organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o295-o296

2-Bromo-1-(1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Physics, Kundavai Nachiyar Govt College for Women, Thanjavur 613 007, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com, crystallography2010@gmail.com

(Received 19 January 2014; accepted 7 February 2014; online 15 February 2014)

In the title compound, C17H14BrNO3S, the phenyl ring makes a dihedral angle of 89.78 (16)° with the plane of the indole ring system. The terminal Br atom and the methyl group are disordered over two sets of sites, with site occupancies of 0.860 (2) and 0.140 (2). In the crystal, mol­ecules are linked into a chain along the b-axis direction by weak C—H⋯O hydrogen bonds. The chains are further linked by C—H⋯π inter­actions, forming layers parallel to the bc plane.

Related literature

For the biological activity of indole derivatives, see: Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Il Farmaco, 58, 423-429.]); Srivastava & Pandeya (2011[Srivastava, A. & Pandeya, S. N. (2011). J. Curr. Pharm. Res. 1, 1-17.]). For related structures, see: Umadevi et al. (2013[Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1784.]); Kanchanadevi et al. (2014[Kanchanadevi, J., Anbalagan, G., Saravanan, V., Mohanakrishnan, A. K., Gunasekaran, B. & Manivannan, V. (2014). Acta Cryst. E70, o148.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14BrNO3S

  • Mr = 392.26

  • Monoclinic, P 21 /c

  • a = 8.7539 (3) Å

  • b = 10.9968 (4) Å

  • c = 17.5801 (7) Å

  • β = 99.231 (2)°

  • V = 1670.43 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.60 mm−1

  • T = 295 K

  • 0.35 × 0.25 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.416, Tmax = 0.522

  • 15009 measured reflections

  • 4141 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.149

  • S = 1.03

  • 4141 reflections

  • 222 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.57 3.312 (4) 137
C10—H10⋯O1i 0.93 2.44 3.280 (4) 150
C12—H12⋯Cg2ii 0.93 2.72 3.528 (2) 146
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Indole derivatives exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). These derivatives also exhibit antimicrobial, antibiotic, analgesic, anticancer and anti-HIV (Pomarnacka & Kozlarska-Kedra, 2003; Srivastava & Pandeya, 2011) activities.

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structures (Umadevi et al., 2013; Kanchanadevi et al., 2014). The phenyl ring makes a dihedral angle of 89.78 (16)° with the indole ring system. The terminal bromine atom and the methyl group are disordered over two positions with site occupancies of 0.860 (2) and 0.140 (2). The sum of bond angles around the atom N1 [356.7 (3) °] indicates sp2 hybridized state of atom N1 in the molecule. The crystal packing is controlled by weak C—H···O and C—H···π interactions (Table 1).

Related literature top

For the biological activity of indole derivatives, see: Andreani et al. (2001); Singh et al. (2000); Pomarnacka & Kozlarska-Kedra (2003); Srivastava & Pandeya (2011). For related structures, see: Umadevi et al. (2013); Kanchanadevi et al. (2014).

Experimental top

A solution of 1-[1-(phenylsulfonyl)-1H-indol-3-yl]propan-1-one (1 g, 3.194 mmol) and PTT (phenyltrimethylammonium tribromide) (1.32 g, 3.514 mmol) in dry THF (20 ml) was stirred at room temperature for 3 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (100 g). The solid obtained was filtered and washed with MeOH (5 ml) to afford 2-bromo-1-[1-(phenylsulfonyl)-1H-indol-3-yl]propan-1-one (1.14 g, yield 91%; melting point 130–132 °C).

Refinement top

The terminal bromine atom and the methyl group are disordered over two positions. The site occupancy factors of disordered atoms were refined to 0.860 (2) and 0.140 (2). In the refinement, EADP was used for atoms C17 and C17A. The bond distances of C16—C17 and C16—C17A were restrained to be 1.5200 (1) and 1.5200 (5) Å, respectively, and the distances of C16—Br1 and C16—Br1A were restrained to be 1.9100 (1) and 1.9100 (5) Å, respectively. Also the distance of C17A···Br1A was restrained to be 2.85 (1) Å. H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for C—H, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
2-Bromo-1-(1-phenylsulfonyl-1H-indol-3-yl)propan-1-one top
Crystal data top
C17H14BrNO3SF(000) = 792
Mr = 392.26Dx = 1.560 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4350 reflections
a = 8.7539 (3) Åθ = 2.2–28.4°
b = 10.9968 (4) ŵ = 2.60 mm1
c = 17.5801 (7) ÅT = 295 K
β = 99.231 (2)°Block, yellow
V = 1670.43 (11) Å30.35 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4141 independent reflections
Radiation source: fine-focus sealed tube2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 0 pixels mm-1θmax = 28.5°, θmin = 2.2°
ω and φ scansh = 118
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1014
Tmin = 0.416, Tmax = 0.522l = 2123
15009 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.7073P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4141 reflectionsΔρmax = 0.41 e Å3
222 parametersΔρmin = 0.51 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (9)
Crystal data top
C17H14BrNO3SV = 1670.43 (11) Å3
Mr = 392.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7539 (3) ŵ = 2.60 mm1
b = 10.9968 (4) ÅT = 295 K
c = 17.5801 (7) Å0.35 × 0.25 × 0.25 mm
β = 99.231 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4141 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2334 reflections with I > 2σ(I)
Tmin = 0.416, Tmax = 0.522Rint = 0.034
15009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0505 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
4141 reflectionsΔρmin = 0.51 e Å3
222 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7170 (3)0.2542 (3)0.30787 (16)0.0382 (7)
C20.6804 (4)0.1348 (3)0.28691 (18)0.0480 (8)
H20.74800.08500.26550.058*
C30.5365 (4)0.0944 (3)0.2998 (2)0.0558 (9)
H30.50710.01480.28700.067*
C40.4359 (4)0.1688 (3)0.3310 (2)0.0627 (10)
H40.33980.13870.33800.075*
C50.4753 (4)0.2878 (3)0.3522 (2)0.0552 (9)
H50.40720.33730.37350.066*
C60.6184 (3)0.3308 (3)0.34090 (16)0.0392 (7)
C70.6963 (3)0.4468 (2)0.35599 (16)0.0391 (7)
C80.8349 (3)0.4370 (2)0.33195 (16)0.0375 (7)
H80.90740.49920.33410.045*
C90.8963 (3)0.3192 (3)0.15480 (17)0.0427 (7)
C100.9085 (4)0.4343 (3)0.12403 (19)0.0587 (9)
H100.96580.49470.15270.070*
C110.8349 (5)0.4573 (4)0.0508 (2)0.0803 (12)
H110.84170.53390.02920.096*
C120.7501 (5)0.3665 (4)0.0088 (2)0.0820 (13)
H120.69920.38300.04070.098*
C130.7405 (5)0.2530 (4)0.0393 (2)0.0804 (13)
H130.68450.19260.01010.096*
C140.8121 (4)0.2279 (3)0.1120 (2)0.0614 (9)
H140.80500.15080.13290.074*
C150.6362 (4)0.5538 (3)0.39046 (19)0.0511 (8)
C160.7409 (4)0.6635 (2)0.40341 (9)0.0651 (10)
H16A0.81860.65470.36940.078*0.860 (2)
H16B0.79160.66560.35760.078*0.140 (2)
Br10.84813 (7)0.65595 (6)0.50680 (4)0.0973 (3)0.860 (2)
C170.6681 (10)0.7883 (4)0.3880 (5)0.0539 (15)0.860 (2)
H17A0.70360.84110.43070.081*0.860 (2)
H17B0.55750.78120.38170.081*0.860 (2)
H17C0.69730.82150.34190.081*0.860 (2)
Br1A0.6298 (11)0.8071 (6)0.3977 (7)0.132 (4)0.140 (2)
C17A0.875 (2)0.6591 (18)0.4701 (12)0.0539 (15)0.140 (2)
H17D0.95570.71240.45960.081*0.140 (2)
H17E0.91380.57750.47630.081*0.140 (2)
H17F0.83960.68460.51660.081*0.140 (2)
N10.8539 (3)0.3213 (2)0.30363 (13)0.0384 (6)
O11.0168 (3)0.16368 (19)0.25653 (14)0.0591 (6)
O21.1079 (2)0.3760 (2)0.27067 (13)0.0526 (6)
O30.5058 (3)0.5548 (2)0.40600 (18)0.0778 (8)
S10.98775 (9)0.29060 (7)0.24862 (4)0.0422 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0438 (16)0.0389 (15)0.0298 (16)0.0014 (13)0.0003 (12)0.0057 (12)
C20.059 (2)0.0392 (17)0.0421 (19)0.0028 (14)0.0019 (15)0.0011 (13)
C30.060 (2)0.0464 (18)0.056 (2)0.0136 (17)0.0088 (16)0.0034 (16)
C40.0454 (19)0.065 (2)0.074 (3)0.0139 (18)0.0001 (17)0.0101 (19)
C50.0441 (18)0.058 (2)0.063 (2)0.0016 (16)0.0069 (15)0.0098 (17)
C60.0413 (16)0.0405 (15)0.0340 (16)0.0009 (13)0.0004 (12)0.0080 (12)
C70.0454 (16)0.0353 (15)0.0355 (16)0.0031 (13)0.0034 (12)0.0027 (12)
C80.0464 (17)0.0298 (14)0.0357 (16)0.0021 (12)0.0047 (12)0.0002 (11)
C90.0470 (17)0.0435 (17)0.0393 (17)0.0018 (13)0.0115 (13)0.0037 (13)
C100.083 (2)0.0438 (19)0.047 (2)0.0007 (17)0.0053 (18)0.0021 (15)
C110.118 (4)0.063 (2)0.056 (3)0.003 (2)0.004 (2)0.010 (2)
C120.097 (3)0.107 (4)0.037 (2)0.008 (3)0.004 (2)0.001 (2)
C130.099 (3)0.098 (3)0.042 (2)0.033 (3)0.008 (2)0.012 (2)
C140.078 (2)0.061 (2)0.047 (2)0.0192 (19)0.0146 (18)0.0042 (17)
C150.057 (2)0.051 (2)0.047 (2)0.0062 (16)0.0141 (16)0.0018 (14)
C160.080 (3)0.051 (2)0.070 (3)0.0090 (18)0.029 (2)0.0180 (17)
Br10.0956 (5)0.0997 (5)0.0870 (5)0.0029 (3)0.0142 (3)0.0100 (3)
C170.067 (4)0.023 (2)0.071 (4)0.016 (2)0.008 (3)0.009 (2)
Br1A0.118 (6)0.078 (3)0.192 (7)0.027 (3)0.004 (4)0.038 (4)
C17A0.067 (4)0.023 (2)0.071 (4)0.016 (2)0.008 (3)0.009 (2)
N10.0432 (14)0.0363 (13)0.0356 (14)0.0015 (10)0.0062 (10)0.0010 (10)
O10.0659 (15)0.0400 (12)0.0727 (17)0.0185 (10)0.0151 (12)0.0072 (10)
O20.0369 (11)0.0555 (13)0.0640 (15)0.0048 (10)0.0040 (10)0.0037 (11)
O30.0651 (17)0.0646 (16)0.111 (2)0.0071 (13)0.0367 (16)0.0143 (15)
S10.0431 (4)0.0378 (4)0.0458 (5)0.0067 (3)0.0078 (3)0.0012 (3)
Geometric parameters (Å, º) top
C1—C21.387 (4)C12—C131.366 (6)
C1—C61.398 (4)C12—H120.9300
C1—N11.420 (4)C13—C141.359 (5)
C2—C31.388 (5)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.379 (5)C15—O31.216 (4)
C3—H30.9300C15—C161.511 (4)
C4—C51.389 (5)C16—C171.5190 (10)
C4—H40.9300C16—C17A1.520 (5)
C5—C61.382 (4)C16—Br1A1.849 (4)
C5—H50.9300C16—Br11.9092 (10)
C6—C71.450 (4)C16—H16A0.9800
C7—C81.352 (4)C16—H16B0.9800
C7—C151.460 (4)C17—H17A0.9600
C8—N11.386 (3)C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
C9—C101.388 (4)C17A—H17D0.9600
C9—C141.392 (5)C17A—H17E0.9600
C9—S11.743 (3)C17A—H17F0.9600
C10—C111.368 (5)N1—S11.669 (2)
C10—H100.9300O1—S11.422 (2)
C11—C121.384 (6)O2—S11.417 (2)
C11—H110.9300
C2—C1—C6123.3 (3)C13—C14—C9119.1 (3)
C2—C1—N1129.7 (3)C13—C14—H14120.5
C6—C1—N1107.0 (2)C9—C14—H14120.5
C1—C2—C3115.9 (3)O3—C15—C7121.0 (3)
C1—C2—H2122.0O3—C15—C16121.8 (3)
C3—C2—H2122.0C7—C15—C16117.1 (3)
C4—C3—C2121.9 (3)C15—C16—C17117.9 (4)
C4—C3—H3119.0C15—C16—C17A117.7 (10)
C2—C3—H3119.0C15—C16—Br1A111.9 (4)
C3—C4—C5121.3 (3)C17A—C16—Br1A113.8 (6)
C3—C4—H4119.4C15—C16—Br1107.61 (19)
C5—C4—H4119.4C17—C16—Br1109.7 (4)
C6—C5—C4118.4 (3)C15—C16—H16A107.0
C6—C5—H5120.8C17—C16—H16A107.0
C4—C5—H5120.8Br1—C16—H16A107.0
C5—C6—C1119.2 (3)C15—C16—H16B103.8
C5—C6—C7133.2 (3)C17A—C16—H16B103.8
C1—C6—C7107.6 (2)Br1A—C16—H16B103.8
C8—C7—C6107.0 (2)C16—C17—H17A109.5
C8—C7—C15126.5 (3)C16—C17—H17B109.5
C6—C7—C15126.5 (3)H17A—C17—H17B109.5
C7—C8—N1110.6 (2)C16—C17—H17C109.5
C7—C8—H8124.7H17A—C17—H17C109.5
N1—C8—H8124.7H17B—C17—H17C109.5
C10—C9—C14121.0 (3)C16—C17A—H17D109.5
C10—C9—S1118.7 (2)C16—C17A—H17E109.5
C14—C9—S1120.3 (2)H17D—C17A—H17E109.5
C11—C10—C9118.8 (3)C16—C17A—H17F109.5
C11—C10—H10120.6H17D—C17A—H17F109.5
C9—C10—H10120.6H17E—C17A—H17F109.5
C10—C11—C12120.0 (4)C8—N1—C1107.9 (2)
C10—C11—H11120.0C8—N1—S1122.02 (19)
C12—C11—H11120.0C1—N1—S1127.03 (19)
C13—C12—C11120.7 (4)O2—S1—O1120.71 (14)
C13—C12—H12119.6O2—S1—N1105.46 (12)
C11—C12—H12119.6O1—S1—N1105.86 (13)
C14—C13—C12120.4 (4)O2—S1—C9110.36 (14)
C14—C13—H13119.8O1—S1—C9108.50 (14)
C12—C13—H13119.8N1—S1—C9104.67 (13)
C6—C1—C2—C30.7 (4)C6—C7—C15—C16177.8 (2)
N1—C1—C2—C3178.7 (3)O3—C15—C16—C1737.3 (5)
C1—C2—C3—C40.5 (5)C7—C15—C16—C17140.8 (4)
C2—C3—C4—C51.1 (5)O3—C15—C16—C17A106.8 (12)
C3—C4—C5—C60.4 (5)C7—C15—C16—C17A75.1 (12)
C4—C5—C6—C10.8 (4)O3—C15—C16—Br1A27.8 (5)
C4—C5—C6—C7179.8 (3)C7—C15—C16—Br1A150.3 (4)
C2—C1—C6—C51.4 (4)O3—C15—C16—Br187.4 (3)
N1—C1—C6—C5179.7 (2)C7—C15—C16—Br194.5 (3)
C2—C1—C6—C7179.1 (3)C7—C8—N1—C11.7 (3)
N1—C1—C6—C70.7 (3)C7—C8—N1—S1163.2 (2)
C5—C6—C7—C8179.2 (3)C2—C1—N1—C8179.7 (3)
C1—C6—C7—C80.3 (3)C6—C1—N1—C81.5 (3)
C5—C6—C7—C150.7 (5)C2—C1—N1—S120.1 (4)
C1—C6—C7—C15179.8 (3)C6—C1—N1—S1161.7 (2)
C6—C7—C8—N11.3 (3)C8—N1—S1—O228.1 (2)
C15—C7—C8—N1178.9 (3)C1—N1—S1—O2174.2 (2)
C14—C9—C10—C110.7 (5)C8—N1—S1—O1157.1 (2)
S1—C9—C10—C11179.1 (3)C1—N1—S1—O145.2 (3)
C9—C10—C11—C120.0 (6)C8—N1—S1—C988.4 (2)
C10—C11—C12—C130.8 (7)C1—N1—S1—C969.3 (2)
C11—C12—C13—C141.1 (7)C10—C9—S1—O221.3 (3)
C12—C13—C14—C90.4 (6)C14—C9—S1—O2158.9 (3)
C10—C9—C14—C130.4 (5)C10—C9—S1—O1155.7 (3)
S1—C9—C14—C13179.3 (3)C14—C9—S1—O124.6 (3)
C8—C7—C15—O3175.7 (3)C10—C9—S1—N191.7 (3)
C6—C7—C15—O34.1 (5)C14—C9—S1—N188.0 (3)
C8—C7—C15—C162.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.573.312 (4)137
C10—H10···O1i0.932.443.280 (4)150
C12—H12···Cg2ii0.932.723.528 (2)146
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.573.312 (4)137
C10—H10···O1i0.932.443.280 (4)150
C12—H12···Cg2ii0.932.723.528 (2)146
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

CR acknowledges AMET University management, India, for their kind support.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKanchanadevi, J., Anbalagan, G., Saravanan, V., Mohanakrishnan, A. K., Gunasekaran, B. & Manivannan, V. (2014). Acta Cryst. E70, o148.  CrossRef IUCr Journals Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Il Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, A. & Pandeya, S. N. (2011). J. Curr. Pharm. Res. 1, 1–17.  CAS Google Scholar
First citationUmadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1784.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o295-o296
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds