metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m90-m91

catena-Poly[[bis­­(ethanol-κO)mangan­ese(II)]-μ-2,5-di­chloro-3,6-di­oxo­cyclo­hexa-1,4-diene-1,4-bis­­(olato)-κ4O1,O6:O3,O4]

aDepartment of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, and bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: kawata@fukuoka-u.ac.jp

(Received 12 January 2014; accepted 2 February 2014; online 8 February 2014)

In the title coordination polymer, [Mn(C6Cl2O4)(C2H5OH)2]n, the MnII atom and the chloranilate [systematic name: 2,5-di­chloro-3,6-dioxo­cyclo­hexa-1,4-diene-1,4-bis­(olate)] ion lie on crystallographic inversion centers. The geometry around the MnII atom is a distorted octa­hedron involving four O atoms of two chloranilate ions and two O atoms from two ethanol mol­ecules. The chloranilate ion serves as a bridging ligand between the MnII ions, leading to an infinite linear chain along the b-axis direction. The chains are linked by O—H⋯O hydrogen bonds between the apically coordinating ethanol mol­ecule and the chloranilate ion, affording a two-dimensional layer expanding parallel to the ab plane.

Related literature

For metal complexes of chloranilic acid, see: Kawata et al. (1995[Kawata, S., Kitagawa, S., Kondo, M. & Katada, M. (1995). Synth. Met. 71, 1917-1918.], 1998[Kawata, S., Kitagawa, S., Kumagai, H., Ishiyama, T., Honda, K., Tobita, H., Adachi, K. & Katada, M. (1998). Chem. Mater. 10, 3902-3912.]); Kitagawa et al. (1996[Kitagawa, S., Kawata, S., Kondo, M., Katada, M., Kumagai, H., Kudo, C., Kamesaki, H., Ishiyama, T., Suzuki, R., Kondo, M. & Katada, M. (1996). Inorg. Chem. 35, 4449-4461.]); Kitagawa & Kawata (2002[Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11-34.]); Abrahams et al. (2011[Abrahams, B. F., Grannas, M. J., Hudson, T. A., Hughes, S. A., Pranoto, N. H. & Robson, R. (2011). Dalton Trans. 40, 12242-12247.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6Cl2O4)(C2H6O)2]

  • Mr = 354.05

  • Triclinic, [P \overline 1]

  • a = 5.0784 (5) Å

  • b = 8.1255 (8) Å

  • c = 8.9003 (9) Å

  • α = 102.718 (4)°

  • β = 105.175 (5)°

  • γ = 101.092 (3)°

  • V = 333.35 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 200 K

  • 0.50 × 0.25 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.406, Tmax = 0.869

  • 3298 measured reflections

  • 1534 independent reflections

  • 1434 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.095

  • S = 1.17

  • 1534 reflections

  • 93 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.1884 (13)
Mn1—O2 2.1491 (11)
Mn1—O3 2.2042 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O1i 0.76 (4) 2.07 (3) 2.8200 (17) 167 (4)
Symmetry code: (i) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Benzoquinones and their derivatives have been used and known as bis-bidentate ligands and are good candidates to provide transition metal coordination polymers (Kawata et al., 1995, 1998; Kitagawa et al., 1996; Kitagawa & Kawata, 2002; Abrahams et al., 2011). The background of this chemistry prompts us to utilize chloranilate (CA) chains of Mn as a building block for high dimensional structures. We have succeeded in the synthesis and characterization of a one-dimensional coordination polymer having a hydrogen-bonding link, [Mn(CA)(EtOH)2]n (Fig. 1). The four O atoms of the CA2- anion and the MnII atom form a basal plane, because the Mn—O distances [2.1884 (13) and 2.1491 (11) Å] are shorter than the two apical Mn—O(EtOH) distances [2.2042 (16) Å]. The hydrogen-bond donor EtOH serves as a woof in the synthesis of a woven polymer: the straight one-dimensional [Mn(CA)(EtOH)2]n chains are linked by two hydrogen bonds [O3—H1···O1 distance: 2.8200 (17) Å] between the apically coordinated EtOH molecule and the O atom of CA2- anion in the nearest neighbor chain to afford a two-dimensional layer (Fig. 2). A similar hydrogen bond is also found between O atoms of water molecules and CA2- anion in [Mn(CA)(H2O)2(phz)]n (Kawata et al., 1998), where the straight chains are linked by hydrogen bonds [2.751 (2) Å] shorter than those in the title compound. The inter-chain hydrogen bonds lead to short nearest neighbor Mn···Mn distances [5.6784 (5) Å], and the geometry of the two-dimensional sheet can be regarded as a rectangular array of manganese atoms. The title complex is a good example of lattice structures formed by hydrogen bonds. The fabrication of two-dimensional polymers from warp and woof components has been shown to be quite useful in the construction of tetragonal Mn lattices. This concept can also be applied to a wide variety of compounds having square lattices.

Related literature top

For metal complexes of chloranilic acid, see: Kawata et al. (1995, 1998); Kitagawa et al. (1996); Kitagawa & Kawata (2002); Abrahams et al. (2011).

Experimental top

Aqueous solution of MnCl2·4H2O (5 ml, 30 mmolL-1) was transferred to a glass tube, and ethanolic solution of H2CA (5 ml, 90 mmolL-1) was poured into the glass tube without mixing the solutions. Green crystals began to form at ambient temperature within one week.

Refinement top

The C-bound H atoms in the ethanol molecule were placed at calculated positions with C—H = 0.98 or 0.99 Å, and were treated as riding on their parent atoms with Uiso(H) set to 1.2Ueq(C). The O-bound H atom in the ethanol molecule was located in a difference Fourier map and refined freely.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO (Rigaku, 2002); data reduction: RAPID-AUTO (Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title complex, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of the title compound, showing a two-dimensional structure. Blue lines indicate O—H···O hydrogen bonds. H atoms have been omitted for clarity.
catena-Poly[[bis(ethanol-κO)manganese(II)]-µ-2,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-bis(olato)-κ4O1,O6:O3,O4] top
Crystal data top
[Mn(C6Cl2O4)(C2H6O)2]Z = 1
Mr = 354.05F(000) = 179.00
Triclinic, P1Dx = 1.764 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 5.0784 (5) ÅCell parameters from 3040 reflections
b = 8.1255 (8) Åθ = 3.1–27.5°
c = 8.9003 (9) ŵ = 1.41 mm1
α = 102.718 (4)°T = 200 K
β = 105.175 (5)°Block, green
γ = 101.092 (3)°0.50 × 0.25 × 0.10 mm
V = 333.35 (6) Å3
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
1434 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.029
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 66
Tmin = 0.406, Tmax = 0.869k = 109
3298 measured reflectionsl = 1111
1534 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.0437P]
where P = (Fo2 + 2Fc2)/3
1534 reflections(Δ/σ)max < 0.001
93 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.32 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Mn(C6Cl2O4)(C2H6O)2]γ = 101.092 (3)°
Mr = 354.05V = 333.35 (6) Å3
Triclinic, P1Z = 1
a = 5.0784 (5) ÅMo Kα radiation
b = 8.1255 (8) ŵ = 1.41 mm1
c = 8.9003 (9) ÅT = 200 K
α = 102.718 (4)°0.50 × 0.25 × 0.10 mm
β = 105.175 (5)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
1534 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
1434 reflections with F2 > 2σ(F2)
Tmin = 0.406, Tmax = 0.869Rint = 0.029
3298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.70 e Å3
1534 reflectionsΔρmin = 0.32 e Å3
93 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00001.00000.00000.01772 (15)
Cl10.38362 (8)0.36866 (5)0.26023 (5)0.02047 (16)
O11.2640 (3)0.84608 (14)0.10826 (15)0.0196 (3)
O20.7400 (3)0.73489 (15)0.09699 (15)0.0197 (3)
O30.8359 (3)1.03778 (16)0.20763 (16)0.0256 (3)
C11.1523 (3)0.68293 (19)0.06530 (18)0.0154 (3)
C20.8514 (3)0.6189 (2)0.05794 (18)0.0152 (3)
C30.7193 (4)0.43901 (19)0.11994 (19)0.0162 (3)
C40.8660 (5)1.2048 (3)0.3176 (3)0.0278 (4)
C50.7319 (5)1.1860 (4)0.4470 (3)0.0426 (6)
H10.691 (7)0.975 (4)0.187 (4)0.049 (8)*
H4A0.77721.27780.25520.0334*
H4B1.06971.26560.36960.0334*
H5A0.52951.12790.39600.0511*
H5B0.75701.30210.51890.0511*
H5C0.82191.11580.51040.0511*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0186 (3)0.0085 (2)0.0267 (3)0.00490 (15)0.00650 (16)0.00590 (15)
Cl10.0161 (3)0.0159 (3)0.0247 (3)0.00325 (16)0.00050 (17)0.00448 (17)
O10.0177 (6)0.0086 (5)0.0296 (7)0.0025 (5)0.0034 (5)0.0055 (5)
O20.0183 (6)0.0107 (6)0.0296 (7)0.0049 (5)0.0041 (5)0.0078 (5)
O30.0236 (7)0.0177 (6)0.0340 (7)0.0020 (6)0.0125 (6)0.0037 (5)
C10.0157 (8)0.0110 (7)0.0204 (8)0.0039 (6)0.0071 (6)0.0043 (6)
C20.0149 (7)0.0128 (7)0.0204 (8)0.0051 (6)0.0069 (6)0.0065 (6)
C30.0148 (7)0.0109 (7)0.0215 (8)0.0035 (6)0.0033 (6)0.0049 (6)
C40.0275 (10)0.0221 (9)0.0308 (10)0.0060 (7)0.0092 (8)0.0022 (7)
C50.0331 (11)0.0515 (14)0.0345 (12)0.0023 (10)0.0145 (9)0.0018 (10)
Geometric parameters (Å, º) top
Mn1—O12.1884 (13)C1—C21.5410 (19)
Mn1—O1i2.1884 (13)C1—C3ii1.392 (3)
Mn1—O22.1491 (11)C2—C31.402 (2)
Mn1—O2i2.1491 (11)C4—C51.504 (4)
Mn1—O32.2042 (16)O3—H10.76 (3)
Mn1—O3i2.2042 (16)C4—H4A0.990
Cl1—C31.7285 (15)C4—H4B0.990
O1—C11.2646 (18)C5—H5A0.980
O2—C21.255 (3)C5—H5B0.980
O3—C41.442 (3)C5—H5C0.980
O1—Mn1—O1i180.00 (7)O2—C2—C1116.48 (13)
O1—Mn1—O275.40 (5)O2—C2—C3124.00 (13)
O1—Mn1—O2i104.60 (5)C1—C2—C3119.52 (15)
O1—Mn1—O389.94 (6)Cl1—C3—C1ii119.54 (10)
O1—Mn1—O3i90.06 (6)Cl1—C3—C2119.10 (13)
O1i—Mn1—O2104.60 (5)C1ii—C3—C2121.29 (13)
O1i—Mn1—O2i75.40 (5)O3—C4—C5112.07 (17)
O1i—Mn1—O390.06 (6)Mn1—O3—H1112 (3)
O1i—Mn1—O3i89.94 (6)C4—O3—H1112 (3)
O2—Mn1—O2i180.00 (8)O3—C4—H4A109.195
O2—Mn1—O390.47 (5)O3—C4—H4B109.194
O2—Mn1—O3i89.53 (5)C5—C4—H4A109.198
O2i—Mn1—O389.53 (5)C5—C4—H4B109.199
O2i—Mn1—O3i90.47 (5)H4A—C4—H4B107.893
O3—Mn1—O3i180.00 (7)C4—C5—H5A109.468
Mn1—O1—C1115.42 (10)C4—C5—H5B109.470
Mn1—O2—C2116.70 (9)C4—C5—H5C109.467
Mn1—O3—C4125.08 (13)H5A—C5—H5B109.476
O1—C1—C2115.83 (15)H5A—C5—H5C109.471
O1—C1—C3ii125.09 (13)H5B—C5—H5C109.475
C2—C1—C3ii119.07 (13)
O1—Mn1—O2—C23.21 (9)O3—Mn1—O2i—C2i86.98 (10)
O2—Mn1—O1—C10.99 (9)O2i—Mn1—O3i—C4i165.27 (10)
O1—Mn1—O2i—C2i176.79 (9)O3i—Mn1—O2i—C2i93.02 (10)
O2i—Mn1—O1—C1179.01 (9)Mn1—O1—C1—C20.92 (19)
O1—Mn1—O3—C4119.34 (10)Mn1—O1—C1—C3ii179.43 (11)
O3—Mn1—O1—C191.49 (10)Mn1—O2—C2—C14.67 (19)
O1—Mn1—O3i—C4i60.66 (10)Mn1—O2—C2—C3175.03 (11)
O3i—Mn1—O1—C188.51 (10)Mn1—O3—C4—C5179.70 (9)
O1i—Mn1—O2—C2176.79 (9)O1—C1—C2—O23.8 (3)
O2—Mn1—O1i—C1i179.01 (9)O1—C1—C2—C3175.92 (15)
O1i—Mn1—O2i—C2i3.21 (9)O1—C1—C3ii—Cl1ii1.2 (3)
O2i—Mn1—O1i—C1i0.99 (9)O1—C1—C3ii—C2ii175.82 (16)
O1i—Mn1—O3—C460.66 (10)C2—C1—C3ii—Cl1ii179.14 (13)
O3—Mn1—O1i—C1i88.51 (10)C2—C1—C3ii—C2ii3.8 (3)
O1i—Mn1—O3i—C4i119.34 (10)C3ii—C1—C2—O2176.54 (15)
O3i—Mn1—O1i—C1i91.49 (10)C3ii—C1—C2—C33.7 (3)
O2—Mn1—O3—C4165.27 (10)O2—C2—C3—Cl10.6 (3)
O3—Mn1—O2—C293.02 (10)O2—C2—C3—C1ii176.48 (16)
O2—Mn1—O3i—C4i14.73 (10)C1—C2—C3—Cl1179.11 (13)
O3i—Mn1—O2—C286.98 (10)C1—C2—C3—C1ii3.8 (3)
O2i—Mn1—O3—C414.73 (10)
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O1iii0.76 (4)2.07 (3)2.8200 (17)167 (4)
Symmetry code: (iii) x1, y, z.
Selected bond lengths (Å) top
Mn1—O12.1884 (13)Mn1—O32.2042 (16)
Mn1—O22.1491 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O1i0.76 (4)2.07 (3)2.8200 (17)167 (4)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the fund Grant-in-Aids for Science Research (No. 25410078) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationAbrahams, B. F., Grannas, M. J., Hudson, T. A., Hughes, S. A., Pranoto, N. H. & Robson, R. (2011). Dalton Trans. 40, 12242–12247.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKawata, S., Kitagawa, S., Kondo, M. & Katada, M. (1995). Synth. Met. 71, 1917–1918.  CSD CrossRef CAS Web of Science Google Scholar
First citationKawata, S., Kitagawa, S., Kumagai, H., Ishiyama, T., Honda, K., Tobita, H., Adachi, K. & Katada, M. (1998). Chem. Mater. 10, 3902–3912.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34.  Web of Science CrossRef CAS Google Scholar
First citationKitagawa, S., Kawata, S., Kondo, M., Katada, M., Kumagai, H., Kudo, C., Kamesaki, H., Ishiyama, T., Suzuki, R., Kondo, M. & Katada, M. (1996). Inorg. Chem. 35, 4449–4461.  PubMed Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m90-m91
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds