organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-4,5-di­hydro­oxazolium tetra­phenyl­borate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 13 February 2014; accepted 17 February 2014; online 22 February 2014)

In the cation of the title salt, C4H8NO+·C24H20B, the C—N bond lengths are 1.272 (2), 1.4557 (19) and 1.4638 (19) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3098 (19) Å shows that double-bond character and charge delocalization occurs within the NCO plane of the cation. In the crystal, a C—H⋯π inter­action is present between the methyl­ene H atom of the cation and one phenyl ring of the tetra­phenyl­borate ion. The latter forms an aromatic pocket in which the cation is embedded.

Related literature

For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). For the synthesis of 1,3-dioxolanes and 1,3-dioxanes from meth­oxy­methyl­ene-N,N-di­methyl­iminium methyl sulfate, diols and carbonyl compounds, see: Kantlehner & Gutbrod (1979[Kantlehner, W. & Gutbrod, H.-D. (1979). Liebigs Ann. Chem. pp. 1362-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8NO+·C24H20B

  • Mr = 405.32

  • Monoclinic, P 21 /n

  • a = 11.5335 (5) Å

  • b = 12.7336 (5) Å

  • c = 15.4615 (6) Å

  • β = 97.209 (2)°

  • V = 2252.77 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.18 × 0.14 × 0.10 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • 38200 measured reflections

  • 5603 independent reflections

  • 4094 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.03

  • 5603 reflections

  • 285 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1 0.97 (2) 2.31 (2) 3.239 (2) 161 (2)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

According to the solved molecular structure of the title salt (Fig. 1) the C1–N1 bond is 1.4557 (19) Å, C3–N1 = 1.4638 (19) Å and C2–N1 = 1.272 (2) Å show single and double bond character, respectively. The C–N1–C angles are: 126.38 (14)° (C1–N1–C2), 122.46 (13)° (C1–N1–C3) and 111.14 (13)° (C3–N1–C2), which indicates a deviation from an ideal trigonal-planar surrounding of the nitrogen centre by the carbon atoms. The C–O length shows with 1.3098 (19) Å double bond character (Fig. 1). The positive charge is delocalized on the plane formed by the atoms N1, C2 and O1. The bond lengths and angles in the tetraphenylborate ion are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). A C–H···π interaction between the hydrogen atom H2 of the cation and one phenyl ring (centroid) of the tetraphenylborate ion is present (Fig. 2). Here, a short aromatic hydrogen bond (H2···Cg1 = 2.31 Å) have been determined (Tab. 1). The phenyl rings are forming aromatic pockets, in which the cation is embedded.

Related literature top

For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the synthesis of 1,3-dioxolanes and 1,3-dioxanes from methoxymethylene-N,N- dimethyliminium methyl sulfate, diols and carbonyl compounds, see: Kantlehner & Gutbrod (1979).

Experimental top

The title compound was obtained by reacting of equimolar amounts of N,N-dimethylformamide with dimethyl sulfate at room temperature giving methoxymethylene-N,N-dimethyliminium methyl sulfate (I). 3-methyl-4,5-dihydro-oxazolium methyl sulfate (II) was obtained by reacting equimolar amounts of (I) with ethane-1,2-diol under reflux (Kantlehner et al., 1979). The methanol formed was distilled off and (II) was obtained in nearly quantitative yield. In an alternative synthesis, an equimolar mixture of formic acid methyl ester and 2-methylaminoethanol was heated to reflux for four hours, giving 4,5-dihydrooxazole as product. Reaction of 4,5-dihydro-oxazole with dimethyl sulfate for eight hours at 313 K, leads to (II). 1.00 g (5.0 mmol) of crude (II) was dissolved in 20 mL acetonitrile and 1.74 g (5.0 mmol) of sodium tetraphenylborate in 20 mL acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium methyl sulfate was filtered off. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming colourless single crystals suitable for X-ray analysis.

Dimethyl sulfate is carcinogenic, mutagenic and highly poisonous. During the use appropriate precautions must be taken.

Refinement top

The H atom bound to C2 was located in a difference Fourier map and was refined freely [C—H = 0.97 (2) Å]. The hydrogen atoms of the methyl group were allowed to rotate with a fixed angle around the C–N bonds to best fit the experimental electron density, with Uiso(H) set to 1.5Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon bonded hydrogen (except of H2) atoms were omitted for the sake of clarity.
[Figure 2] Fig. 2. C–H···π interaction (red dashed line) between the hydrogen atom H2 of the cation and the phenyl carbon atoms (centroid) of the tetraphenylborate ion.
3-Methyl-4,5-dihydrooxazolium tetraphenylborate top
Crystal data top
C4H8NO+·C24H20BF(000) = 864
Mr = 405.32Dx = 1.195 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 38200 reflections
a = 11.5335 (5) Åθ = 2.1–28.3°
b = 12.7336 (5) ŵ = 0.07 mm1
c = 15.4615 (6) ÅT = 100 K
β = 97.209 (2)°Block, colourless
V = 2252.77 (16) Å30.18 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO
diffractometer
4094 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 28.3°, θmin = 2.1°
φ scans, and ω scansh = 1515
38200 measured reflectionsk = 1616
5603 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0454P)2 + 1.1695P]
where P = (Fo2 + 2Fc2)/3
5603 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C4H8NO+·C24H20BV = 2252.77 (16) Å3
Mr = 405.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.5335 (5) ŵ = 0.07 mm1
b = 12.7336 (5) ÅT = 100 K
c = 15.4615 (6) Å0.18 × 0.14 × 0.10 mm
β = 97.209 (2)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
4094 reflections with I > 2σ(I)
38200 measured reflectionsRint = 0.045
5603 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.48 e Å3
5603 reflectionsΔρmin = 0.29 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29582 (10)0.82850 (9)0.05090 (7)0.0279 (3)
N10.19131 (11)0.72170 (10)0.03783 (8)0.0213 (3)
C10.12968 (15)0.62651 (13)0.06886 (12)0.0315 (4)
H1A0.13080.57630.02070.047*
H1B0.16820.59530.11570.047*
H1C0.04860.64380.09100.047*
C20.24007 (14)0.73900 (13)0.03931 (10)0.0235 (3)
H20.2373 (14)0.6909 (14)0.0874 (11)0.025 (4)*
C30.20739 (15)0.81045 (13)0.09530 (10)0.0259 (3)
H3A0.13260.84690.11400.031*
H3B0.24300.78810.14730.031*
C40.29105 (16)0.87944 (13)0.03477 (11)0.0321 (4)
H4A0.36950.88150.05450.039*
H4B0.26080.95200.03270.039*
B10.03919 (13)0.66080 (11)0.24639 (10)0.0128 (3)
C50.17365 (12)0.62690 (10)0.23467 (8)0.0138 (3)
C60.19991 (13)0.53557 (11)0.18986 (9)0.0176 (3)
H6A0.13820.48860.17020.021*
C70.31271 (13)0.51105 (12)0.17311 (10)0.0218 (3)
H7A0.32680.44830.14290.026*
C80.40428 (13)0.57852 (13)0.20057 (10)0.0222 (3)
H8A0.48160.56190.19000.027*
C90.38210 (13)0.67054 (12)0.24360 (9)0.0209 (3)
H9A0.44410.71780.26190.025*
C100.26874 (12)0.69362 (11)0.26002 (9)0.0170 (3)
H10A0.25530.75700.28950.020*
C110.00704 (12)0.72451 (10)0.15633 (9)0.0137 (3)
C120.07167 (12)0.67791 (11)0.08382 (9)0.0163 (3)
H12A0.09350.60630.08740.020*
C130.10532 (13)0.73228 (12)0.00652 (9)0.0190 (3)
H13A0.14960.69760.04110.023*
C140.07460 (13)0.83657 (12)0.00123 (10)0.0218 (3)
H14A0.09810.87420.05350.026*
C150.00877 (14)0.88524 (12)0.06884 (10)0.0223 (3)
H15A0.01360.95670.06440.027*
C160.02451 (13)0.83001 (11)0.14535 (9)0.0177 (3)
H16A0.07040.86480.19210.021*
C170.03362 (12)0.73485 (10)0.33271 (9)0.0133 (3)
C180.04958 (12)0.81456 (11)0.33464 (9)0.0158 (3)
H18A0.10120.82870.28310.019*
C190.05996 (13)0.87411 (11)0.40894 (10)0.0191 (3)
H19A0.11780.92740.40740.023*
C200.01404 (13)0.85559 (12)0.48497 (10)0.0215 (3)
H20A0.00820.89640.53570.026*
C210.09683 (13)0.77662 (12)0.48592 (9)0.0210 (3)
H21A0.14810.76290.53770.025*
C220.10522 (12)0.71728 (11)0.41142 (9)0.0173 (3)
H22A0.16170.66270.41400.021*
C230.04396 (12)0.56074 (10)0.26411 (9)0.0140 (3)
C240.00033 (13)0.46996 (11)0.30783 (9)0.0184 (3)
H24A0.08270.46150.31950.022*
C250.07142 (13)0.39159 (11)0.33491 (10)0.0215 (3)
H25A0.03760.33130.36430.026*
C260.19191 (13)0.40137 (11)0.31916 (10)0.0202 (3)
H26A0.24120.34860.33800.024*
C270.23932 (12)0.48955 (11)0.27534 (9)0.0170 (3)
H27A0.32170.49720.26370.020*
C280.16617 (12)0.56695 (10)0.24834 (9)0.0148 (3)
H28A0.20060.62630.21800.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0312 (6)0.0292 (6)0.0229 (6)0.0069 (5)0.0025 (5)0.0015 (5)
N10.0218 (7)0.0247 (6)0.0185 (6)0.0002 (5)0.0074 (5)0.0002 (5)
C10.0275 (9)0.0262 (8)0.0434 (10)0.0083 (7)0.0149 (8)0.0153 (7)
C20.0244 (8)0.0260 (8)0.0212 (8)0.0006 (6)0.0066 (6)0.0026 (6)
C30.0290 (9)0.0289 (8)0.0207 (8)0.0034 (7)0.0067 (7)0.0064 (6)
C40.0373 (10)0.0284 (8)0.0311 (9)0.0078 (7)0.0059 (8)0.0040 (7)
B10.0125 (7)0.0122 (6)0.0135 (7)0.0008 (5)0.0010 (6)0.0005 (6)
C50.0154 (7)0.0155 (6)0.0103 (6)0.0013 (5)0.0013 (5)0.0044 (5)
C60.0193 (7)0.0156 (6)0.0186 (7)0.0010 (5)0.0050 (6)0.0036 (5)
C70.0256 (8)0.0207 (7)0.0208 (8)0.0073 (6)0.0097 (6)0.0050 (6)
C80.0159 (7)0.0335 (8)0.0183 (7)0.0081 (6)0.0059 (6)0.0078 (6)
C90.0143 (7)0.0324 (8)0.0159 (7)0.0026 (6)0.0010 (6)0.0032 (6)
C100.0175 (7)0.0207 (7)0.0131 (7)0.0004 (5)0.0029 (5)0.0006 (5)
C110.0116 (6)0.0159 (6)0.0137 (6)0.0023 (5)0.0023 (5)0.0008 (5)
C120.0162 (7)0.0169 (6)0.0161 (7)0.0001 (5)0.0033 (5)0.0005 (5)
C130.0164 (7)0.0268 (7)0.0133 (7)0.0001 (6)0.0002 (5)0.0014 (6)
C140.0230 (8)0.0267 (8)0.0153 (7)0.0030 (6)0.0002 (6)0.0075 (6)
C150.0286 (8)0.0187 (7)0.0194 (7)0.0024 (6)0.0018 (6)0.0057 (6)
C160.0197 (7)0.0181 (7)0.0148 (7)0.0034 (5)0.0003 (6)0.0016 (5)
C170.0121 (6)0.0141 (6)0.0142 (7)0.0029 (5)0.0035 (5)0.0021 (5)
C180.0138 (7)0.0164 (6)0.0172 (7)0.0018 (5)0.0016 (5)0.0008 (5)
C190.0181 (7)0.0170 (6)0.0236 (8)0.0011 (5)0.0077 (6)0.0020 (6)
C200.0244 (8)0.0252 (7)0.0168 (7)0.0074 (6)0.0096 (6)0.0053 (6)
C210.0205 (8)0.0306 (8)0.0120 (7)0.0060 (6)0.0023 (6)0.0024 (6)
C220.0160 (7)0.0207 (7)0.0159 (7)0.0003 (5)0.0041 (6)0.0037 (6)
C230.0163 (7)0.0137 (6)0.0121 (6)0.0006 (5)0.0027 (5)0.0011 (5)
C240.0143 (7)0.0204 (7)0.0208 (7)0.0011 (5)0.0032 (6)0.0057 (6)
C250.0213 (8)0.0174 (7)0.0258 (8)0.0017 (6)0.0031 (6)0.0080 (6)
C260.0209 (8)0.0179 (7)0.0224 (8)0.0056 (6)0.0055 (6)0.0011 (6)
C270.0136 (7)0.0188 (7)0.0186 (7)0.0019 (5)0.0018 (6)0.0026 (5)
C280.0171 (7)0.0132 (6)0.0138 (6)0.0015 (5)0.0013 (5)0.0000 (5)
Geometric parameters (Å, º) top
O1—C21.3098 (19)C12—C131.3936 (19)
O1—C41.470 (2)C12—H12A0.9500
N1—C21.272 (2)C13—C141.383 (2)
N1—C11.4557 (19)C13—H13A0.9500
N1—C31.4638 (19)C14—C151.388 (2)
C1—H1A0.9800C14—H14A0.9500
C1—H1B0.9800C15—C161.388 (2)
C1—H1C0.9800C15—H15A0.9500
C2—H20.968 (18)C16—H16A0.9500
C3—C41.534 (2)C17—C181.3998 (19)
C3—H3A0.9900C17—C221.4002 (19)
C3—H3B0.9900C18—C191.394 (2)
C4—H4A0.9900C18—H18A0.9500
C4—H4B0.9900C19—C201.383 (2)
B1—C231.638 (2)C19—H19A0.9500
B1—C51.642 (2)C20—C211.386 (2)
B1—C111.642 (2)C20—H20A0.9500
B1—C171.642 (2)C21—C221.391 (2)
C5—C101.4036 (19)C21—H21A0.9500
C5—C61.4060 (19)C22—H22A0.9500
C6—C71.394 (2)C23—C281.4022 (19)
C6—H6A0.9500C23—C241.4027 (19)
C7—C81.386 (2)C24—C251.394 (2)
C7—H7A0.9500C24—H24A0.9500
C8—C91.387 (2)C25—C261.386 (2)
C8—H8A0.9500C25—H25A0.9500
C9—C101.394 (2)C26—C271.388 (2)
C9—H9A0.9500C26—H26A0.9500
C10—H10A0.9500C27—C281.3949 (19)
C11—C121.3982 (19)C27—H27A0.9500
C11—C161.4076 (19)C28—H28A0.9500
C2—O1—C4107.37 (12)C13—C12—C11122.67 (13)
C2—N1—C1126.38 (14)C13—C12—H12A118.7
C2—N1—C3111.14 (13)C11—C12—H12A118.7
C1—N1—C3122.46 (13)C14—C13—C12120.29 (14)
N1—C1—H1A109.5C14—C13—H13A119.9
N1—C1—H1B109.5C12—C13—H13A119.9
H1A—C1—H1B109.5C13—C14—C15118.81 (13)
N1—C1—H1C109.5C13—C14—H14A120.6
H1A—C1—H1C109.5C15—C14—H14A120.6
H1B—C1—H1C109.5C16—C15—C14120.29 (14)
N1—C2—O1115.50 (14)C16—C15—H15A119.9
N1—C2—H2123.9 (10)C14—C15—H15A119.9
O1—C2—H2120.6 (10)C15—C16—C11122.56 (13)
N1—C3—C4100.93 (12)C15—C16—H16A118.7
N1—C3—H3A111.6C11—C16—H16A118.7
C4—C3—H3A111.6C18—C17—C22115.37 (12)
N1—C3—H3B111.6C18—C17—B1122.04 (12)
C4—C3—H3B111.6C22—C17—B1122.40 (12)
H3A—C3—H3B109.4C19—C18—C17122.81 (13)
O1—C4—C3104.28 (12)C19—C18—H18A118.6
O1—C4—H4A110.9C17—C18—H18A118.6
C3—C4—H4A110.9C20—C19—C18119.99 (14)
O1—C4—H4B110.9C20—C19—H19A120.0
C3—C4—H4B110.9C18—C19—H19A120.0
H4A—C4—H4B108.9C19—C20—C21118.92 (13)
C23—B1—C5113.26 (11)C19—C20—H20A120.5
C23—B1—C11113.04 (11)C21—C20—H20A120.5
C5—B1—C11104.30 (10)C20—C21—C22120.33 (14)
C23—B1—C17103.14 (10)C20—C21—H21A119.8
C5—B1—C17112.00 (11)C22—C21—H21A119.8
C11—B1—C17111.35 (11)C21—C22—C17122.56 (14)
C10—C5—C6115.41 (13)C21—C22—H22A118.7
C10—C5—B1121.73 (12)C17—C22—H22A118.7
C6—C5—B1122.46 (12)C28—C23—C24115.32 (12)
C7—C6—C5122.73 (14)C28—C23—B1121.59 (12)
C7—C6—H6A118.6C24—C23—B1122.41 (12)
C5—C6—H6A118.6C25—C24—C23122.73 (13)
C8—C7—C6119.83 (14)C25—C24—H24A118.6
C8—C7—H7A120.1C23—C24—H24A118.6
C6—C7—H7A120.1C26—C25—C24120.19 (13)
C7—C8—C9119.42 (14)C26—C25—H25A119.9
C7—C8—H8A120.3C24—C25—H25A119.9
C9—C8—H8A120.3C25—C26—C27118.91 (13)
C8—C9—C10119.94 (14)C25—C26—H26A120.5
C8—C9—H9A120.0C27—C26—H26A120.5
C10—C9—H9A120.0C26—C27—C28120.12 (13)
C9—C10—C5122.64 (14)C26—C27—H27A119.9
C9—C10—H10A118.7C28—C27—H27A119.9
C5—C10—H10A118.7C27—C28—C23122.72 (13)
C12—C11—C16115.36 (12)C27—C28—H28A118.6
C12—C11—B1123.65 (12)C23—C28—H28A118.6
C16—C11—B1120.83 (12)
C1—N1—C2—O1176.49 (14)C14—C15—C16—C110.8 (2)
C3—N1—C2—O11.79 (19)C12—C11—C16—C151.7 (2)
C4—O1—C2—N14.22 (19)B1—C11—C16—C15177.28 (13)
C2—N1—C3—C46.54 (17)C23—B1—C17—C1891.56 (14)
C1—N1—C3—C4171.83 (14)C5—B1—C17—C18146.32 (12)
C2—O1—C4—C37.95 (17)C11—B1—C17—C1829.96 (17)
N1—C3—C4—O18.35 (16)C23—B1—C17—C2283.19 (15)
C23—B1—C5—C10148.97 (12)C5—B1—C17—C2238.93 (17)
C11—B1—C5—C1087.71 (14)C11—B1—C17—C22155.29 (12)
C17—B1—C5—C1032.83 (17)C22—C17—C18—C191.08 (19)
C23—B1—C5—C638.57 (17)B1—C17—C18—C19176.17 (12)
C11—B1—C5—C684.75 (14)C17—C18—C19—C200.1 (2)
C17—B1—C5—C6154.70 (12)C18—C19—C20—C210.7 (2)
C10—C5—C6—C71.4 (2)C19—C20—C21—C220.1 (2)
B1—C5—C6—C7174.27 (13)C20—C21—C22—C171.2 (2)
C5—C6—C7—C80.4 (2)C18—C17—C22—C211.7 (2)
C6—C7—C8—C90.8 (2)B1—C17—C22—C21176.79 (13)
C7—C8—C9—C101.0 (2)C5—B1—C23—C28159.23 (12)
C8—C9—C10—C50.0 (2)C11—B1—C23—C2840.87 (17)
C6—C5—C10—C91.2 (2)C17—B1—C23—C2879.50 (15)
B1—C5—C10—C9174.13 (13)C5—B1—C23—C2430.67 (18)
C23—B1—C11—C1227.84 (18)C11—B1—C23—C24149.03 (13)
C5—B1—C11—C1295.62 (14)C17—B1—C23—C2490.60 (15)
C17—B1—C11—C12143.40 (13)C28—C23—C24—C250.7 (2)
C23—B1—C11—C16157.00 (12)B1—C23—C24—C25169.93 (13)
C5—B1—C11—C1679.54 (15)C23—C24—C25—C260.1 (2)
C17—B1—C11—C1641.44 (17)C24—C25—C26—C270.7 (2)
C16—C11—C12—C131.5 (2)C25—C26—C27—C280.4 (2)
B1—C11—C12—C13176.90 (13)C26—C27—C28—C230.5 (2)
C11—C12—C13—C140.3 (2)C24—C23—C28—C271.1 (2)
C12—C13—C14—C150.7 (2)B1—C23—C28—C27169.69 (13)
C13—C14—C15—C160.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg10.97 (2)2.31 (2)3.239 (2)161 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg10.97 (2)2.31 (2)3.239 (2)161 (2)
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the crystal data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKantlehner, W. & Gutbrod, H.-D. (1979). Liebigs Ann. Chem. pp. 1362–1369.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds