metal-organic compounds
Poly[(μ3-3,5-dinitrobenzoato-κ3O1:O1′:O3)(μ2-hydroxido-κ2O:O)copper(II)]
aDepartment of Chemistry, North Bengal University, Dt. Darjeeling, West Bengal 734 013, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com
The title complex, [Cu{μ3-O2CC6H3(NO2)2-3,5}(μ-OH)]n, features zigzag chains in which successive pairs of CuII atoms are connected by OH bridges and bidentate carboxylate ligands, leading to six-membered Cu(O)(OCO)Cu rings. The zigzag chains are connected into a three-dimensional architecture by Cu—O(nitro) bonds. The coordination geometry of the CuII atom is square-pyramidal, with the axial position occupied by the nitro O atom, which forms the longer Cu—O bond. Bifurcated hydroxy–nitro O—H⋯O hydrogen bonds contribute to the stability of the crystal structure.
CCDC reference: 988599
Related literature
For related CuII structures featuring Cu(μ2-carboxylate)(μ2-hydroxyl)Cu rings, see: You et al. (2005); Chen et al. (2006); Xiao et al. (2006). For additional structural analysis, see: Addison et al. (1984).
Experimental
Crystal data
|
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 988599
10.1107/S1600536814004280/hg5386sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814004280/hg5386Isup2.hkl
The title complex was synthesised employing hydrothermal methods, and X-ray crystallography revealed it to be three-dimensional. The crystallographic τ = 0.01 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). Additional stability to the architecture is provided by bifurcated O—H···O(nitro) hydrogen bonds, Table 2.
comprises a CuII cation, and 3,5-dinitrobenzoate and hydroxide anions, Fig. 1. Zigzag rows of CuII ions are aligned along the c axis (glide symmetry) with pairs of CuII ions being bridged by a hydroxide and two O atoms of the carboxylate ligand leading to chains of six-membered rings. Neighbouring chains are linked via Cu—O(nitro) bonds, which are longer than the remaining Cu—O bonds, Table 1. The resulting O5 donor set defines an axially distorted square pyramidal coordination geometry, with the nitro-O atom in the axial position, as quantified by the value ofSimilar strings of Cu(µ2-carboxylate)(µ2-hydroxyl)Cu of varying dimensionality have been noted in other CuII structures (e.g. Chen et al., 2006; You et al., 2005; Xiao et al., 2006).
To a pulverised mixture of 3,5-dinitrobenzoic acid (0.1688 g), Cu(NO3)2.3H2O (0.1932 g) and melamine (0.1002 g), all obtained from commercial sources in AR grade, distilled water (1.5 ml) was added. The mixture was stirred for 30 min to get a suspension. The reaction mixture was then sealed in a 10 ml Teflon-lined stainless steel autoclave and heated at 423 K for 45 h. The autoclave was subjected to natural cooling (for 5 h) to room temperature. The product containing blue crystals suitable for single crystal X-ray diffraction was collected by filtration and washed with adequate distilled water. The initial pH of the suspension was 5 and there was no apparent change in the pH when the reaction was over. The blue product was not formed in the absence of melamine which suggests that melamine acted as a base in this reaction. The product decomposed with explosion with green flashes above 553 K.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C7H3N2O6)(OH)] | F(000) = 580 |
Mr = 291.66 | Dx = 2.183 Mg m−3 |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2c -2n | Cell parameters from 2719 reflections |
a = 7.4665 (2) Å | θ = 5.0–74.1° |
b = 17.7858 (5) Å | µ = 3.87 mm−1 |
c = 6.6821 (2) Å | T = 100 K |
V = 887.37 (4) Å3 | Prism, blue |
Z = 4 | 0.25 × 0.20 × 0.15 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 1324 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 1318 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 10.4041 pixels mm-1 | θmax = 74.3°, θmin = 5.0° |
ω scan | h = −6→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −20→21 |
Tmin = 0.873, Tmax = 1.000 | l = −7→8 |
3156 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0617P)2 + 0.2234P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.077 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.45 e Å−3 |
1324 reflections | Δρmin = −0.67 e Å−3 |
155 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0078 (6) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 360 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.06 (5) |
[Cu(C7H3N2O6)(OH)] | V = 887.37 (4) Å3 |
Mr = 291.66 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 7.4665 (2) Å | µ = 3.87 mm−1 |
b = 17.7858 (5) Å | T = 100 K |
c = 6.6821 (2) Å | 0.25 × 0.20 × 0.15 mm |
Agilent SuperNova Dual diffractometer with an Atlas detector | 1324 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1318 reflections with I > 2σ(I) |
Tmin = 0.873, Tmax = 1.000 | Rint = 0.017 |
3156 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.077 | Δρmax = 0.45 e Å−3 |
S = 1.05 | Δρmin = −0.67 e Å−3 |
1324 reflections | Absolute structure: Flack (1983), 360 Friedel pairs |
155 parameters | Absolute structure parameter: 0.06 (5) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.00521 (5) | 0.502896 (17) | 0.50002 (17) | 0.00920 (17) | |
O1 | 0.0918 (2) | 0.40286 (10) | 0.5811 (3) | 0.0146 (4) | |
O2 | 0.0673 (3) | 0.39533 (9) | 0.9179 (3) | 0.0136 (4) | |
O3 | −0.0991 (3) | 0.14441 (11) | 1.1700 (3) | 0.0155 (4) | |
O4 | −0.0088 (2) | 0.04569 (11) | 1.0096 (4) | 0.0186 (4) | |
O5 | 0.2389 (2) | 0.07033 (9) | 0.3473 (3) | 0.0141 (4) | |
O6 | 0.3041 (2) | 0.18099 (10) | 0.2336 (3) | 0.0187 (4) | |
O7 | −0.1161 (2) | 0.51396 (9) | 0.7481 (3) | 0.0105 (4) | |
H1 | −0.2242 | 0.5270 | 0.7463 | 0.016* | |
N1 | −0.0260 (3) | 0.11347 (12) | 1.0269 (4) | 0.0124 (5) | |
N2 | 0.2439 (3) | 0.13903 (11) | 0.3632 (3) | 0.0119 (4) | |
C1 | 0.0847 (3) | 0.36866 (12) | 0.7455 (4) | 0.0099 (4) | |
C2 | 0.0984 (3) | 0.28424 (13) | 0.7318 (4) | 0.0110 (5) | |
C3 | 0.0397 (4) | 0.23927 (14) | 0.8891 (4) | 0.0121 (5) | |
H3 | −0.0025 | 0.2611 | 1.0100 | 0.014* | |
C4 | 0.0445 (4) | 0.16166 (14) | 0.8649 (4) | 0.0109 (5) | |
C5 | 0.1101 (4) | 0.12656 (13) | 0.6959 (4) | 0.0108 (5) | |
H5 | 0.1135 | 0.0734 | 0.6839 | 0.013* | |
C6 | 0.1710 (3) | 0.17364 (13) | 0.5442 (4) | 0.0113 (5) | |
C7 | 0.1637 (3) | 0.25149 (13) | 0.5565 (4) | 0.0111 (5) | |
H7 | 0.2024 | 0.2819 | 0.4478 | 0.013* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0143 (3) | 0.0092 (2) | 0.0042 (3) | 0.00052 (10) | 0.00062 (13) | 0.00047 (15) |
O1 | 0.0228 (10) | 0.0118 (8) | 0.0092 (9) | 0.0025 (6) | 0.0030 (7) | 0.0015 (7) |
O2 | 0.0210 (10) | 0.0118 (8) | 0.0081 (9) | 0.0024 (7) | −0.0017 (7) | −0.0004 (7) |
O3 | 0.0177 (9) | 0.0182 (9) | 0.0105 (9) | −0.0005 (8) | 0.0047 (7) | −0.0002 (7) |
O4 | 0.0268 (11) | 0.0112 (8) | 0.0179 (10) | −0.0027 (6) | 0.0038 (8) | 0.0013 (10) |
O5 | 0.0173 (9) | 0.0119 (8) | 0.0129 (9) | 0.0024 (6) | −0.0015 (7) | −0.0019 (7) |
O6 | 0.0258 (10) | 0.0180 (9) | 0.0122 (9) | −0.0006 (7) | 0.0079 (9) | 0.0013 (8) |
O7 | 0.0124 (9) | 0.0129 (7) | 0.0061 (8) | 0.0010 (6) | −0.0013 (8) | −0.0012 (8) |
N1 | 0.0134 (10) | 0.0153 (10) | 0.0085 (12) | 0.0000 (8) | −0.0008 (8) | 0.0025 (9) |
N2 | 0.0131 (10) | 0.0150 (9) | 0.0075 (10) | 0.0030 (7) | −0.0005 (8) | −0.0006 (8) |
C1 | 0.0092 (10) | 0.0126 (11) | 0.0080 (11) | 0.0015 (8) | −0.0009 (10) | −0.0015 (10) |
C2 | 0.0111 (10) | 0.0121 (11) | 0.0099 (12) | 0.0004 (9) | −0.0028 (11) | 0.0014 (11) |
C3 | 0.0124 (11) | 0.0158 (13) | 0.0080 (12) | 0.0018 (9) | −0.0014 (10) | −0.0014 (10) |
C4 | 0.0116 (11) | 0.0130 (12) | 0.0081 (12) | −0.0019 (9) | −0.0010 (11) | 0.0033 (9) |
C5 | 0.0118 (11) | 0.0109 (11) | 0.0098 (13) | 0.0012 (9) | −0.0010 (9) | −0.0007 (9) |
C6 | 0.0113 (11) | 0.0144 (10) | 0.0081 (13) | 0.0010 (8) | −0.0022 (9) | −0.0003 (8) |
C7 | 0.0121 (11) | 0.0117 (10) | 0.0095 (12) | −0.0004 (9) | −0.0016 (9) | −0.0009 (8) |
Cu—O1 | 1.9689 (18) | O7—H1 | 0.8400 |
Cu—O7 | 1.899 (2) | N1—C4 | 1.478 (3) |
Cu—O2i | 1.9675 (18) | N2—C6 | 1.462 (3) |
Cu—O5ii | 2.5871 (18) | C1—C2 | 1.508 (3) |
Cu—O7i | 1.900 (2) | C2—C3 | 1.392 (4) |
O1—C1 | 1.257 (4) | C2—C7 | 1.396 (4) |
O2—C1 | 1.252 (3) | C3—C4 | 1.390 (4) |
O2—Cuiii | 1.9675 (18) | C3—H3 | 0.9500 |
O3—N1 | 1.231 (3) | C4—C5 | 1.380 (4) |
O4—N1 | 1.218 (3) | C5—C6 | 1.391 (3) |
O5—N2 | 1.227 (3) | C5—H5 | 0.9500 |
O6—N2 | 1.228 (3) | C6—C7 | 1.388 (3) |
O7—Cuiii | 1.900 (2) | C7—H7 | 0.9500 |
O7—Cu—O7i | 176.03 (4) | O2—C1—O1 | 128.7 (2) |
O7—Cu—O2i | 90.98 (8) | O2—C1—C2 | 116.1 (2) |
O7i—Cu—O2i | 91.02 (9) | O1—C1—C2 | 115.2 (2) |
O7—Cu—O1 | 90.57 (9) | C3—C2—C7 | 120.3 (2) |
O7i—Cu—O1 | 87.60 (8) | C3—C2—C1 | 120.3 (2) |
O2i—Cu—O1 | 176.81 (9) | C7—C2—C1 | 119.4 (2) |
O7—Cu—O5ii | 91.71 (7) | C4—C3—C2 | 118.3 (2) |
O7i—Cu—O5ii | 84.60 (8) | C4—C3—H3 | 120.8 |
O2i—Cu—O5ii | 98.13 (7) | C2—C3—H3 | 120.8 |
O1—Cu—O5ii | 84.60 (7) | C5—C4—C3 | 123.6 (2) |
C1—O1—Cu | 131.60 (17) | C5—C4—N1 | 117.6 (2) |
C1—O2—Cuiii | 129.32 (16) | C3—C4—N1 | 118.8 (2) |
Cu—O7—Cuiii | 123.32 (10) | C4—C5—C6 | 116.1 (2) |
Cu—O7—H1 | 118.3 | C4—C5—H5 | 122.0 |
Cuiii—O7—H1 | 118.3 | C6—C5—H5 | 122.0 |
O4—N1—O3 | 124.3 (2) | C7—C6—C5 | 123.0 (2) |
O4—N1—C4 | 117.8 (2) | C7—C6—N2 | 118.9 (2) |
O3—N1—C4 | 117.9 (2) | C5—C6—N2 | 118.1 (2) |
O5—N2—O6 | 123.7 (2) | C6—C7—C2 | 118.6 (2) |
O5—N2—C6 | 118.7 (2) | C6—C7—H7 | 120.7 |
O6—N2—C6 | 117.62 (19) | C2—C7—H7 | 120.7 |
O7—Cu—O1—C1 | −8.5 (2) | O4—N1—C4—C5 | 6.0 (3) |
O7i—Cu—O1—C1 | 175.0 (2) | O3—N1—C4—C5 | −173.7 (2) |
O2i—Cu—O7—Cuiii | −127.01 (11) | O4—N1—C4—C3 | −174.7 (2) |
O1—Cu—O7—Cuiii | 50.20 (11) | O3—N1—C4—C3 | 5.7 (4) |
Cuiii—O2—C1—O1 | 14.1 (4) | C3—C4—C5—C6 | −0.9 (4) |
Cuiii—O2—C1—C2 | −165.63 (15) | N1—C4—C5—C6 | 178.3 (2) |
Cu—O1—C1—O2 | −22.7 (4) | C4—C5—C6—C7 | −1.5 (3) |
Cu—O1—C1—C2 | 156.98 (16) | C4—C5—C6—N2 | 179.2 (2) |
O2—C1—C2—C3 | 19.2 (3) | O5—N2—C6—C7 | −175.1 (2) |
O1—C1—C2—C3 | −160.6 (2) | O6—N2—C6—C7 | 3.6 (3) |
O2—C1—C2—C7 | −163.4 (2) | O5—N2—C6—C5 | 4.2 (3) |
O1—C1—C2—C7 | 16.8 (3) | O6—N2—C6—C5 | −177.0 (2) |
C7—C2—C3—C4 | −1.3 (4) | C5—C6—C7—C2 | 2.4 (3) |
C1—C2—C3—C4 | 176.0 (2) | N2—C6—C7—C2 | −178.3 (2) |
C2—C3—C4—C5 | 2.3 (4) | C3—C2—C7—C6 | −0.9 (3) |
C2—C3—C4—N1 | −176.9 (2) | C1—C2—C7—C6 | −178.3 (2) |
Symmetry codes: (i) −x, −y+1, z−1/2; (ii) x−1/2, −y+1/2, z; (iii) −x, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H1···O3iv | 0.84 | 2.52 | 3.190 (3) | 137 |
O7—H1···O4iv | 0.84 | 2.57 | 3.271 (2) | 142 |
Symmetry code: (iv) −x−1/2, y+1/2, z−1/2. |
Cu—O1 | 1.9689 (18) | Cu—O5ii | 2.5871 (18) |
Cu—O7 | 1.899 (2) | Cu—O7i | 1.900 (2) |
Cu—O2i | 1.9675 (18) |
Symmetry codes: (i) −x, −y+1, z−1/2; (ii) x−1/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H1···O3iii | 0.84 | 2.52 | 3.190 (3) | 137 |
O7—H1···O4iii | 0.84 | 2.57 | 3.271 (2) | 142 |
Symmetry code: (iii) −x−1/2, y+1/2, z−1/2. |
Footnotes
‡Additional correspondence author, e-mail: abhijitchem1947@yahoo.co.in.
Acknowledgements
This research was supported by High Impact Research MoE grant UM.C/625/1/HIR/MoE/SC/03 from the Ministry of Higher Education Malaysia.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, H.-J., Zhang, J., Feng, W.-L. & Fu, M. (2006). Inorg. Chem. Commun. 9, 300–303. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, H. P., Li, X.-H., Shi, Q., Zhang, W.-B., Wang, J.-G. & Morsali, A. (2006). J. Coord. Chem. 61, 2905–2915. Web of Science CSD CrossRef Google Scholar
You, Z.-L., Liu, W.-S., Zhu, H.-L. & Fun, H.-K. (2005). Transition Met. Chem. 30, 1–4. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.