organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­phenyl­male­imide 1-methyl­pyrrol­idin-2-one monosolvate

aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and bDepartment of Chemistry, University of Jyvaskyla, PO Box 35 FI-40014, Jyvaskyla, Finland
*Correspondence e-mail: t.chulkova@spbu.ru

(Received 7 January 2014; accepted 1 February 2014; online 8 February 2014)

In the title compound, C16H11NO2·C5H9NO, the dihedral angles between the male­imide and phenyl rings are 34.7 (2) and 64.8 (2)°. In the crystal, the 2,3-di­phenyl­male­imide and 1-methyl­pyrrolidin-2-one mol­ecules form centrosymmetrical dimers via pairs of strong N—H⋯O hydrogen bonds and ππ stacking inter­actions between the two neighboring male­imide rings [centroid–centroid distance = 3.495 (2) Å]. The dimers are further linked by weak C—H⋯O and C—H⋯π hydrogen bonds into a three-dimensional framework.

Related literature

For general background to male­imides, see: Yeh et al. (2004[Yeh, H.-C., Wu, W.-C., Wen, Y.-S., Dai, D.-C., Wang, J.-K. & Chen, C.-T. (2004). J. Org. Chem. 69, 6455-6462.]); Billiet et al. (2011[Billiet, L., Gok, O., Dove, A. P., Sanyal, A., Nguyen, L.-T. T. & Du Prez, F. E. (2011). Macromolecules, 44, 7874-7878.]); Zhu et al. (2012[Zhu, J., Waengler, C., Lennox, R. B. & Schirrmacher, R. (2012). Langmuir, 28, 5508-5512.]); Parsons & Du Bois (2013[Parsons, W. H. & Du Bois, J. (2013). J. Am. Chem. Soc. 135, 10582-10585.]). For the crystal structures of related compounds, see: Zhang et al. (2004[Zhang, Z.-Q., Uth, S., Sandman, D. J. & Foxman, B. M. (2004). J. Phys. Org. Chem. 17, 769-776.]); Mitzi & Afzali (2007[Mitzi, D. B. & Afzali, A. (2007). Cryst. Growth Des. 7, 691-697.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11NO2·C5H9NO

  • Mr = 348.39

  • Monoclinic, P 21 /n

  • a = 13.1962 (3) Å

  • b = 10.0002 (2) Å

  • c = 13.5600 (3) Å

  • β = 100.469 (3)°

  • V = 1759.65 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.54 × 0.40 × 0.24 mm

Data collection
  • Agilent SuperNova (Single source at offset, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.815, Tmax = 1.000

  • 22206 measured reflections

  • 8818 independent reflections

  • 5708 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.204

  • S = 1.03

  • 8818 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C3–C8 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 1.95 2.7800 (15) 156
C5—H5⋯O1ii 0.95 2.41 3.3639 (17) 179
C21—H21A⋯O1iii 0.98 2.59 3.498 (2) 154
C21—H21B⋯O1iv 0.98 2.73 3.436 (2) 129
C15—H15⋯Cg2v 0.95 2.96 3.8081 (14) 149
C20—H20ACg3iii 0.99 2.91 3.6508 (18) 133
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: CrystalMaker (CrystalMaker, 2011[CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Comment top

Maleimide derivatives can be used as building blocks in the synthesis of a wide range of biologically active compounds (Parsons et al., 2013), polymeric materials (Billiet et al., 2011), nanoparticles (Zhu et al., 2012), etc.

The present work describes the synthesis and crystal structure of 2,3-diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate, C16H11NO2.C5H9NO (Fig. 1). The bond lengths and angles within the 2,3-diphenylmaleimide molecule (Table 1) are in a good agreement with those found in the related compounds (Zhang et al. (2004); Mitzi et al. (2007)). The dihedral angles between the maleimide and phenyl rings are 34.7 (2)° and 64.8 (2)°. In the crystal, the 2,3-diphenylmaleimide and 1-methylpyrrolidin-2-one molecules form centrosymmetrical dimeric associates via strong N—H···O hydrogen bonds (Table 2) and π-π stacking interactions between the two neighboring maleimide rings (the centroid-centroid distance is 3.495 (2) Å). Further the associates are linked by weak C—H···O (Table 2) and C—H···π hydrogen bonds into three-dimensional framework (Fig. 2).

Related literature top

For general background to maleimides, see: Yeh et al. (2004); Billiet et al. (2011); Zhu et al. (2012); Parsons & Du Bois (2013). For the crystal structures of related compounds, see: Zhang et al. (2004); Mitzi & Afzali (2007).

Experimental top

3,4-Diphenylpyrrol-2,5-diimine (0.810 mmol, 0.20 g) was hydrolyzed in 80% aqueous methanol (10 mL) for 24 h at room temperature. The yellow solid was obtained from the reaction mixture. The crystals of the title compound suitable for single crystal X-ray diffraction were obtained by recrystallization from 1-methylpyrrolidin-2-one.

Refinement top

Structural refinement was carried out using SHELXTL (Sheldrick, 2008) with the Olex2 (Dolomanov et al., 2009) and SHELXLE (Hübschle et al., 2011) graphical user interfaces. All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, N—H = 0.88 Å and Uiso = 1.2–1.5 Ueq (parent atom).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and SHELXLE (Hübschle et al., 2011).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing along the crystallographic a axis. All hydrogen atoms have been omitted for clarity.
2,3-Diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate top
Crystal data top
C16H11NO2·C5H9NOF(000) = 736
Mr = 348.39Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.1962 (3) ÅCell parameters from 5604 reflections
b = 10.0002 (2) Åθ = 3.7–36.7°
c = 13.5600 (3) ŵ = 0.09 mm1
β = 100.469 (3)°T = 170 K
V = 1759.65 (7) Å3Block, colourless
Z = 40.54 × 0.40 × 0.24 mm
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
8818 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5708 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 16.0107 pixels mm-1θmax = 37.5°, θmin = 3.1°
φ scans and ω scans with κ offseth = 2222
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2013)
k = 1316
Tmin = 0.815, Tmax = 1.000l = 2223
22206 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.0916P)2 + 0.4242P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
8818 reflectionsΔρmax = 0.63 e Å3
236 parametersΔρmin = 0.30 e Å3
Crystal data top
C16H11NO2·C5H9NOV = 1759.65 (7) Å3
Mr = 348.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1962 (3) ŵ = 0.09 mm1
b = 10.0002 (2) ÅT = 170 K
c = 13.5600 (3) Å0.54 × 0.40 × 0.24 mm
β = 100.469 (3)°
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
8818 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2013)
5708 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 1.000Rint = 0.028
22206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
8818 reflectionsΔρmin = 0.30 e Å3
236 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2013); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06128 (8)0.79304 (9)0.09092 (7)0.0333 (2)
O20.16449 (8)0.38928 (10)0.01022 (8)0.0365 (2)
N10.10893 (8)0.60420 (10)0.01257 (7)0.0272 (2)
H10.11270.63830.04650.033*
C10.13055 (9)0.47257 (12)0.04002 (9)0.0260 (2)
C20.10664 (8)0.45632 (11)0.14421 (8)0.0230 (2)
C30.12077 (8)0.33036 (11)0.20052 (9)0.0240 (2)
C40.09962 (10)0.20708 (12)0.15227 (10)0.0300 (2)
H40.07640.20420.08180.036*
C50.11244 (11)0.08926 (13)0.20683 (12)0.0366 (3)
H50.09820.00590.17360.044*
C60.14610 (11)0.09271 (14)0.31006 (12)0.0370 (3)
H60.15400.01180.34730.044*
C70.16818 (10)0.21392 (14)0.35876 (11)0.0334 (3)
H70.19180.21600.42920.040*
C80.15569 (9)0.33222 (13)0.30448 (9)0.0275 (2)
H80.17090.41520.33810.033*
C90.07716 (8)0.57673 (11)0.17357 (8)0.02304 (19)
C100.04640 (8)0.61711 (11)0.26815 (8)0.0232 (2)
C110.04123 (10)0.56355 (15)0.29686 (10)0.0324 (3)
H110.08290.50130.25470.039*
C120.06732 (11)0.60162 (19)0.38744 (12)0.0418 (3)
H120.12760.56620.40670.050*
C130.00602 (12)0.69086 (17)0.44990 (11)0.0406 (3)
H130.02410.71580.51210.049*
C140.08136 (12)0.74379 (15)0.42201 (10)0.0362 (3)
H140.12370.80420.46530.043*
C150.10711 (10)0.70841 (13)0.33056 (9)0.0290 (2)
H150.16610.74650.31050.035*
C160.08056 (9)0.67456 (12)0.09100 (9)0.0254 (2)
O30.67483 (9)0.76077 (11)0.35649 (9)0.0429 (3)
N20.65279 (9)0.53588 (12)0.32844 (9)0.0348 (2)
C170.66039 (10)0.66246 (14)0.30065 (11)0.0333 (3)
C180.64860 (19)0.66600 (18)0.18720 (12)0.0554 (5)
H18A0.59150.72630.15800.066*
H18B0.71290.69830.16720.066*
C190.62610 (16)0.52685 (18)0.15209 (12)0.0483 (4)
H19A0.67670.49660.11120.058*
H19B0.55620.52080.11090.058*
C200.63358 (14)0.44090 (16)0.24659 (13)0.0447 (4)
H20A0.56850.39170.24670.054*
H20B0.69080.37580.25140.054*
C210.65804 (14)0.4951 (2)0.43134 (12)0.0479 (4)
H21A0.59060.46130.44040.072*
H21B0.67730.57190.47570.072*
H21C0.70980.42440.44780.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (5)0.0228 (4)0.0320 (4)0.0014 (4)0.0059 (4)0.0003 (3)
O20.0443 (5)0.0350 (5)0.0337 (5)0.0028 (4)0.0161 (4)0.0076 (4)
N10.0337 (5)0.0265 (5)0.0219 (4)0.0021 (4)0.0062 (4)0.0016 (4)
C10.0263 (5)0.0271 (5)0.0247 (5)0.0012 (4)0.0050 (4)0.0041 (4)
C20.0235 (4)0.0221 (5)0.0232 (4)0.0005 (3)0.0039 (4)0.0028 (4)
C30.0219 (4)0.0218 (4)0.0283 (5)0.0014 (4)0.0046 (4)0.0026 (4)
C40.0304 (5)0.0230 (5)0.0355 (6)0.0006 (4)0.0028 (5)0.0054 (4)
C50.0329 (6)0.0221 (5)0.0536 (8)0.0002 (4)0.0049 (6)0.0022 (5)
C60.0316 (6)0.0278 (6)0.0515 (8)0.0042 (5)0.0074 (6)0.0094 (6)
C70.0300 (5)0.0358 (6)0.0341 (6)0.0071 (5)0.0047 (5)0.0060 (5)
C80.0277 (5)0.0254 (5)0.0292 (5)0.0035 (4)0.0040 (4)0.0002 (4)
C90.0242 (4)0.0219 (4)0.0230 (4)0.0008 (4)0.0043 (4)0.0018 (4)
C100.0249 (4)0.0219 (4)0.0234 (4)0.0016 (4)0.0054 (4)0.0007 (4)
C110.0268 (5)0.0382 (7)0.0331 (6)0.0036 (5)0.0077 (4)0.0008 (5)
C120.0332 (6)0.0589 (10)0.0371 (7)0.0004 (6)0.0163 (5)0.0034 (7)
C130.0460 (8)0.0513 (9)0.0275 (6)0.0078 (6)0.0148 (6)0.0004 (6)
C140.0479 (7)0.0354 (7)0.0258 (5)0.0018 (6)0.0083 (5)0.0061 (5)
C150.0345 (6)0.0270 (5)0.0264 (5)0.0047 (4)0.0081 (4)0.0038 (4)
C160.0275 (5)0.0244 (5)0.0239 (5)0.0018 (4)0.0036 (4)0.0020 (4)
O30.0568 (6)0.0368 (5)0.0397 (5)0.0118 (5)0.0214 (5)0.0127 (4)
N20.0366 (5)0.0342 (6)0.0347 (6)0.0033 (4)0.0091 (4)0.0007 (5)
C170.0317 (5)0.0324 (6)0.0368 (6)0.0018 (5)0.0085 (5)0.0040 (5)
C180.0896 (14)0.0413 (9)0.0326 (7)0.0106 (9)0.0043 (8)0.0021 (6)
C190.0630 (10)0.0473 (9)0.0359 (7)0.0088 (8)0.0126 (7)0.0103 (7)
C200.0566 (9)0.0310 (7)0.0478 (8)0.0027 (6)0.0134 (7)0.0093 (6)
C210.0487 (8)0.0598 (10)0.0359 (7)0.0088 (8)0.0098 (6)0.0105 (7)
Geometric parameters (Å, º) top
O1—C161.2118 (15)C11—H110.9500
O2—C11.2121 (15)C12—C131.385 (2)
N1—C161.3824 (15)C12—H120.9500
N1—C11.3835 (16)C13—C141.383 (2)
N1—H10.8800C13—H130.9500
C1—C21.5113 (16)C14—C151.3898 (18)
C2—C91.3476 (16)C14—H140.9500
C2—C31.4672 (16)C15—H150.9500
C3—C41.3998 (16)O3—C171.2344 (17)
C3—C81.4013 (17)N2—C171.3296 (19)
C4—C51.3851 (19)N2—C211.4433 (19)
C4—H40.9500N2—C201.448 (2)
C5—C61.390 (2)C17—C181.518 (2)
C5—H50.9500C18—C191.483 (2)
C6—C71.386 (2)C18—H18A0.9900
C6—H60.9500C18—H18B0.9900
C7—C81.3872 (18)C19—C201.531 (2)
C7—H70.9500C19—H19A0.9900
C8—H80.9500C19—H19B0.9900
C9—C101.4703 (15)C20—H20A0.9900
C9—C161.4936 (16)C20—H20B0.9900
C10—C111.3926 (17)C21—H21A0.9800
C10—C151.3947 (16)C21—H21B0.9800
C11—C121.388 (2)C21—H21C0.9800
C16—N1—C1110.41 (10)C12—C13—H13119.9
C16—N1—H1124.8C13—C14—C15119.86 (13)
C1—N1—H1124.8C13—C14—H14120.1
O2—C1—N1125.57 (12)C15—C14—H14120.1
O2—C1—C2127.79 (12)C14—C15—C10120.10 (12)
N1—C1—C2106.62 (10)C14—C15—H15120.0
C9—C2—C3129.02 (11)C10—C15—H15120.0
C9—C2—C1107.49 (10)O1—C16—N1125.67 (12)
C3—C2—C1123.40 (10)O1—C16—C9127.31 (11)
C4—C3—C8118.88 (11)N1—C16—C9107.01 (10)
C4—C3—C2121.14 (11)C17—N2—C21123.38 (14)
C8—C3—C2119.97 (10)C17—N2—C20114.78 (13)
C5—C4—C3120.32 (13)C21—N2—C20121.78 (14)
C5—C4—H4119.8O3—C17—N2126.55 (14)
C3—C4—H4119.8O3—C17—C18125.38 (14)
C4—C5—C6120.16 (13)N2—C17—C18108.07 (13)
C4—C5—H5119.9C19—C18—C17106.32 (14)
C6—C5—H5119.9C19—C18—H18A110.5
C7—C6—C5120.18 (13)C17—C18—H18A110.5
C7—C6—H6119.9C19—C18—H18B110.5
C5—C6—H6119.9C17—C18—H18B110.5
C6—C7—C8119.91 (13)H18A—C18—H18B108.7
C6—C7—H7120.0C18—C19—C20106.22 (13)
C8—C7—H7120.0C18—C19—H19A110.5
C7—C8—C3120.54 (12)C20—C19—H19A110.5
C7—C8—H8119.7C18—C19—H19B110.5
C3—C8—H8119.7C20—C19—H19B110.5
C2—C9—C10130.04 (11)H19A—C19—H19B108.7
C2—C9—C16108.31 (10)N2—C20—C19104.41 (13)
C10—C9—C16121.64 (10)N2—C20—H20A110.9
C11—C10—C15119.78 (11)C19—C20—H20A110.9
C11—C10—C9120.87 (11)N2—C20—H20B110.9
C15—C10—C9119.33 (10)C19—C20—H20B110.9
C12—C11—C10119.61 (13)H20A—C20—H20B108.9
C12—C11—H11120.2N2—C21—H21A109.5
C10—C11—H11120.2N2—C21—H21B109.5
C13—C12—C11120.44 (13)H21A—C21—H21B109.5
C13—C12—H12119.8N2—C21—H21C109.5
C11—C12—H12119.8H21A—C21—H21C109.5
C14—C13—C12120.19 (13)H21B—C21—H21C109.5
C14—C13—H13119.9
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C3–C8 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.881.952.7800 (15)156
C5—H5···O1ii0.952.413.3639 (17)179
C21—H21A···O1iii0.982.593.498 (2)154
C21—H21B···O1iv0.982.733.436 (2)129
C15—H15···Cg2v0.952.963.8081 (14)149
C20—H20A···Cg3iii0.992.913.6508 (18)133
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C3–C8 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.881.952.7800 (15)156.0
C5—H5···O1ii0.952.413.3639 (17)179.3
C21—H21A···O1iii0.982.593.498 (2)153.6
C21—H21B···O1iv0.982.733.436 (2)128.9
C15—H15···Cg2v0.952.963.8081 (14)149
C20—H20A···Cg3iii0.992.913.6508 (18)133
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are obliged to the Ministry of Education and Science of the Russian Federation for the Scholarship of the President of the Russian Federation for Students and PhD Students Training Abroad (2013–2014).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBilliet, L., Gok, O., Dove, A. P., Sanyal, A., Nguyen, L.-T. T. & Du Prez, F. E. (2011). Macromolecules, 44, 7874–7878.  Web of Science CrossRef CAS Google Scholar
First citationCrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMitzi, D. B. & Afzali, A. (2007). Cryst. Growth Des. 7, 691–697.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, W. H. & Du Bois, J. (2013). J. Am. Chem. Soc. 135, 10582–10585.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeh, H.-C., Wu, W.-C., Wen, Y.-S., Dai, D.-C., Wang, J.-K. & Chen, C.-T. (2004). J. Org. Chem. 69, 6455–6462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Z.-Q., Uth, S., Sandman, D. J. & Foxman, B. M. (2004). J. Phys. Org. Chem. 17, 769–776.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, J., Waengler, C., Lennox, R. B. & Schirrmacher, R. (2012). Langmuir, 28, 5508–5512.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds