (2)0.5306 (10)0.7667 (13)0.025 (4)*
C10.67444 (14)0.60364 (11)0.47498 (10)0.0154 (2)
C20.63660 (14)0.52513 (12)0.37619 (10)0.0171 (2)
H20.566 (2)0.5640 (18)0.3011 (14)0.030 (4)*
C30.70007 (15)0.38986 (12)0.38425 (10)0.0164 (2)
H30.677 (2)0.3367 (15)0.3164 (13)0.018 (3)*
C40.80132 (14)0.33683 (11)0.48911 (9)0.0141 (2)
C50.83839 (14)0.41940 (11)0.58825 (9)0.0137 (2)
C60.77318 (15)0.55445 (11)0.58101 (10)0.0150 (2)
H60.795 (2)0.6102 (16)0.6473 (13)0.019 (3)*
C70.88135 (15)0.19421 (11)0.49017 (9)0.0137 (2)
C80.93594 (14)0.35831 (11)0.70270 (9)0.0146 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (4)0.0139 (4)0.0287 (5)0.0015 (3)0.0063 (3)0.0027 (3)
O20.0284 (5)0.0171 (4)0.0269 (5)0.0051 (3)0.0047 (4)0.0061 (3)
O30.0152 (4)0.0130 (4)0.0202 (4)0.0004 (3)0.0053 (3)0.0006 (3)
O40.0283 (4)0.0105 (4)0.0193 (4)0.0000 (3)0.0076 (3)0.0020 (3)
N10.0128 (4)0.0128 (5)0.0258 (5)0.0002 (3)0.0024 (4)0.0013 (4)
N20.0153 (5)0.0111 (5)0.0246 (5)0.0009 (4)0.0049 (4)0.0017 (4)
N30.0265 (5)0.0115 (5)0.0147 (5)0.0005 (4)0.0021 (4)0.0017 (3)
C10.0135 (5)0.0105 (5)0.0221 (6)0.0003 (4)0.0050 (4)0.0024 (4)
C20.0148 (5)0.0169 (5)0.0187 (5)0.0003 (4)0.0032 (4)0.0029 (4)
C30.0170 (5)0.0149 (5)0.0170 (5)0.0009 (4)0.0045 (4)0.0012 (4)
C40.0136 (5)0.0109 (5)0.0185 (5)0.0012 (4)0.0057 (4)0.0003 (4)
C50.0138 (5)0.0113 (5)0.0167 (5)0.0008 (4)0.0053 (4)0.0012 (4)
C60.0157 (5)0.0118 (5)0.0180 (5)0.0017 (4)0.0058 (4)0.0011 (4)
C70.0177 (5)0.0118 (5)0.0124 (5)0.0002 (4)0.0055 (4)0.0002 (4)
C80.0177 (5)0.0112 (5)0.0161 (5)0.0018 (4)0.0069 (4)0.0002 (4)
Geometric parameters (Å, º) top
O1—N11.2336 (13)C1—C21.3796 (16)
O2—N11.2252 (13)C1—C61.3862 (15)
O3—C71.2338 (14)C2—C31.3904 (16)
O4—C81.2351 (14)C2—H20.997 (16)
N1—C11.4698 (14)C3—C41.3945 (15)
N2—C71.3338 (14)C3—H30.945 (15)
N2—H210.874 (9)C4—C51.4050 (15)
N2—H220.875 (9)C4—C71.5097 (14)
N3—C81.3280 (15)C5—C61.3934 (15)
N3—H310.881 (9)C5—C81.5058 (14)
N3—H320.870 (9)C6—H60.943 (16)
O2—N1—O1123.47 (10)C4—C3—H3121.1 (9)
O2—N1—C1118.45 (10)C3—C4—C5120.16 (10)
O1—N1—C1118.09 (9)C3—C4—C7118.00 (9)
C7—N2—H21119.9 (11)C5—C4—C7121.64 (9)
C7—N2—H22118.1 (11)C6—C5—C4119.54 (10)
H21—N2—H22120.6 (15)C6—C5—C8120.41 (10)
C8—N3—H31116.6 (11)C4—C5—C8119.89 (9)
C8—N3—H32122.9 (10)C1—C6—C5118.50 (10)
H31—N3—H32120.4 (15)C1—C6—H6121.1 (9)
C2—C1—C6123.21 (10)C5—C6—H6120.4 (9)
C2—C1—N1118.72 (10)O3—C7—N2123.29 (10)
C6—C1—N1118.06 (10)O3—C7—C4119.99 (9)
C1—C2—C3118.01 (10)N2—C7—C4116.51 (9)
C1—C2—H2121.2 (10)O4—C8—N3123.42 (10)
C3—C2—H2120.8 (10)O4—C8—C5119.37 (10)
C2—C3—C4120.57 (10)N3—C8—C5117.20 (9)
C2—C3—H3118.2 (9)
O2—N1—C1—C211.31 (15)C2—C1—C6—C50.37 (17)
O1—N1—C1—C2168.48 (10)N1—C1—C6—C5179.78 (9)
O2—N1—C1—C6169.25 (10)C4—C5—C6—C10.61 (16)
O1—N1—C1—C610.96 (15)C8—C5—C6—C1176.01 (10)
C6—C1—C2—C30.44 (17)C3—C4—C7—O3114.92 (12)
N1—C1—C2—C3178.96 (10)C5—C4—C7—O360.00 (14)
C1—C2—C3—C41.02 (16)C3—C4—C7—N260.02 (13)
C2—C3—C4—C50.79 (16)C5—C4—C7—N2125.05 (11)
C2—C3—C4—C7174.21 (10)C6—C5—C8—O4142.80 (11)
C3—C4—C5—C60.05 (16)C4—C5—C8—O432.58 (15)
C7—C4—C5—C6174.86 (9)C6—C5—C8—N335.96 (14)
C3—C4—C5—C8175.47 (10)C4—C5—C8—N3148.66 (11)
C7—C4—C5—C89.71 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.87 (1)2.22 (1)3.0718 (13)164 (2)
N2—H22···O3ii0.88 (1)2.10 (1)2.9628 (12)168 (2)
N3—H31···O1iii0.88 (1)2.42 (1)3.1288 (13)138 (1)
N3—H31···O3iv0.88 (1)2.35 (1)3.0979 (12)143 (1)
N3—H32···O4v0.87 (1)2.00 (1)2.8498 (13)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x+2, y1/2, z+3/2; (iv) x, y+1/2, z+1/2; (v) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O1i0.874 (9)2.221 (10)3.0718 (13)164.4 (15)
N2—H22···O3ii0.875 (9)2.101 (10)2.9628 (12)168.1 (15)
N3—H31···O1iii0.881 (9)2.415 (13)3.1288 (13)138.4 (14)
N3—H31···O3iv0.881 (9)2.351 (13)3.0979 (12)142.6 (14)
N3—H32···O4v0.870 (9)1.996 (10)2.8498 (13)166.6 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x+2, y1/2, z+3/2; (iv) x, y+1/2, z+1/2; (v) x+2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: david.young@ubd.edu.bn.

Acknowledgements

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) and the University of Malaya for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChin, Y. J., Tan, A. L., Wimmer, F. L., Mirza, A. H., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2293–o2294.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamada, A., Boudinar, Y., Beghidja, A. & Boutebdja, M. (2012). Acta Cryst. E68, o2710.  CSD CrossRef IUCr Journals Google Scholar
First citationRasmussen, C. R., Gardocki, J. F., Plampin, J. N., Twardzik, B. L., Reynolds, B. E., Molinari, A. J., Schwartz, N., Bennetts, W. W., Price, B. E. & Marakowski, J. (1978). J. Med. Chem. 21, 1044–1054.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds