metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m112-m113

Poly[(μ3-3,5-di­nitro­benzoato-κ3O1:O1′:O3)(μ2-hydroxido-κ2O:O)copper(II)]

aDepartment of Chemistry, North Bengal University, Dt. Darjeeling, West Bengal 734 013, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 February 2014; accepted 25 February 2014; online 28 February 2014)

The title complex, [Cu{μ3-O2CC6H3(NO2)2-3,5}(μ-OH)]n, features zigzag chains in which successive pairs of CuII atoms are connected by OH bridges and bidentate carboxyl­ate ligands, leading to six-membered Cu(O)(OCO)Cu rings. The zigzag chains are connected into a three-dimensional architecture by Cu—O(nitro) bonds. The coordination geometry of the CuII atom is square-pyramidal, with the axial position occupied by the nitro O atom, which forms the longer Cu—O bond. Bifurcated hy­droxy–nitro O—H⋯O hydrogen bonds contribute to the stability of the crystal structure.

Related literature

For related CuII structures featuring Cu(μ2-carboxyl­ate)(μ2-hydrox­yl)Cu rings, see: You et al. (2005[You, Z.-L., Liu, W.-S., Zhu, H.-L. & Fun, H.-K. (2005). Transition Met. Chem. 30, 1-4.]); Chen et al. (2006[Chen, H.-J., Zhang, J., Feng, W.-L. & Fu, M. (2006). Inorg. Chem. Commun. 9, 300-303.]); Xiao et al. (2006[Xiao, H. P., Li, X.-H., Shi, Q., Zhang, W.-B., Wang, J.-G. & Morsali, A. (2006). J. Coord. Chem. 61, 2905-2915.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3N2O6)(OH)]

  • Mr = 291.66

  • Orthorhombic, P n a 21

  • a = 7.4665 (2) Å

  • b = 17.7858 (5) Å

  • c = 6.6821 (2) Å

  • V = 887.37 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.87 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.873, Tmax = 1.000

  • 3156 measured reflections

  • 1324 independent reflections

  • 1318 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.077

  • S = 1.05

  • 1324 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.67 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 360 Friedel pairs

  • Absolute structure parameter: 0.06 (5)

Table 1
Selected bond lengths (Å)

Cu—O1 1.9689 (18)
Cu—O7 1.899 (2)
Cu—O2i 1.9675 (18)
Cu—O5ii 2.5871 (18)
Cu—O7i 1.900 (2)
Symmetry codes: (i) [-x, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1⋯O3iii 0.84 2.52 3.190 (3) 137
O7—H1⋯O4iii 0.84 2.57 3.271 (2) 142
Symmetry code: (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

The title complex was synthesised employing hydro­thermal methods, and X-ray crystallography revealed it to be three-dimensional. The crystallographic asymmetric unit comprises a CuII cation, and 3,5-di­nitro­benzoate and hydroxide anions, Fig. 1. Zigzag rows of CuII ions are aligned along the c axis (glide symmetry) with pairs of CuII ions being bridged by a hydroxide and two O atoms of the carboxyl­ate ligand leading to chains of six-membered rings. Neighbouring chains are linked via Cu—O(nitro) bonds, which are longer than the remaining Cu—O bonds, Table 1. The resulting O5 donor set defines an axially distorted square pyramidal coordination geometry, with the nitro-O atom in the axial position, as qu­anti­fied by the value of τ = 0.01 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). Additional stability to the architecture is provided by bifurcated O—H···O(nitro) hydrogen bonds, Table 2.

Similar strings of Cu(µ2-carboxyl­ate)(µ2-hydroxyl)Cu of varying dimensionality have been noted in other CuII structures (e.g. Chen et al., 2006; You et al., 2005; Xiao et al., 2006).

Synthesis and crystallization top

To a pulverised mixture of 3,5-di­nitro­benzoic acid (0.1688 g), Cu(NO3)2.3H2O (0.1932 g) and melamine (0.1002 g), all obtained from commercial sources in AR grade, distilled water (1.5 ml) was added. The mixture was stirred for 30 min to get a suspension. The reaction mixture was then sealed in a 10 ml Teflon-lined stainless steel autoclave and heated at 423 K for 45 h. The autoclave was subjected to natural cooling (for 5 h) to room temperature. The product containing blue crystals suitable for single crystal X-ray diffraction was collected by filtration and washed with adequate distilled water. The initial pH of the suspension was 5 and there was no apparent change in the pH when the reaction was over. The blue product was not formed in the absence of melamine which suggests that melamine acted as a base in this reaction. The product decomposed with explosion with green flashes above 553 K.

Refinement top

The H atoms were geometrically placed (O—H = 0.84 Å and C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(O, C).

Related literature top

For related CuII structures featuring Cu(µ2-carboxylate)(µ2-hydroxyl)Cu rings, see: You et al. (2005); Chen et al. (2006); Xiao et al. (2006). For additional structural analysis, see: Addison et al. (1984).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view approximately normal to the zigzag chain along the c axis in the title compound. The coordinating nitro groups from carboxylates belong to other chains are shown as "O2NC", for reasons of clarity.
[Figure 3] Fig. 3. A view of the unit-cell contents of the title compound in projection down the c axis, the axis along which the zigzag chains are propagated. The O—H···O hydrogen bonds are shown as orange dashed lines.
Poly[(µ3-3,5-dinitrobenzoato-κ3O1:O1':O3)(µ2-hydroxido-κ2O:O)copper(II)] top
Crystal data top
[Cu(C7H3N2O6)(OH)]F(000) = 580
Mr = 291.66Dx = 2.183 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 2719 reflections
a = 7.4665 (2) Åθ = 5.0–74.1°
b = 17.7858 (5) ŵ = 3.87 mm1
c = 6.6821 (2) ÅT = 100 K
V = 887.37 (4) Å3Prism, blue
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1324 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1318 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.4041 pixels mm-1θmax = 74.3°, θmin = 5.0°
ω scanh = 69
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2021
Tmin = 0.873, Tmax = 1.000l = 78
3156 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0617P)2 + 0.2234P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.45 e Å3
1324 reflectionsΔρmin = 0.67 e Å3
155 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0078 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 360 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (5)
Crystal data top
[Cu(C7H3N2O6)(OH)]V = 887.37 (4) Å3
Mr = 291.66Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 7.4665 (2) ŵ = 3.87 mm1
b = 17.7858 (5) ÅT = 100 K
c = 6.6821 (2) Å0.25 × 0.20 × 0.15 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1324 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1318 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 1.000Rint = 0.017
3156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.45 e Å3
S = 1.05Δρmin = 0.67 e Å3
1324 reflectionsAbsolute structure: Flack (1983), 360 Friedel pairs
155 parametersAbsolute structure parameter: 0.06 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.00521 (5)0.502896 (17)0.50002 (17)0.00920 (17)
O10.0918 (2)0.40286 (10)0.5811 (3)0.0146 (4)
O20.0673 (3)0.39533 (9)0.9179 (3)0.0136 (4)
O30.0991 (3)0.14441 (11)1.1700 (3)0.0155 (4)
O40.0088 (2)0.04569 (11)1.0096 (4)0.0186 (4)
O50.2389 (2)0.07033 (9)0.3473 (3)0.0141 (4)
O60.3041 (2)0.18099 (10)0.2336 (3)0.0187 (4)
O70.1161 (2)0.51396 (9)0.7481 (3)0.0105 (4)
H10.22420.52700.74630.016*
N10.0260 (3)0.11347 (12)1.0269 (4)0.0124 (5)
N20.2439 (3)0.13903 (11)0.3632 (3)0.0119 (4)
C10.0847 (3)0.36866 (12)0.7455 (4)0.0099 (4)
C20.0984 (3)0.28424 (13)0.7318 (4)0.0110 (5)
C30.0397 (4)0.23927 (14)0.8891 (4)0.0121 (5)
H30.00250.26111.01000.014*
C40.0445 (4)0.16166 (14)0.8649 (4)0.0109 (5)
C50.1101 (4)0.12656 (13)0.6959 (4)0.0108 (5)
H50.11350.07340.68390.013*
C60.1710 (3)0.17364 (13)0.5442 (4)0.0113 (5)
C70.1637 (3)0.25149 (13)0.5565 (4)0.0111 (5)
H70.20240.28190.44780.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0143 (3)0.0092 (2)0.0042 (3)0.00052 (10)0.00062 (13)0.00047 (15)
O10.0228 (10)0.0118 (8)0.0092 (9)0.0025 (6)0.0030 (7)0.0015 (7)
O20.0210 (10)0.0118 (8)0.0081 (9)0.0024 (7)0.0017 (7)0.0004 (7)
O30.0177 (9)0.0182 (9)0.0105 (9)0.0005 (8)0.0047 (7)0.0002 (7)
O40.0268 (11)0.0112 (8)0.0179 (10)0.0027 (6)0.0038 (8)0.0013 (10)
O50.0173 (9)0.0119 (8)0.0129 (9)0.0024 (6)0.0015 (7)0.0019 (7)
O60.0258 (10)0.0180 (9)0.0122 (9)0.0006 (7)0.0079 (9)0.0013 (8)
O70.0124 (9)0.0129 (7)0.0061 (8)0.0010 (6)0.0013 (8)0.0012 (8)
N10.0134 (10)0.0153 (10)0.0085 (12)0.0000 (8)0.0008 (8)0.0025 (9)
N20.0131 (10)0.0150 (9)0.0075 (10)0.0030 (7)0.0005 (8)0.0006 (8)
C10.0092 (10)0.0126 (11)0.0080 (11)0.0015 (8)0.0009 (10)0.0015 (10)
C20.0111 (10)0.0121 (11)0.0099 (12)0.0004 (9)0.0028 (11)0.0014 (11)
C30.0124 (11)0.0158 (13)0.0080 (12)0.0018 (9)0.0014 (10)0.0014 (10)
C40.0116 (11)0.0130 (12)0.0081 (12)0.0019 (9)0.0010 (11)0.0033 (9)
C50.0118 (11)0.0109 (11)0.0098 (13)0.0012 (9)0.0010 (9)0.0007 (9)
C60.0113 (11)0.0144 (10)0.0081 (13)0.0010 (8)0.0022 (9)0.0003 (8)
C70.0121 (11)0.0117 (10)0.0095 (12)0.0004 (9)0.0016 (9)0.0009 (8)
Geometric parameters (Å, º) top
Cu—O11.9689 (18)O7—H10.8400
Cu—O71.899 (2)N1—C41.478 (3)
Cu—O2i1.9675 (18)N2—C61.462 (3)
Cu—O5ii2.5871 (18)C1—C21.508 (3)
Cu—O7i1.900 (2)C2—C31.392 (4)
O1—C11.257 (4)C2—C71.396 (4)
O2—C11.252 (3)C3—C41.390 (4)
O2—Cuiii1.9675 (18)C3—H30.9500
O3—N11.231 (3)C4—C51.380 (4)
O4—N11.218 (3)C5—C61.391 (3)
O5—N21.227 (3)C5—H50.9500
O6—N21.228 (3)C6—C71.388 (3)
O7—Cuiii1.900 (2)C7—H70.9500
O7—Cu—O7i176.03 (4)O2—C1—O1128.7 (2)
O7—Cu—O2i90.98 (8)O2—C1—C2116.1 (2)
O7i—Cu—O2i91.02 (9)O1—C1—C2115.2 (2)
O7—Cu—O190.57 (9)C3—C2—C7120.3 (2)
O7i—Cu—O187.60 (8)C3—C2—C1120.3 (2)
O2i—Cu—O1176.81 (9)C7—C2—C1119.4 (2)
O7—Cu—O5ii91.71 (7)C4—C3—C2118.3 (2)
O7i—Cu—O5ii84.60 (8)C4—C3—H3120.8
O2i—Cu—O5ii98.13 (7)C2—C3—H3120.8
O1—Cu—O5ii84.60 (7)C5—C4—C3123.6 (2)
C1—O1—Cu131.60 (17)C5—C4—N1117.6 (2)
C1—O2—Cuiii129.32 (16)C3—C4—N1118.8 (2)
Cu—O7—Cuiii123.32 (10)C4—C5—C6116.1 (2)
Cu—O7—H1118.3C4—C5—H5122.0
Cuiii—O7—H1118.3C6—C5—H5122.0
O4—N1—O3124.3 (2)C7—C6—C5123.0 (2)
O4—N1—C4117.8 (2)C7—C6—N2118.9 (2)
O3—N1—C4117.9 (2)C5—C6—N2118.1 (2)
O5—N2—O6123.7 (2)C6—C7—C2118.6 (2)
O5—N2—C6118.7 (2)C6—C7—H7120.7
O6—N2—C6117.62 (19)C2—C7—H7120.7
O7—Cu—O1—C18.5 (2)O4—N1—C4—C56.0 (3)
O7i—Cu—O1—C1175.0 (2)O3—N1—C4—C5173.7 (2)
O2i—Cu—O7—Cuiii127.01 (11)O4—N1—C4—C3174.7 (2)
O1—Cu—O7—Cuiii50.20 (11)O3—N1—C4—C35.7 (4)
Cuiii—O2—C1—O114.1 (4)C3—C4—C5—C60.9 (4)
Cuiii—O2—C1—C2165.63 (15)N1—C4—C5—C6178.3 (2)
Cu—O1—C1—O222.7 (4)C4—C5—C6—C71.5 (3)
Cu—O1—C1—C2156.98 (16)C4—C5—C6—N2179.2 (2)
O2—C1—C2—C319.2 (3)O5—N2—C6—C7175.1 (2)
O1—C1—C2—C3160.6 (2)O6—N2—C6—C73.6 (3)
O2—C1—C2—C7163.4 (2)O5—N2—C6—C54.2 (3)
O1—C1—C2—C716.8 (3)O6—N2—C6—C5177.0 (2)
C7—C2—C3—C41.3 (4)C5—C6—C7—C22.4 (3)
C1—C2—C3—C4176.0 (2)N2—C6—C7—C2178.3 (2)
C2—C3—C4—C52.3 (4)C3—C2—C7—C60.9 (3)
C2—C3—C4—N1176.9 (2)C1—C2—C7—C6178.3 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x1/2, y+1/2, z; (iii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O3iv0.842.523.190 (3)137
O7—H1···O4iv0.842.573.271 (2)142
Symmetry code: (iv) x1/2, y+1/2, z1/2.
Selected bond lengths (Å) top
Cu—O11.9689 (18)Cu—O5ii2.5871 (18)
Cu—O71.899 (2)Cu—O7i1.900 (2)
Cu—O2i1.9675 (18)
Symmetry codes: (i) x, y+1, z1/2; (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O3iii0.842.523.190 (3)137
O7—H1···O4iii0.842.573.271 (2)142
Symmetry code: (iii) x1/2, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: abhijitchem1947@yahoo.co.in.

Acknowledgements

This research was supported by High Impact Research MoE grant UM.C/625/1/HIR/MoE/SC/03 from the Ministry of Higher Education Malaysia.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, H.-J., Zhang, J., Feng, W.-L. & Fu, M. (2006). Inorg. Chem. Commun. 9, 300–303.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H. P., Li, X.-H., Shi, Q., Zhang, W.-B., Wang, J.-G. & Morsali, A. (2006). J. Coord. Chem. 61, 2905–2915.  Web of Science CSD CrossRef Google Scholar
First citationYou, Z.-L., Liu, W.-S., Zhu, H.-L. & Fun, H.-K. (2005). Transition Met. Chem. 30, 1–4.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m112-m113
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds