organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-3-phenyl­imidazolidine-2-thione

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 February 2014; accepted 18 February 2014; online 22 February 2014)

The asymmetric unit of the title cyclic thio­urea derivative, C10H12N2S, comprises two mol­ecules, each of which has a twist about the CH2—CH2 bond within the five-membered ring. The major difference between the independent mol­ecules is manifested in the relative orientations of the five- and six-membered rings [dihedral angles between the least-squares planes = 28.03 (11) and 41.54 (11)°]. A network of C—H⋯π inter­actions consolidates the three-dimensional crystal packing.

Related literature

For the biological activity of phosphinegold(I) species of related mol­ecules, see: Henderson et al. (2006[Henderson, W., Nicholson, B. K. & Tiekink, E. R. T. (2006). Inorg. Chim. Acta, 359, 204-214.]). For the structure of dimethyl-2-imidazolidine­thione, see: Chieh & Cheung (1983[Chieh, C. & Cheung, S. K. (1983). Can. J. Chem. 61, 211-213.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2S

  • Mr = 192.28

  • Orthorhombic, P 21 21 21

  • a = 7.5159 (1) Å

  • b = 14.0478 (3) Å

  • c = 18.2050 (3) Å

  • V = 1922.12 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.59 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.427, Tmax = 1.000

  • 7245 measured reflections

  • 3955 independent reflections

  • 3814 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.08

  • 3955 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1665 Friedel pairs

  • Absolute structure parameter: 0.117 (14)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C10 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11CCg1i 0.98 2.96 3.759 (2) 140
C19—H19⋯Cg1ii 0.95 2.85 3.612 (2) 138
C6—H6⋯Cg2iii 0.95 2.89 3.719 (2) 147
C17—H17⋯Cg2iv 0.95 2.76 3.577 (2) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (iii) [-x+{\script{5\over 2}}, -y+2, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Gans & Shalloway (2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

In connection with studies of the biological activities of phosphine gold(I) species of functionalized thio­urea derivatives (Henderson et al., 2006), the title compound, (I), was synthesised. The crystallographic asymmetric unit contains two independent molecules, Fig. 1. Each molecule is twisted about the CH2—CH2 bond. From the overlay diagram of the S1-containing molecule with the inverted S2-containing molecule, Fig. 2, only a small difference in the relative orientations of the phenyl groups is noted, as qu­anti­fied in the C2—N2—C5—C10 and C12—N4—C15—C20 torsion angles of 35.6 (3) and -42.8 (3)°, respectively. The twisted conformation in (I) contrasts the near planar structure of the di­methyl-2-imidazolidine­thione derivative (Chieh & Cheung, 1983).

The three-dimensional crystal packing is sustained by C—H···π inter­actions, Table 1, involving phenyl- and methyl-H inter­acting with each of the phenyl rings, with each ring accepting two inter­actions, Fig. 3.

Synthesis and crystallization top

The title compound, (I), was prepared in two steps. 2-Methyl­amino ethanol (10 mmol, 0.82 ml) was dissolved in absolute ethanol (5 ml). Phenyl iso­thio­cyanate (10.1 mmol, 1.24 ml) was added drop wise to the solution over 30 mins. The solution changed from colourless to light-yellow and left to stir for 3 h. Distilled water was added to the mixture resulting in a white precipitate. The precipitate was filtered off and washed with distilled water and a small amount of di­ethyl ether. Yield: 90% (1.8923 g, 8.9981 mmol) of white powder. The crystals are obtained from slow evaporation of this powder in absolute ethanol. M.pt: 375.8–376.0 K. This powder was subsequently used in the next reaction.

1-(2-Hy­droxy­ethyl)-1-methyl-3-phenyl­thio­urea (9.03 mmol, 1.8963 g) was dissolved in dry THF (7 ml). Sodium hydride (9 mmol, 0.36 g) in dry THF (6 ml) was added drop wise at room temperature, under nitro­gen and with stirring for 1 h. The solvent was removed and the white powder was washed with di­ethyl ether, and taken up in DMSO (4 ml). Phenyl iso­thio­cyanate (4 mmol, 0.48 ml) was added drop wise to the solution. The mixture was heated at 323 K and stirred for 5 h. A clear yellow solution was observed which was cooled to room temperature. Cold distilled water was added with further stirring for 30 min. whereupon a yellow precipitate formed. The precipitate was filtered off and washed with water and hexane. Yield: 71% (0.5469 g, 2.8443 mmol) of a white powder. Crystals were obtained by slow evaporation from its absolute ethanol solution; M.pt: 404.7–404.9 K. IR (νmax, cm-1): 2977 and 2899 (CH2), 1085 (C=S), 1613, 1598 and 1565 (aromatic C=C). 1H NMR (CDCl3): δ 3.42 (d, CH3, 6.76 Hz), 3.64 (t, CH2, 4.12 Hz), 3.92 (t, CH2, 4.32 Hz), 7.13 (t, aromatic-H, 7.24 Hz), 7.31 (t, aromatic-H, 7.38 Hz), 7.39 (d, aromatic-H, 7.80 Hz) ppm.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Owing to poor agreement, two reflections, i.e. (2 0 1) and (4 0 1), were omitted from the final cycles of refinement. The studied crystal is a racemic twin with the minor component being 0.117 (14).

Related literature top

For the biological activity of phosphinegold(I) species of related molecules, see: Henderson et al. (2006). For the structure of dimethyl-2-imidazolidinethione, see: Chieh & Cheung (1983).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Gans & Shalloway (2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules comprising the asymmetric unit in (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the S1-containing (red image) and inverted S2-containing (blue) molecules drawn so that the heteroatoms overlap.
[Figure 3] Fig. 3. A view of the unit-cell contents of (I) in projection down the a axis. The C—H···π interactions are shown as purple dashed lines.
1-Methyl-3-phenylimidazolidine-2-thione top
Crystal data top
C10H12N2SF(000) = 816
Mr = 192.28Dx = 1.329 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 3909 reflections
a = 7.5159 (1) Åθ = 4.0–76.3°
b = 14.0478 (3) ŵ = 2.59 mm1
c = 18.2050 (3) ÅT = 100 K
V = 1922.12 (6) Å3Prism, colourless
Z = 80.20 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3955 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3814 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 4.0°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1617
Tmin = 0.427, Tmax = 1.000l = 2222
7245 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.4944P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3955 reflectionsΔρmax = 0.39 e Å3
238 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 1665 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.117 (14)
Crystal data top
C10H12N2SV = 1922.12 (6) Å3
Mr = 192.28Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 7.5159 (1) ŵ = 2.59 mm1
b = 14.0478 (3) ÅT = 100 K
c = 18.2050 (3) Å0.20 × 0.10 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3955 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3814 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 1.000Rint = 0.026
7245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.39 e Å3
S = 1.08Δρmin = 0.26 e Å3
3955 reflectionsAbsolute structure: Flack (1983), 1665 Friedel pairs
238 parametersAbsolute structure parameter: 0.117 (14)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.95401 (6)0.92442 (3)0.80811 (2)0.02271 (12)
N10.9949 (2)1.11210 (11)0.82471 (8)0.0216 (3)
N20.9877 (2)1.07023 (11)0.70835 (8)0.0185 (3)
C10.9816 (3)1.10938 (15)0.90394 (10)0.0291 (4)
H1A0.93921.04650.91940.044*
H1B0.89781.15830.92050.044*
H1C1.09891.12150.92550.044*
C20.9780 (3)1.03784 (13)0.77947 (10)0.0188 (4)
C31.0070 (3)1.20270 (13)0.78616 (10)0.0229 (4)
H3A1.10561.24220.80550.027*
H3B0.89431.23890.78960.027*
C41.0434 (3)1.17071 (13)0.70745 (10)0.0212 (4)
H4A0.97241.20810.67190.025*
H4B1.17111.17680.69510.025*
C50.9852 (2)1.01694 (13)0.64236 (9)0.0185 (4)
C61.0800 (3)1.05145 (13)0.58225 (10)0.0228 (4)
H61.14891.10780.58690.027*
C71.0738 (3)1.00333 (15)0.51530 (11)0.0275 (4)
H71.13801.02750.47440.033*
C80.9753 (3)0.92088 (14)0.50772 (10)0.0278 (4)
H80.97290.88780.46220.033*
C90.8798 (3)0.88714 (14)0.56760 (11)0.0253 (4)
H90.81170.83050.56260.030*
C100.8816 (3)0.93438 (13)0.63471 (10)0.0211 (4)
H100.81370.91110.67490.025*
S21.01213 (7)0.84486 (3)0.30525 (2)0.02324 (12)
N40.9717 (2)0.70117 (11)0.20545 (8)0.0194 (3)
N30.9499 (2)0.65787 (11)0.32123 (8)0.0217 (3)
C110.9083 (3)0.66426 (14)0.39877 (10)0.0261 (4)
H11A0.95900.72300.41900.039*
H11B0.95880.60930.42450.039*
H11C0.77890.66490.40530.039*
C120.9758 (3)0.73296 (13)0.27636 (9)0.0184 (4)
C130.9028 (3)0.57188 (14)0.28070 (10)0.0250 (4)
H13A0.77370.55850.28430.030*
H13B0.97000.51610.29890.030*
C140.9557 (3)0.59672 (12)0.20238 (10)0.0216 (4)
H14A1.07030.56670.18880.026*
H14B0.86310.57680.16690.026*
C150.9922 (3)0.75522 (13)0.13998 (9)0.0180 (4)
C161.0888 (3)0.71622 (13)0.08195 (10)0.0212 (4)
H161.14590.65640.08770.025*
C171.1016 (3)0.76506 (14)0.01552 (10)0.0231 (4)
H171.16720.73810.02390.028*
C181.0197 (3)0.85249 (13)0.00654 (9)0.0209 (4)
H181.02860.88540.03890.025*
C190.9240 (3)0.89183 (13)0.06463 (10)0.0206 (4)
H190.86820.95200.05880.025*
C200.9095 (2)0.84342 (13)0.13122 (10)0.0189 (3)
H200.84360.87040.17050.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0319 (2)0.0178 (2)0.0185 (2)0.00049 (17)0.00129 (18)0.00386 (16)
N10.0280 (8)0.0183 (7)0.0184 (7)0.0008 (7)0.0005 (6)0.0005 (6)
N20.0212 (7)0.0165 (7)0.0177 (7)0.0001 (6)0.0003 (6)0.0007 (6)
C10.0415 (12)0.0270 (10)0.0188 (9)0.0019 (9)0.0025 (9)0.0023 (7)
C20.0175 (9)0.0191 (9)0.0197 (8)0.0014 (7)0.0017 (7)0.0011 (6)
C30.0269 (9)0.0189 (9)0.0229 (8)0.0002 (7)0.0001 (8)0.0004 (7)
C40.0261 (9)0.0172 (8)0.0204 (8)0.0032 (7)0.0013 (7)0.0016 (7)
C50.0210 (9)0.0191 (8)0.0156 (8)0.0053 (7)0.0016 (7)0.0017 (6)
C60.0259 (10)0.0220 (9)0.0205 (9)0.0009 (8)0.0006 (8)0.0021 (7)
C70.0341 (11)0.0316 (10)0.0167 (8)0.0056 (9)0.0023 (8)0.0034 (7)
C80.0380 (11)0.0275 (10)0.0180 (8)0.0081 (9)0.0046 (8)0.0043 (7)
C90.0297 (10)0.0208 (9)0.0253 (9)0.0023 (8)0.0070 (8)0.0011 (8)
C100.0232 (9)0.0193 (9)0.0208 (9)0.0008 (7)0.0030 (7)0.0034 (7)
S20.0349 (3)0.0177 (2)0.0172 (2)0.00294 (18)0.00142 (19)0.00212 (15)
N40.0246 (8)0.0157 (7)0.0180 (7)0.0010 (6)0.0006 (7)0.0006 (6)
N30.0273 (8)0.0191 (7)0.0187 (7)0.0009 (6)0.0012 (6)0.0009 (6)
C110.0337 (10)0.0246 (9)0.0199 (9)0.0006 (9)0.0021 (8)0.0033 (7)
C120.0159 (8)0.0199 (8)0.0193 (8)0.0001 (7)0.0005 (7)0.0007 (6)
C130.0317 (10)0.0198 (9)0.0237 (9)0.0036 (8)0.0036 (8)0.0034 (7)
C140.0262 (9)0.0149 (8)0.0238 (9)0.0007 (7)0.0014 (8)0.0012 (7)
C150.0189 (8)0.0177 (8)0.0174 (8)0.0008 (7)0.0014 (7)0.0015 (6)
C160.0233 (9)0.0202 (9)0.0199 (9)0.0026 (7)0.0026 (7)0.0029 (7)
C170.0239 (9)0.0282 (10)0.0173 (8)0.0013 (8)0.0015 (8)0.0048 (7)
C180.0234 (9)0.0238 (9)0.0156 (8)0.0025 (8)0.0006 (7)0.0011 (7)
C190.0227 (9)0.0189 (8)0.0201 (8)0.0013 (7)0.0025 (7)0.0006 (7)
C200.0193 (8)0.0194 (8)0.0181 (8)0.0005 (7)0.0009 (7)0.0022 (7)
Geometric parameters (Å, º) top
S1—C21.6861 (18)S2—C121.6800 (19)
N1—C21.335 (2)N4—C121.366 (2)
N1—C11.446 (2)N4—C151.422 (2)
N1—C31.456 (2)N4—C141.473 (2)
N2—C21.374 (2)N3—C121.348 (2)
N2—C51.416 (2)N3—C111.449 (2)
N2—C41.472 (2)N3—C131.459 (2)
C1—H1A0.9800C11—H11A0.9800
C1—H1B0.9800C11—H11B0.9800
C1—H1C0.9800C11—H11C0.9800
C3—C41.526 (2)C13—C141.521 (3)
C3—H3A0.9900C13—H13A0.9900
C3—H3B0.9900C13—H13B0.9900
C4—H4A0.9900C14—H14A0.9900
C4—H4B0.9900C14—H14B0.9900
C5—C61.393 (3)C15—C161.394 (3)
C5—C101.404 (3)C15—C201.395 (3)
C6—C71.395 (3)C16—C171.394 (3)
C6—H60.9500C16—H160.9500
C7—C81.381 (3)C17—C181.384 (3)
C7—H70.9500C17—H170.9500
C8—C91.389 (3)C18—C191.393 (3)
C8—H80.9500C18—H180.9500
C9—C101.390 (3)C19—C201.394 (2)
C9—H90.9500C19—H190.9500
C10—H100.9500C20—H200.9500
C2—N1—C1126.02 (17)C12—N4—C15127.96 (16)
C2—N1—C3113.05 (15)C12—N4—C14111.30 (15)
C1—N1—C3120.53 (16)C15—N4—C14120.60 (15)
C2—N2—C5128.59 (15)C12—N3—C11124.96 (16)
C2—N2—C4110.05 (15)C12—N3—C13112.11 (15)
C5—N2—C4120.09 (15)C11—N3—C13119.44 (16)
N1—C1—H1A109.5N3—C11—H11A109.5
N1—C1—H1B109.5N3—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
N1—C1—H1C109.5N3—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
N1—C2—N2108.51 (16)N3—C12—N4108.27 (16)
N1—C2—S1123.89 (14)N3—C12—S2124.46 (14)
N2—C2—S1127.58 (14)N4—C12—S2127.25 (14)
N1—C3—C4101.90 (14)N3—C13—C14102.74 (15)
N1—C3—H3A111.4N3—C13—H13A111.2
C4—C3—H3A111.4C14—C13—H13A111.2
N1—C3—H3B111.4N3—C13—H13B111.2
C4—C3—H3B111.4C14—C13—H13B111.2
H3A—C3—H3B109.3H13A—C13—H13B109.1
N2—C4—C3102.76 (15)N4—C14—C13102.37 (15)
N2—C4—H4A111.2N4—C14—H14A111.3
C3—C4—H4A111.2C13—C14—H14A111.3
N2—C4—H4B111.2N4—C14—H14B111.3
C3—C4—H4B111.2C13—C14—H14B111.3
H4A—C4—H4B109.1H14A—C14—H14B109.2
C6—C5—C10119.56 (17)C16—C15—C20119.62 (17)
C6—C5—N2118.41 (17)C16—C15—N4118.81 (16)
C10—C5—N2121.91 (16)C20—C15—N4121.47 (16)
C5—C6—C7120.06 (19)C17—C16—C15120.01 (17)
C5—C6—H6120.0C17—C16—H16120.0
C7—C6—H6120.0C15—C16—H16120.0
C8—C7—C6120.76 (19)C18—C17—C16120.58 (18)
C8—C7—H7119.6C18—C17—H17119.7
C6—C7—H7119.6C16—C17—H17119.7
C7—C8—C9119.00 (18)C17—C18—C19119.48 (17)
C7—C8—H8120.5C17—C18—H18120.3
C9—C8—H8120.5C19—C18—H18120.3
C8—C9—C10121.45 (19)C18—C19—C20120.44 (17)
C8—C9—H9119.3C18—C19—H19119.8
C10—C9—H9119.3C20—C19—H19119.8
C9—C10—C5119.15 (18)C19—C20—C15119.87 (17)
C9—C10—H10120.4C19—C20—H20120.1
C5—C10—H10120.4C15—C20—H20120.1
C1—N1—C2—N2176.14 (19)C11—N3—C12—N4166.37 (18)
C3—N1—C2—N23.5 (2)C13—N3—C12—N47.7 (2)
C1—N1—C2—S15.2 (3)C11—N3—C12—S215.2 (3)
C3—N1—C2—S1177.86 (15)C13—N3—C12—S2173.80 (15)
C5—N2—C2—N1176.60 (18)C15—N4—C12—N3179.76 (18)
C4—N2—C2—N19.7 (2)C14—N4—C12—N34.7 (2)
C5—N2—C2—S12.0 (3)C15—N4—C12—S21.8 (3)
C4—N2—C2—S1168.90 (15)C14—N4—C12—S2173.74 (15)
C2—N1—C3—C414.2 (2)C12—N3—C13—C1416.1 (2)
C1—N1—C3—C4172.68 (19)C11—N3—C13—C14176.06 (17)
C2—N2—C4—C317.8 (2)C12—N4—C14—C1314.1 (2)
C5—N2—C4—C3173.97 (16)C15—N4—C14—C13169.94 (17)
N1—C3—C4—N218.21 (19)N3—C13—C14—N417.1 (2)
C2—N2—C5—C6148.43 (19)C12—N4—C15—C16140.89 (19)
C4—N2—C5—C617.4 (3)C14—N4—C15—C1634.3 (3)
C2—N2—C5—C1035.6 (3)C12—N4—C15—C2042.8 (3)
C4—N2—C5—C10158.57 (17)C14—N4—C15—C20141.95 (18)
C10—C5—C6—C70.9 (3)C20—C15—C16—C170.4 (3)
N2—C5—C6—C7176.94 (18)N4—C15—C16—C17175.99 (18)
C5—C6—C7—C80.5 (3)C15—C16—C17—C180.3 (3)
C6—C7—C8—C91.0 (3)C16—C17—C18—C190.1 (3)
C7—C8—C9—C100.1 (3)C17—C18—C19—C200.4 (3)
C8—C9—C10—C51.3 (3)C18—C19—C20—C150.3 (3)
C6—C5—C10—C91.8 (3)C16—C15—C20—C190.0 (3)
N2—C5—C10—C9177.65 (17)N4—C15—C20—C19176.19 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C10 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11C···Cg1i0.982.963.759 (2)140
C19—H19···Cg1ii0.952.853.612 (2)138
C6—H6···Cg2iii0.952.893.719 (2)147
C17—H17···Cg2iv0.952.763.577 (2)144
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+3/2, y+2, z1/2; (iii) x+5/2, y+2, z+1/2; (iv) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C5–C10 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11C···Cg1i0.982.963.759 (2)140
C19—H19···Cg1ii0.952.853.612 (2)138
C6—H6···Cg2iii0.952.893.719 (2)147
C17—H17···Cg2iv0.952.763.577 (2)144
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+3/2, y+2, z1/2; (iii) x+5/2, y+2, z+1/2; (iv) x+1/2, y+3/2, z.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

We gratefully thank the Ministry of Higher Education (Malaysia) and the University of Malaya for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChieh, C. & Cheung, S. K. (1983). Can. J. Chem. 61, 211–213.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHenderson, W., Nicholson, B. K. & Tiekink, E. R. T. (2006). Inorg. Chim. Acta, 359, 204–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds