metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m92-m93

trans-Chlorido­(4-fluoro­benzene­thiol­ato-κS)bis­­(tri­phenyl­phosphane-κP)palladium(II) methanol hemisolvate

aEscuela Nacional de Ciencias Biológicas, IPN, Departamento de Química Orgánica, Caprio y Plan de Ayala S/N, Colonia Santo Tomás, 11340 México DF, Mexico, bUniversidad Politécnica de Tlaxcala, Av. Universidad Politécnica de Tlaxcala No. 1, San Pedro Xalcaltzinco Municipio de Tepeyanco, Tlaxcala, CP 90180, Mexico, and cInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, DF 04510, Mexico
*Correspondence e-mail: aavilas@ipn.mx

(Received 24 January 2014; accepted 3 February 2014; online 12 February 2014)

The title compound, [Pd(SC6H4F-p)Cl(PPh3)2]·0.5CH3OH, features a PdII complex with two tri­phenyl­phosphane (PPh3) ligands arranged in a trans conformation, with one chloride and one 4-fluoro­benzene­thiol­ate ligand completing the coordination sphere, giving rise to a slightly distorted square-planar geometry of the PdII ion. The methanol solvent mol­ecule is disordered about an inversion centre with an occupancy of 0.25 for each molecule. In the crystal, weak C—H⋯Cl hydrogen-bonding inter­actions between the complex mol­ecules generate chain frameworks parallel to [010].

Related literature

For palladium complexes in catalysis, see: Frisch & Beller (2005[Frisch, A. C. & Beller, M. (2005). Angew. Chem. Int. Ed. 44, 674-688.]); Yin & Liebscher (2007[Yin, L. & Liebscher, J. (2007). Chem. Rev. 107, 133-173.]); Knochel & Singer (1993[Knochel, P. & Singer, R. D. (1993). Chem. Rev. 93, 2117-2188.]); Surry & Buchwald (2008[Surry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 6338-6361.]). For related compounds, see: Jones et al. (2000[Jones, W. D., Reynolds, K. A., Sperry, C. K. & Lachicotte, R. J. (2000). Organometallics, 19, 1661-1669.]); Alvarez-Larena et al. (1993[Alvarez-Larena, A., Pinella, J. F., Amau, N., Moreno- Mañas, M. & Pleixats, R. (1993). Z. Kristallogr. 208, 249-252.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C6H4FS)Cl(C18H15P)2]·0.5CH4O

  • Mr = 809.56

  • Monoclinic, P 21 /c

  • a = 18.9189 (16) Å

  • b = 9.6909 (8) Å

  • c = 21.6179 (18) Å

  • β = 106.212 (1)°

  • V = 3805.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.822, Tmax = 0.947

  • 30189 measured reflections

  • 6950 independent reflections

  • 5392 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.02

  • 6950 reflections

  • 469 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C34—H34⋯Cl1i 0.93 2.99 3.631 (5) 127
C35—H35⋯Cl1i 0.93 2.97 3.616 (4) 128
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Introduction top

The high efficiency of palladium complexes in C—C cross coupling reactions is well known, for example in the Suzuki-Miyaura (Frisch & Beller, 2005), Mizoroki-Heck (Yin & Liebscher, 2007) and Negishi reactions (Knochel & Singer, 1993), as well as for the formation of C-Heteroatom bonds as in the Buchwald–Hartwig couplings (Surry & Buchwald, 2008). In this context, different research groups have devoted their research efforts to the synthesis of new palladium complexes with a variety of ligands. Therefore, in this opportunity we would like to report the crystal structure of the PdII complex trans-[Pd(SC6H4F-p)(Cl)(PPh3)2] ·0.5CH3OH.

Experimental top

Synthesis and crystallization top

To a suspension consisting of PdCl2 (0.072 g, 0.41 mmol) and Na2CO3 (0.050 g, 0.0471 mmol) in 15 mL of toluene was added dropwise under magnetic stirring a toluene solution (5 mL) of an isomeric mix of (3-ethenyl­benzyl)(4-fluoro­phenyl)­sulfane and (4-ethenyl­benzyl)(4-fluoro­phenyl)­sulfane (60:40) (0.100 g, 0.41 mmol). The resulting mixture was set to reflux for 4 hours. After this time the reaction mixture was allowed to cool down to room temperature, filtered and the solid product washed with CHCl3. The insoluble reddish solid was then suspended in 15 mL of CHCl3 and then treated with Ph3P (0.215 g, 820 mmol). The reaction was allowed to proceed under stirring until the solid was completely dissolved. This solution was then filtered through a short plug of celite and CH3OH was added to promote precipitation. Slow evaporation of the solvent at room temperature produced brown crystals for X-ray diffraction analysis of trans-[Pd(SC6H4F-p)(Cl)(PPh3)2] ·0.5CH3OH.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H) and refined using a riding model with Uiso(H) = 1.2 Ueq of carrier atoms. The CH3OH solvent is disordered over two sets of sites in a 0.25 : 0.25 ratio.

Results and discussion top

The compound trans-[Pd(SC6H4F-p)(Cl)(PPh3)2] ·0.5CH3OH crystallized in a monoclinic system including the complex trans-[Pd(SC6H4F-p)(Cl)(PPh3)2] and half molecule of methanol in the asymmetric unit. The Pd2+ ion exhibits a slightly distorted square-planar PdClSP2 geometry, with one chloride and one p-fluoro­benzene­thiol­ate ligand and two molecules of tri­phenyl­phosphane in trans conformation completing the coordination sphere. The bond distances Pd—Cl and Pd—S are 2.3269 (11) and 2.2977 (11) Å, respectively, and the Pd—P distances are 2.3432 (11) and 2.3342 (11) Å. These distances are comparable to those found in the structures of the related compounds trans-[Pd(SC6H4Cl-p)(Cl)(PPh3)2] (Jones et al., 2000) and trans-[Pd(SC6H5)(Cl)(PPh3)2] (Alvarez-Larena et al., 1993).

The p-fluoro­benzene­thiol­ate presents an intra­molecular π-π inter­action with one phenyl ring of the tripehylphosphane ligand. The distance between centroids Cg(C1—C6)-Cg(C7—C12) is 3.677 (3) Å. The structure is stabilized by weak C—H···Cl hydrogen bonding inter­actions between the complex molecules generate chain frameworks parallel to [010]. The methanol molecule is disordered over two positions in a 0.25:0.25 ratio.

Related literature top

For palladium complexes in catalysis, see: Frisch & Beller (2005); Yin & Liebscher (2007); Knochel & Singer (1993); Surry & Buchwald (2008). For related compounds, see: Jones et al. (2000); Alvarez-Larena et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-labelling and displacement ellipsoids drawn at 40% probability level. The hydrogen atoms were omitted.
[Figure 2] Fig. 2. A portion of the crystal structure showing weak hydrogen bonds by dashed lines.
trans-Chlorido(4-fluorobenzenethiolato-κS)bis(triphenylphosphane-κP)palladium(II) methanol hemisolvate top
Crystal data top
[Pd(C6H4FS)Cl(C18H15P)2]·0.5CH4OF(000) = 1652
Mr = 809.56Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.9189 (16) ÅCell parameters from 8442 reflections
b = 9.6909 (8) Åθ = 2.3–25.1°
c = 21.6179 (18) ŵ = 0.73 mm1
β = 106.212 (1)°T = 298 K
V = 3805.8 (6) Å3Plates, dark-pink
Z = 40.30 × 0.20 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6950 independent reflections
Radiation source: fine-focus sealed tube5392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8.333 pixels mm-1θmax = 25.4°, θmin = 2.0°
ω–scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1111
Tmin = 0.822, Tmax = 0.947l = 2626
30189 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.110H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
6950 reflections(Δ/σ)max < 0.001
469 parametersΔρmax = 0.57 e Å3
33 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Pd(C6H4FS)Cl(C18H15P)2]·0.5CH4OV = 3805.8 (6) Å3
Mr = 809.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.9189 (16) ŵ = 0.73 mm1
b = 9.6909 (8) ÅT = 298 K
c = 21.6179 (18) Å0.30 × 0.20 × 0.08 mm
β = 106.212 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
5392 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.947Rint = 0.052
30189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04333 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.57 e Å3
6950 reflectionsΔρmin = 0.28 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.24393 (2)0.02208 (3)0.14849 (2)0.04003 (11)
Cl10.19542 (6)0.18164 (10)0.06730 (5)0.0558 (3)
S10.29295 (6)0.13516 (10)0.22852 (5)0.0519 (2)
P10.15593 (5)0.09096 (10)0.19997 (5)0.0437 (2)
P20.33009 (5)0.06767 (10)0.10028 (5)0.0424 (2)
F10.44844 (17)0.1686 (4)0.46211 (14)0.1094 (11)
C10.3380 (2)0.0375 (4)0.29652 (19)0.0517 (10)
C20.3650 (2)0.0954 (5)0.2943 (2)0.0615 (11)
H20.35840.13830.25470.074*
C30.4012 (2)0.1645 (5)0.3494 (2)0.0658 (12)
H30.41810.25400.34730.079*
C40.4120 (2)0.1002 (6)0.4074 (2)0.0736 (13)
C50.3885 (3)0.0311 (6)0.4122 (2)0.0740 (13)
H50.39770.07420.45210.089*
C60.3510 (2)0.0987 (5)0.3569 (2)0.0623 (11)
H60.33380.18760.35990.075*
C70.1691 (2)0.0487 (4)0.28479 (19)0.0495 (9)
C80.1943 (2)0.1436 (5)0.33324 (19)0.0658 (12)
H80.20350.23380.32300.079*
C90.2059 (3)0.1061 (7)0.3973 (2)0.0877 (16)
H90.22330.17140.42950.105*
C100.1924 (3)0.0239 (8)0.4135 (3)0.098 (2)
H100.20030.04830.45650.117*
C110.1666 (3)0.1204 (6)0.3652 (3)0.0883 (16)
H110.15600.20950.37590.106*
C120.1564 (2)0.0862 (5)0.3015 (2)0.0677 (12)
H120.14110.15290.26960.081*
C130.1360 (2)0.2754 (4)0.19518 (17)0.0507 (9)
C140.0647 (3)0.3255 (5)0.1726 (2)0.0717 (13)
H140.02550.26410.16000.086*
C150.0516 (4)0.4662 (6)0.1687 (3)0.1000 (19)
H150.00370.49860.15260.120*
C160.1081 (5)0.5574 (6)0.1883 (3)0.099 (2)
H160.09870.65180.18580.119*
C170.1799 (4)0.5098 (5)0.2121 (3)0.0893 (17)
H170.21860.57160.22660.107*
C180.1931 (3)0.3675 (5)0.2140 (2)0.0670 (12)
H180.24120.33500.22810.080*
C190.0685 (2)0.0080 (4)0.1601 (2)0.0574 (11)
C200.0565 (3)0.0437 (5)0.0987 (2)0.0761 (14)
H200.09310.03600.07790.091*
C210.0097 (3)0.1070 (7)0.0675 (3)0.103 (2)
H210.01820.13910.02550.123*
C220.0624 (3)0.1214 (8)0.0995 (3)0.117 (2)
H220.10640.16570.07930.141*
C230.0514 (3)0.0726 (8)0.1596 (3)0.116 (2)
H230.08760.08300.18080.139*
C240.0138 (3)0.0069 (6)0.1899 (3)0.0874 (17)
H240.02080.02780.23130.105*
C250.4207 (2)0.0086 (4)0.14525 (19)0.0488 (9)
C260.4425 (2)0.1222 (4)0.1350 (2)0.0678 (12)
H260.41250.17690.10290.081*
C270.5096 (3)0.1733 (5)0.1729 (3)0.0836 (15)
H270.52420.26210.16570.100*
C280.5541 (3)0.0943 (6)0.2205 (3)0.0838 (16)
H280.59930.12870.24470.101*
C290.5330 (3)0.0320 (6)0.2322 (2)0.0754 (14)
H290.56280.08410.26550.091*
C300.4664 (2)0.0865 (5)0.1947 (2)0.0625 (11)
H300.45250.17520.20280.075*
C310.33212 (19)0.2558 (4)0.09877 (16)0.0434 (8)
C320.3926 (2)0.3279 (4)0.09171 (19)0.0536 (10)
H320.43510.28010.09100.064*
C330.3907 (3)0.4696 (4)0.0857 (2)0.0641 (11)
H330.43180.51750.08170.077*
C340.3277 (3)0.5392 (4)0.0857 (2)0.0674 (12)
H340.32630.63470.08150.081*
C350.2672 (3)0.4707 (4)0.0917 (2)0.0601 (11)
H350.22460.51930.09130.072*
C360.2691 (2)0.3287 (4)0.09834 (18)0.0530 (10)
H360.22780.28190.10250.064*
C370.3254 (2)0.0314 (4)0.01670 (19)0.0487 (9)
C380.2591 (3)0.0288 (4)0.0293 (2)0.0655 (12)
H380.21600.03420.01670.079*
C390.2546 (3)0.0181 (5)0.0945 (2)0.0776 (14)
H390.20900.01790.12520.093*
C400.3169 (3)0.0081 (5)0.1131 (3)0.0799 (15)
H400.31380.00130.15660.096*
C410.3848 (3)0.0118 (6)0.0684 (3)0.0891 (17)
H410.42740.00640.08170.107*
C420.3896 (3)0.0232 (5)0.0041 (2)0.0780 (14)
H420.43560.02570.02600.094*
O10.0542 (7)1.0384 (15)0.5041 (6)0.077 (4)0.25
H10.01121.06260.48960.115*0.25
C430.0682 (13)0.889 (3)0.5018 (13)0.071 (4)0.25
H43A0.02310.83970.49710.086*0.25
H43B0.10360.86170.54090.086*0.25
H43C0.08690.86980.46580.086*0.25
O1B0.0386 (8)0.928 (2)0.5026 (8)0.084 (4)0.25
H1B0.05210.98880.48200.125*0.25
C43B0.0690 (11)0.808 (2)0.4885 (10)0.079 (4)0.25
H43D0.03400.76050.45420.094*0.25
H43E0.08210.74990.52600.094*0.25
H43F0.11230.82840.47520.094*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04087 (17)0.03949 (17)0.03993 (17)0.00118 (12)0.01160 (12)0.00155 (12)
Cl10.0686 (6)0.0477 (6)0.0503 (6)0.0034 (5)0.0151 (5)0.0052 (4)
S10.0627 (6)0.0458 (5)0.0468 (6)0.0065 (5)0.0147 (5)0.0020 (4)
P10.0414 (5)0.0484 (6)0.0416 (5)0.0008 (4)0.0119 (4)0.0012 (4)
P20.0429 (5)0.0412 (5)0.0446 (5)0.0017 (4)0.0147 (4)0.0026 (4)
F10.100 (2)0.147 (3)0.0691 (19)0.022 (2)0.0042 (17)0.0266 (19)
C10.047 (2)0.056 (2)0.053 (2)0.0114 (18)0.0148 (18)0.0026 (19)
C20.055 (2)0.069 (3)0.060 (3)0.003 (2)0.016 (2)0.006 (2)
C30.054 (3)0.076 (3)0.064 (3)0.011 (2)0.011 (2)0.008 (2)
C40.058 (3)0.102 (4)0.053 (3)0.002 (3)0.002 (2)0.016 (3)
C50.072 (3)0.095 (4)0.049 (3)0.017 (3)0.008 (2)0.007 (3)
C60.069 (3)0.066 (3)0.052 (3)0.011 (2)0.018 (2)0.005 (2)
C70.046 (2)0.059 (3)0.046 (2)0.0070 (18)0.0166 (18)0.0041 (19)
C80.074 (3)0.078 (3)0.045 (2)0.021 (2)0.015 (2)0.005 (2)
C90.089 (4)0.118 (5)0.054 (3)0.032 (3)0.015 (3)0.008 (3)
C100.099 (4)0.146 (6)0.051 (3)0.033 (4)0.027 (3)0.027 (4)
C110.090 (4)0.102 (4)0.077 (4)0.008 (3)0.029 (3)0.038 (3)
C120.068 (3)0.077 (3)0.057 (3)0.000 (2)0.017 (2)0.007 (2)
C130.064 (3)0.052 (2)0.041 (2)0.006 (2)0.0214 (19)0.0009 (18)
C140.075 (3)0.068 (3)0.070 (3)0.021 (2)0.016 (2)0.001 (2)
C150.123 (5)0.085 (4)0.088 (4)0.049 (4)0.024 (4)0.004 (3)
C160.171 (7)0.058 (3)0.076 (4)0.031 (4)0.045 (4)0.009 (3)
C170.134 (5)0.067 (4)0.076 (4)0.018 (3)0.045 (4)0.008 (3)
C180.078 (3)0.055 (3)0.073 (3)0.003 (2)0.029 (3)0.000 (2)
C190.048 (2)0.069 (3)0.052 (3)0.0102 (19)0.010 (2)0.003 (2)
C200.067 (3)0.094 (4)0.064 (3)0.030 (3)0.013 (2)0.005 (3)
C210.093 (4)0.137 (5)0.068 (3)0.055 (4)0.005 (3)0.010 (3)
C220.084 (4)0.173 (7)0.083 (4)0.069 (4)0.002 (3)0.009 (4)
C230.054 (3)0.208 (7)0.083 (4)0.041 (4)0.013 (3)0.023 (5)
C240.053 (3)0.145 (5)0.063 (3)0.022 (3)0.014 (2)0.003 (3)
C250.050 (2)0.044 (2)0.054 (2)0.0033 (17)0.0162 (19)0.0112 (18)
C260.060 (3)0.052 (3)0.095 (3)0.006 (2)0.027 (2)0.005 (2)
C270.078 (3)0.062 (3)0.118 (5)0.028 (3)0.039 (3)0.026 (3)
C280.052 (3)0.093 (4)0.104 (4)0.022 (3)0.019 (3)0.046 (4)
C290.060 (3)0.095 (4)0.066 (3)0.010 (3)0.008 (2)0.022 (3)
C300.057 (3)0.069 (3)0.057 (3)0.011 (2)0.009 (2)0.009 (2)
C310.048 (2)0.042 (2)0.039 (2)0.0035 (16)0.0102 (16)0.0041 (16)
C320.047 (2)0.053 (2)0.061 (3)0.0034 (18)0.0162 (19)0.001 (2)
C330.068 (3)0.053 (3)0.072 (3)0.016 (2)0.020 (2)0.000 (2)
C340.089 (4)0.042 (2)0.071 (3)0.001 (2)0.023 (3)0.002 (2)
C350.070 (3)0.046 (2)0.067 (3)0.018 (2)0.025 (2)0.006 (2)
C360.051 (2)0.053 (2)0.060 (3)0.0027 (18)0.022 (2)0.0062 (19)
C370.057 (2)0.042 (2)0.049 (2)0.0004 (18)0.019 (2)0.0006 (17)
C380.067 (3)0.070 (3)0.061 (3)0.004 (2)0.019 (2)0.007 (2)
C390.081 (3)0.093 (4)0.053 (3)0.010 (3)0.008 (3)0.001 (2)
C400.109 (4)0.080 (4)0.056 (3)0.009 (3)0.031 (3)0.007 (2)
C410.086 (4)0.126 (5)0.067 (3)0.007 (3)0.040 (3)0.013 (3)
C420.061 (3)0.112 (4)0.064 (3)0.004 (3)0.021 (2)0.007 (3)
O10.051 (6)0.131 (10)0.048 (5)0.026 (7)0.014 (5)0.006 (7)
C430.040 (7)0.134 (10)0.045 (6)0.025 (9)0.020 (7)0.000 (8)
O1B0.055 (7)0.153 (11)0.048 (5)0.042 (8)0.023 (6)0.003 (7)
C43B0.051 (7)0.141 (12)0.045 (8)0.036 (9)0.016 (6)0.022 (9)
Geometric parameters (Å, º) top
Pd1—S12.2976 (10)C21—H210.9300
Pd1—Cl12.3269 (10)C22—C231.345 (8)
Pd1—P22.3342 (10)C22—H220.9300
Pd1—P12.3432 (10)C23—C241.380 (7)
S1—C11.756 (4)C23—H230.9300
P1—C131.824 (4)C24—H240.9300
P1—C191.825 (4)C25—C261.369 (5)
P1—C71.827 (4)C25—C301.394 (6)
P2—C251.812 (4)C26—C271.396 (6)
P2—C371.818 (4)C26—H260.9300
P2—C311.824 (4)C27—C281.368 (7)
F1—C41.364 (5)C27—H270.9300
C1—C21.391 (6)C28—C291.333 (7)
C1—C61.392 (6)C28—H280.9300
C2—C31.371 (6)C29—C301.398 (6)
C2—H20.9300C29—H290.9300
C3—C41.362 (6)C30—H300.9300
C3—H30.9300C31—C361.384 (5)
C4—C51.362 (7)C31—C321.385 (5)
C5—C61.374 (6)C32—C331.380 (5)
C5—H50.9300C32—H320.9300
C6—H60.9300C33—C341.368 (6)
C7—C81.375 (6)C33—H330.9300
C7—C121.394 (6)C34—C351.362 (6)
C8—C91.389 (6)C34—H340.9300
C8—H80.9300C35—C361.384 (5)
C9—C101.351 (8)C35—H350.9300
C9—H90.9300C36—H360.9300
C10—C111.386 (8)C37—C381.366 (6)
C10—H100.9300C37—C421.410 (6)
C11—C121.376 (6)C38—C391.394 (6)
C11—H110.9300C38—H380.9300
C12—H120.9300C39—C401.349 (7)
C13—C181.372 (6)C39—H390.9300
C13—C141.388 (6)C40—C411.376 (7)
C14—C151.384 (7)C40—H400.9300
C14—H140.9300C41—C421.371 (7)
C15—C161.361 (9)C41—H410.9300
C15—H150.9300C42—H420.9300
C16—C171.390 (9)O1—C431.47 (2)
C16—H160.9300O1—H10.8200
C17—C181.400 (7)C43—H43A0.9600
C17—H170.9300C43—H43B0.9600
C18—H180.9300C43—H43C0.9600
C19—C241.370 (6)O1B—C43B1.37 (2)
C19—C201.376 (6)O1B—H1B0.8199
C20—C211.389 (6)C43B—H43D0.9600
C20—H200.9300C43B—H43E0.9600
C21—C221.368 (8)C43B—H43F0.9600
S1—Pd1—Cl1179.44 (4)C22—C21—H21120.5
S1—Pd1—P284.47 (4)C20—C21—H21120.5
Cl1—Pd1—P295.07 (4)C23—C22—C21121.0 (5)
S1—Pd1—P191.28 (4)C23—C22—H22119.5
Cl1—Pd1—P189.20 (4)C21—C22—H22119.5
P2—Pd1—P1174.61 (4)C22—C23—C24119.8 (5)
C1—S1—Pd1105.81 (14)C22—C23—H23120.1
C13—P1—C19105.03 (19)C24—C23—H23120.1
C13—P1—C7104.19 (17)C19—C24—C23121.2 (5)
C19—P1—C7103.12 (19)C19—C24—H24119.4
C13—P1—Pd1114.53 (12)C23—C24—H24119.4
C19—P1—Pd1108.71 (14)C26—C25—C30118.4 (4)
C7—P1—Pd1119.79 (12)C26—C25—P2119.2 (3)
C25—P2—C37104.38 (18)C30—C25—P2122.1 (3)
C25—P2—C31107.68 (17)C25—C26—C27119.9 (5)
C37—P2—C3199.83 (16)C25—C26—H26120.1
C25—P2—Pd1108.49 (12)C27—C26—H26120.1
C37—P2—Pd1121.69 (13)C28—C27—C26120.7 (5)
C31—P2—Pd1113.66 (12)C28—C27—H27119.6
C2—C1—C6117.1 (4)C26—C27—H27119.6
C2—C1—S1124.6 (3)C29—C28—C27120.1 (4)
C6—C1—S1118.2 (3)C29—C28—H28119.9
C3—C2—C1121.4 (4)C27—C28—H28119.9
C3—C2—H2119.3C28—C29—C30120.4 (5)
C1—C2—H2119.3C28—C29—H29119.8
C4—C3—C2119.1 (4)C30—C29—H29119.8
C4—C3—H3120.5C25—C30—C29120.4 (4)
C2—C3—H3120.5C25—C30—H30119.8
C5—C4—C3122.0 (4)C29—C30—H30119.8
C5—C4—F1119.0 (5)C36—C31—C32118.6 (3)
C3—C4—F1119.0 (5)C36—C31—P2119.2 (3)
C4—C5—C6118.6 (4)C32—C31—P2121.9 (3)
C4—C5—H5120.7C33—C32—C31120.7 (4)
C6—C5—H5120.7C33—C32—H32119.6
C5—C6—C1121.7 (4)C31—C32—H32119.6
C5—C6—H6119.1C34—C33—C32119.4 (4)
C1—C6—H6119.1C34—C33—H33120.3
C8—C7—C12118.5 (4)C32—C33—H33120.3
C8—C7—P1122.4 (3)C35—C34—C33121.0 (4)
C12—C7—P1119.0 (3)C35—C34—H34119.5
C7—C8—C9120.6 (5)C33—C34—H34119.5
C7—C8—H8119.7C34—C35—C36119.8 (4)
C9—C8—H8119.7C34—C35—H35120.1
C10—C9—C8120.9 (5)C36—C35—H35120.1
C10—C9—H9119.6C35—C36—C31120.4 (4)
C8—C9—H9119.6C35—C36—H36119.8
C9—C10—C11119.1 (5)C31—C36—H36119.8
C9—C10—H10120.4C38—C37—C42117.7 (4)
C11—C10—H10120.4C38—C37—P2120.4 (3)
C12—C11—C10120.8 (5)C42—C37—P2121.3 (3)
C12—C11—H11119.6C37—C38—C39121.4 (4)
C10—C11—H11119.6C37—C38—H38119.3
C11—C12—C7119.9 (5)C39—C38—H38119.3
C11—C12—H12120.0C40—C39—C38119.7 (5)
C7—C12—H12120.0C40—C39—H39120.1
C18—C13—C14119.0 (4)C38—C39—H39120.1
C18—C13—P1119.2 (3)C39—C40—C41120.7 (5)
C14—C13—P1121.8 (3)C39—C40—H40119.7
C15—C14—C13120.4 (5)C41—C40—H40119.7
C15—C14—H14119.8C42—C41—C40119.9 (5)
C13—C14—H14119.8C42—C41—H41120.0
C16—C15—C14120.6 (6)C40—C41—H41120.0
C16—C15—H15119.7C41—C42—C37120.5 (5)
C14—C15—H15119.7C41—C42—H42119.7
C15—C16—C17120.1 (5)C37—C42—H42119.7
C15—C16—H16120.0C43—O1—H1115.9
C17—C16—H16120.0O1—C43—H43A109.5
C16—C17—C18119.0 (6)O1—C43—H43B109.5
C16—C17—H17120.5H43A—C43—H43B109.5
C18—C17—H17120.5O1—C43—H43C109.5
C13—C18—C17120.9 (5)H43A—C43—H43C109.5
C13—C18—H18119.6H43B—C43—H43C109.5
C17—C18—H18119.6C43B—O1B—H1B106.1
C24—C19—C20118.1 (4)O1B—C43B—H43D109.5
C24—C19—P1121.9 (3)O1B—C43B—H43E109.5
C20—C19—P1120.0 (3)H43D—C43B—H43E109.5
C19—C20—C21120.9 (5)O1B—C43B—H43F109.5
C19—C20—H20119.6H43D—C43B—H43F109.5
C21—C20—H20119.6H43E—C43B—H43F109.5
C22—C21—C20119.0 (5)
Pd1—S1—C1—C224.8 (4)C19—C20—C21—C222.0 (9)
Pd1—S1—C1—C6158.4 (3)C20—C21—C22—C231.5 (11)
C6—C1—C2—C31.6 (6)C21—C22—C23—C240.1 (12)
S1—C1—C2—C3178.5 (3)C20—C19—C24—C230.4 (8)
C1—C2—C3—C41.3 (6)P1—C19—C24—C23178.6 (5)
C2—C3—C4—C50.6 (7)C22—C23—C24—C190.9 (10)
C2—C3—C4—F1179.5 (4)C37—P2—C25—C2651.5 (4)
C3—C4—C5—C61.9 (7)C31—P2—C25—C26156.9 (3)
F1—C4—C5—C6179.2 (4)Pd1—P2—C25—C2679.6 (3)
C4—C5—C6—C11.5 (7)C37—P2—C25—C30135.2 (3)
C2—C1—C6—C50.3 (6)C31—P2—C25—C3029.8 (4)
S1—C1—C6—C5177.4 (3)Pd1—P2—C25—C3093.7 (3)
C13—P1—C7—C828.2 (4)C30—C25—C26—C271.2 (6)
C19—P1—C7—C8137.7 (3)P2—C25—C26—C27174.8 (3)
Pd1—P1—C7—C8101.5 (3)C25—C26—C27—C280.2 (7)
C13—P1—C7—C12154.7 (3)C26—C27—C28—C291.5 (8)
C19—P1—C7—C1245.2 (4)C27—C28—C29—C302.1 (8)
Pd1—P1—C7—C1275.6 (3)C26—C25—C30—C290.7 (6)
C12—C7—C8—C90.7 (6)P2—C25—C30—C29174.0 (3)
P1—C7—C8—C9177.8 (3)C28—C29—C30—C251.0 (7)
C7—C8—C9—C100.5 (7)C25—P2—C31—C36147.5 (3)
C8—C9—C10—C110.0 (8)C37—P2—C31—C36103.8 (3)
C9—C10—C11—C121.6 (8)Pd1—P2—C31—C3627.3 (3)
C10—C11—C12—C72.8 (7)C25—P2—C31—C3238.9 (4)
C8—C7—C12—C112.3 (6)C37—P2—C31—C3269.7 (3)
P1—C7—C12—C11179.5 (4)Pd1—P2—C31—C32159.1 (3)
C19—P1—C13—C18171.9 (3)C36—C31—C32—C331.3 (6)
C7—P1—C13—C1880.0 (3)P2—C31—C32—C33174.9 (3)
Pd1—P1—C13—C1852.7 (3)C31—C32—C33—C341.1 (7)
C19—P1—C13—C147.6 (4)C32—C33—C34—C350.3 (7)
C7—P1—C13—C14100.4 (3)C33—C34—C35—C360.4 (7)
Pd1—P1—C13—C14126.8 (3)C34—C35—C36—C310.1 (6)
C18—C13—C14—C150.4 (7)C32—C31—C36—C350.7 (6)
P1—C13—C14—C15179.1 (4)P2—C31—C36—C35174.5 (3)
C13—C14—C15—C161.5 (8)C25—P2—C37—C38162.9 (3)
C14—C15—C16—C170.4 (9)C31—P2—C37—C3885.9 (4)
C15—C16—C17—C181.6 (8)Pd1—P2—C37—C3840.0 (4)
C14—C13—C18—C171.6 (6)C25—P2—C37—C4225.5 (4)
P1—C13—C18—C17178.8 (3)C31—P2—C37—C4285.7 (4)
C16—C17—C18—C132.7 (7)Pd1—P2—C37—C42148.4 (3)
C13—P1—C19—C2477.5 (4)C42—C37—C38—C390.1 (6)
C7—P1—C19—C2431.4 (4)P2—C37—C38—C39172.0 (4)
Pd1—P1—C19—C24159.5 (4)C37—C38—C39—C401.0 (7)
C13—P1—C19—C20103.6 (4)C38—C39—C40—C411.6 (8)
C7—P1—C19—C20147.6 (4)C39—C40—C41—C421.1 (8)
Pd1—P1—C19—C2019.4 (4)C40—C41—C42—C370.0 (8)
C24—C19—C20—C211.1 (8)C38—C37—C42—C410.6 (7)
P1—C19—C20—C21179.9 (4)P2—C37—C42—C41172.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C34—H34···Cl1i0.932.993.631 (5)127
C35—H35···Cl1i0.932.973.616 (4)128
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C34—H34···Cl1i0.932.993.631 (5)127
C35—H35···Cl1i0.932.973.616 (4)128
Symmetry code: (i) x, y1, z.
 

Acknowledgements

ESJ thanks PROMEP "Apoyo a perfil deseable". Financial support of this research by CONACYT (grant No. CB2010–154732) and PAPIIT (grant No. IN201711–3) is gratefully acknowledged. RRM and DMM thank Dr Ruben A. Toscano for technical assistance.

References

First citationAlvarez-Larena, A., Pinella, J. F., Amau, N., Moreno- Mañas, M. & Pleixats, R. (1993). Z. Kristallogr. 208, 249–252.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, A. C. & Beller, M. (2005). Angew. Chem. Int. Ed. 44, 674–688.  Web of Science CrossRef CAS Google Scholar
First citationJones, W. D., Reynolds, K. A., Sperry, C. K. & Lachicotte, R. J. (2000). Organometallics, 19, 1661–1669.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnochel, P. & Singer, R. D. (1993). Chem. Rev. 93, 2117–2188.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 6338–6361.  Web of Science CrossRef CAS Google Scholar
First citationYin, L. & Liebscher, J. (2007). Chem. Rev. 107, 133–173.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m92-m93
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds