metal-organic compounds
catena-Poly[[bis(ethanol-κO)manganese(II)]-μ-2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-bis(olato)-κ4O1,O6:O3,O4]
aDepartment of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, and bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: kawata@fukuoka-u.ac.jp
In the title coordination polymer, [Mn(C6Cl2O4)(C2H5OH)2]n, the MnII atom and the chloranilate [systematic name: 2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-bis(olate)] ion lie on crystallographic inversion centers. The geometry around the MnII atom is a distorted octahedron involving four O atoms of two chloranilate ions and two O atoms from two ethanol molecules. The chloranilate ion serves as a bridging ligand between the MnII ions, leading to an infinite linear chain along the b-axis direction. The chains are linked by O—H⋯O hydrogen bonds between the apically coordinating ethanol molecule and the chloranilate ion, affording a two-dimensional layer expanding parallel to the ab plane.
CCDC reference: 984709
Related literature
For metal complexes of chloranilic acid, see: Kawata et al. (1995, 1998); Kitagawa et al. (1996); Kitagawa & Kawata (2002); Abrahams et al. (2011).
Experimental
Crystal data
|
|
|
Data collection: RAPID-AUTO (Rigaku, 2002); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure (Rigaku, 2010).
Supporting information
CCDC reference: 984709
10.1107/S1600536814002396/is5335sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814002396/is5335Isup2.hkl
Aqueous solution of MnCl2·4H2O (5 ml, 30 mmolL-1) was transferred to a glass tube, and ethanolic solution of H2CA (5 ml, 90 mmolL-1) was poured into the glass tube without mixing the solutions. Green crystals began to form at ambient temperature within one week.
The C-bound H atoms in the ethanol molecule were placed at calculated positions with C—H = 0.98 or 0.99 Å, and were treated as riding on their parent atoms with Uiso(H) set to 1.2Ueq(C). The O-bound H atom in the ethanol molecule was located in a difference Fourier map and refined freely.
Data collection: RAPID-AUTO (Rigaku, 2002); cell
RAPID-AUTO (Rigaku, 2002); data reduction: RAPID-AUTO (Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).[Mn(C6Cl2O4)(C2H6O)2] | Z = 1 |
Mr = 354.05 | F(000) = 179.00 |
Triclinic, P1 | Dx = 1.764 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 5.0784 (5) Å | Cell parameters from 3040 reflections |
b = 8.1255 (8) Å | θ = 3.1–27.5° |
c = 8.9003 (9) Å | µ = 1.41 mm−1 |
α = 102.718 (4)° | T = 200 K |
β = 105.175 (5)° | Block, green |
γ = 101.092 (3)° | 0.50 × 0.25 × 0.10 mm |
V = 333.35 (6) Å3 |
Rigaku R-AXIS RAPID II diffractometer | 1434 reflections with F2 > 2σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.029 |
ω scans | θmax = 27.5° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −6→6 |
Tmin = 0.406, Tmax = 0.869 | k = −10→9 |
3298 measured reflections | l = −11→11 |
1534 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.17 | w = 1/[σ2(Fo2) + (0.0605P)2 + 0.0437P] where P = (Fo2 + 2Fc2)/3 |
1534 reflections | (Δ/σ)max < 0.001 |
93 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Primary atom site location: structure-invariant direct methods |
[Mn(C6Cl2O4)(C2H6O)2] | γ = 101.092 (3)° |
Mr = 354.05 | V = 333.35 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.0784 (5) Å | Mo Kα radiation |
b = 8.1255 (8) Å | µ = 1.41 mm−1 |
c = 8.9003 (9) Å | T = 200 K |
α = 102.718 (4)° | 0.50 × 0.25 × 0.10 mm |
β = 105.175 (5)° |
Rigaku R-AXIS RAPID II diffractometer | 1534 independent reflections |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | 1434 reflections with F2 > 2σ(F2) |
Tmin = 0.406, Tmax = 0.869 | Rint = 0.029 |
3298 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.17 | Δρmax = 0.70 e Å−3 |
1534 reflections | Δρmin = −0.32 e Å−3 |
93 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Mn1 | 1.0000 | 1.0000 | 0.0000 | 0.01772 (15) | |
Cl1 | 0.38362 (8) | 0.36866 (5) | −0.26023 (5) | 0.02047 (16) | |
O1 | 1.2640 (3) | 0.84608 (14) | 0.10826 (15) | 0.0196 (3) | |
O2 | 0.7400 (3) | 0.73489 (15) | −0.09699 (15) | 0.0197 (3) | |
O3 | 0.8359 (3) | 1.03778 (16) | 0.20763 (16) | 0.0256 (3) | |
C1 | 1.1523 (3) | 0.68293 (19) | 0.06530 (18) | 0.0154 (3) | |
C2 | 0.8514 (3) | 0.6189 (2) | −0.05794 (18) | 0.0152 (3) | |
C3 | 0.7193 (4) | 0.43901 (19) | −0.11994 (19) | 0.0162 (3) | |
C4 | 0.8660 (5) | 1.2048 (3) | 0.3176 (3) | 0.0278 (4) | |
C5 | 0.7319 (5) | 1.1860 (4) | 0.4470 (3) | 0.0426 (6) | |
H1 | 0.691 (7) | 0.975 (4) | 0.187 (4) | 0.049 (8)* | |
H4A | 0.7772 | 1.2778 | 0.2552 | 0.0334* | |
H4B | 1.0697 | 1.2656 | 0.3696 | 0.0334* | |
H5A | 0.5295 | 1.1279 | 0.3960 | 0.0511* | |
H5B | 0.7570 | 1.3021 | 0.5189 | 0.0511* | |
H5C | 0.8219 | 1.1158 | 0.5104 | 0.0511* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0186 (3) | 0.0085 (2) | 0.0267 (3) | 0.00490 (15) | 0.00650 (16) | 0.00590 (15) |
Cl1 | 0.0161 (3) | 0.0159 (3) | 0.0247 (3) | 0.00325 (16) | 0.00050 (17) | 0.00448 (17) |
O1 | 0.0177 (6) | 0.0086 (5) | 0.0296 (7) | 0.0025 (5) | 0.0034 (5) | 0.0055 (5) |
O2 | 0.0183 (6) | 0.0107 (6) | 0.0296 (7) | 0.0049 (5) | 0.0041 (5) | 0.0078 (5) |
O3 | 0.0236 (7) | 0.0177 (6) | 0.0340 (7) | 0.0020 (6) | 0.0125 (6) | 0.0037 (5) |
C1 | 0.0157 (8) | 0.0110 (7) | 0.0204 (8) | 0.0039 (6) | 0.0071 (6) | 0.0043 (6) |
C2 | 0.0149 (7) | 0.0128 (7) | 0.0204 (8) | 0.0051 (6) | 0.0069 (6) | 0.0065 (6) |
C3 | 0.0148 (7) | 0.0109 (7) | 0.0215 (8) | 0.0035 (6) | 0.0033 (6) | 0.0049 (6) |
C4 | 0.0275 (10) | 0.0221 (9) | 0.0308 (10) | 0.0060 (7) | 0.0092 (8) | 0.0022 (7) |
C5 | 0.0331 (11) | 0.0515 (14) | 0.0345 (12) | 0.0023 (10) | 0.0145 (9) | −0.0018 (10) |
Mn1—O1 | 2.1884 (13) | C1—C2 | 1.5410 (19) |
Mn1—O1i | 2.1884 (13) | C1—C3ii | 1.392 (3) |
Mn1—O2 | 2.1491 (11) | C2—C3 | 1.402 (2) |
Mn1—O2i | 2.1491 (11) | C4—C5 | 1.504 (4) |
Mn1—O3 | 2.2042 (16) | O3—H1 | 0.76 (3) |
Mn1—O3i | 2.2042 (16) | C4—H4A | 0.990 |
Cl1—C3 | 1.7285 (15) | C4—H4B | 0.990 |
O1—C1 | 1.2646 (18) | C5—H5A | 0.980 |
O2—C2 | 1.255 (3) | C5—H5B | 0.980 |
O3—C4 | 1.442 (3) | C5—H5C | 0.980 |
O1—Mn1—O1i | 180.00 (7) | O2—C2—C1 | 116.48 (13) |
O1—Mn1—O2 | 75.40 (5) | O2—C2—C3 | 124.00 (13) |
O1—Mn1—O2i | 104.60 (5) | C1—C2—C3 | 119.52 (15) |
O1—Mn1—O3 | 89.94 (6) | Cl1—C3—C1ii | 119.54 (10) |
O1—Mn1—O3i | 90.06 (6) | Cl1—C3—C2 | 119.10 (13) |
O1i—Mn1—O2 | 104.60 (5) | C1ii—C3—C2 | 121.29 (13) |
O1i—Mn1—O2i | 75.40 (5) | O3—C4—C5 | 112.07 (17) |
O1i—Mn1—O3 | 90.06 (6) | Mn1—O3—H1 | 112 (3) |
O1i—Mn1—O3i | 89.94 (6) | C4—O3—H1 | 112 (3) |
O2—Mn1—O2i | 180.00 (8) | O3—C4—H4A | 109.195 |
O2—Mn1—O3 | 90.47 (5) | O3—C4—H4B | 109.194 |
O2—Mn1—O3i | 89.53 (5) | C5—C4—H4A | 109.198 |
O2i—Mn1—O3 | 89.53 (5) | C5—C4—H4B | 109.199 |
O2i—Mn1—O3i | 90.47 (5) | H4A—C4—H4B | 107.893 |
O3—Mn1—O3i | 180.00 (7) | C4—C5—H5A | 109.468 |
Mn1—O1—C1 | 115.42 (10) | C4—C5—H5B | 109.470 |
Mn1—O2—C2 | 116.70 (9) | C4—C5—H5C | 109.467 |
Mn1—O3—C4 | 125.08 (13) | H5A—C5—H5B | 109.476 |
O1—C1—C2 | 115.83 (15) | H5A—C5—H5C | 109.471 |
O1—C1—C3ii | 125.09 (13) | H5B—C5—H5C | 109.475 |
C2—C1—C3ii | 119.07 (13) | ||
O1—Mn1—O2—C2 | −3.21 (9) | O3—Mn1—O2i—C2i | −86.98 (10) |
O2—Mn1—O1—C1 | 0.99 (9) | O2i—Mn1—O3i—C4i | 165.27 (10) |
O1—Mn1—O2i—C2i | −176.79 (9) | O3i—Mn1—O2i—C2i | 93.02 (10) |
O2i—Mn1—O1—C1 | −179.01 (9) | Mn1—O1—C1—C2 | 0.92 (19) |
O1—Mn1—O3—C4 | 119.34 (10) | Mn1—O1—C1—C3ii | −179.43 (11) |
O3—Mn1—O1—C1 | 91.49 (10) | Mn1—O2—C2—C1 | 4.67 (19) |
O1—Mn1—O3i—C4i | 60.66 (10) | Mn1—O2—C2—C3 | −175.03 (11) |
O3i—Mn1—O1—C1 | −88.51 (10) | Mn1—O3—C4—C5 | −179.70 (9) |
O1i—Mn1—O2—C2 | 176.79 (9) | O1—C1—C2—O2 | −3.8 (3) |
O2—Mn1—O1i—C1i | 179.01 (9) | O1—C1—C2—C3 | 175.92 (15) |
O1i—Mn1—O2i—C2i | 3.21 (9) | O1—C1—C3ii—Cl1ii | 1.2 (3) |
O2i—Mn1—O1i—C1i | −0.99 (9) | O1—C1—C3ii—C2ii | −175.82 (16) |
O1i—Mn1—O3—C4 | −60.66 (10) | C2—C1—C3ii—Cl1ii | −179.14 (13) |
O3—Mn1—O1i—C1i | 88.51 (10) | C2—C1—C3ii—C2ii | 3.8 (3) |
O1i—Mn1—O3i—C4i | −119.34 (10) | C3ii—C1—C2—O2 | 176.54 (15) |
O3i—Mn1—O1i—C1i | −91.49 (10) | C3ii—C1—C2—C3 | −3.7 (3) |
O2—Mn1—O3—C4 | −165.27 (10) | O2—C2—C3—Cl1 | 0.6 (3) |
O3—Mn1—O2—C2 | −93.02 (10) | O2—C2—C3—C1ii | −176.48 (16) |
O2—Mn1—O3i—C4i | −14.73 (10) | C1—C2—C3—Cl1 | −179.11 (13) |
O3i—Mn1—O2—C2 | 86.98 (10) | C1—C2—C3—C1ii | 3.8 (3) |
O2i—Mn1—O3—C4 | 14.73 (10) |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O1iii | 0.76 (4) | 2.07 (3) | 2.8200 (17) | 167 (4) |
Symmetry code: (iii) x−1, y, z. |
Acknowledgements
This work was supported by the fund Grant-in-Aids for Science Research (No. 25410078) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
References
Abrahams, B. F., Grannas, M. J., Hudson, T. A., Hughes, S. A., Pranoto, N. H. & Robson, R. (2011). Dalton Trans. 40, 12242–12247. Web of Science CSD CrossRef CAS PubMed Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Kawata, S., Kitagawa, S., Kondo, M. & Katada, M. (1995). Synth. Met. 71, 1917–1918. CSD CrossRef CAS Web of Science Google Scholar
Kawata, S., Kitagawa, S., Kumagai, H., Ishiyama, T., Honda, K., Tobita, H., Adachi, K. & Katada, M. (1998). Chem. Mater. 10, 3902–3912. Web of Science CSD CrossRef CAS Google Scholar
Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34. Web of Science CrossRef CAS Google Scholar
Kitagawa, S., Kawata, S., Kondo, M., Katada, M., Kumagai, H., Kudo, C., Kamesaki, H., Ishiyama, T., Suzuki, R., Kondo, M. & Katada, M. (1996). Inorg. Chem. 35, 4449–4461. PubMed Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzoquinones and their derivatives have been used and known as bis-bidentate ligands and are good candidates to provide transition metal coordination polymers (Kawata et al., 1995, 1998; Kitagawa et al., 1996; Kitagawa & Kawata, 2002; Abrahams et al., 2011). The background of this chemistry prompts us to utilize chloranilate (CA) chains of Mn as a building block for high dimensional structures. We have succeeded in the synthesis and characterization of a one-dimensional coordination polymer having a hydrogen-bonding link, [Mn(CA)(EtOH)2]n (Fig. 1). The four O atoms of the CA2- anion and the MnII atom form a basal plane, because the Mn—O distances [2.1884 (13) and 2.1491 (11) Å] are shorter than the two apical Mn—O(EtOH) distances [2.2042 (16) Å]. The hydrogen-bond donor EtOH serves as a woof in the synthesis of a woven polymer: the straight one-dimensional [Mn(CA)(EtOH)2]n chains are linked by two hydrogen bonds [O3—H1···O1 distance: 2.8200 (17) Å] between the apically coordinated EtOH molecule and the O atom of CA2- anion in the nearest neighbor chain to afford a two-dimensional layer (Fig. 2). A similar hydrogen bond is also found between O atoms of water molecules and CA2- anion in [Mn(CA)(H2O)2(phz)]n (Kawata et al., 1998), where the straight chains are linked by hydrogen bonds [2.751 (2) Å] shorter than those in the title compound. The inter-chain hydrogen bonds lead to short nearest neighbor Mn···Mn distances [5.6784 (5) Å], and the geometry of the two-dimensional sheet can be regarded as a rectangular array of manganese atoms. The title complex is a good example of lattice structures formed by hydrogen bonds. The fabrication of two-dimensional polymers from warp and woof components has been shown to be quite useful in the construction of tetragonal Mn lattices. This concept can also be applied to a wide variety of compounds having square lattices.