organic compounds
2,3-Diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate
aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and bDepartment of Chemistry, University of Jyvaskyla, PO Box 35 FI-40014, Jyvaskyla, Finland
*Correspondence e-mail: t.chulkova@spbu.ru
In the title compound, C16H11NO2·C5H9NO, the dihedral angles between the maleimide and phenyl rings are 34.7 (2) and 64.8 (2)°. In the crystal, the 2,3-diphenylmaleimide and 1-methylpyrrolidin-2-one molecules form centrosymmetrical dimers via pairs of strong N—H⋯O hydrogen bonds and π–π stacking interactions between the two neighboring maleimide rings [centroid–centroid distance = 3.495 (2) Å]. The dimers are further linked by weak C—H⋯O and C—H⋯π hydrogen bonds into a three-dimensional framework.
CCDC reference: 978501
Related literature
For general background to maleimides, see: Yeh et al. (2004); Billiet et al. (2011); Zhu et al. (2012); Parsons & Du Bois (2013). For the crystal structures of related compounds, see: Zhang et al. (2004); Mitzi & Afzali (2007).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and SHELXLE (Hübschle et al., 2011).
Supporting information
CCDC reference: 978501
10.1107/S1600536814002372/kq2011sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814002372/kq2011Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814002372/kq2011Isup3.cml
3,4-Diphenylpyrrol-2,5-diimine (0.810 mmol, 0.20 g) was hydrolyzed in 80% aqueous methanol (10 mL) for 24 h at room temperature. The yellow solid was obtained from the reaction mixture. The crystals of the title compound suitable for single crystal X-ray diffraction were obtained by recrystallization from 1-methylpyrrolidin-2-one.
Structural
was carried out using SHELXTL (Sheldrick, 2008) with the Olex2 (Dolomanov et al., 2009) and SHELXLE (Hübschle et al., 2011) graphical user interfaces. All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, N—H = 0.88 Å and Uiso = 1.2–1.5 Ueq (parent atom).Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and SHELXLE (Hübschle et al., 2011).Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. Crystal packing along the crystallographic a axis. All hydrogen atoms have been omitted for clarity. |
C16H11NO2·C5H9NO | F(000) = 736 |
Mr = 348.39 | Dx = 1.315 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.1962 (3) Å | Cell parameters from 5604 reflections |
b = 10.0002 (2) Å | θ = 3.7–36.7° |
c = 13.5600 (3) Å | µ = 0.09 mm−1 |
β = 100.469 (3)° | T = 170 K |
V = 1759.65 (7) Å3 | Block, colourless |
Z = 4 | 0.54 × 0.40 × 0.24 mm |
Agilent SuperNova (Single source at offset, Eos) diffractometer | 8818 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 5708 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 16.0107 pixels mm-1 | θmax = 37.5°, θmin = 3.1° |
φ scans and ω scans with κ offset | h = −22→22 |
Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2013) | k = −13→16 |
Tmin = 0.815, Tmax = 1.000 | l = −22→23 |
22206 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.204 | w = 1/[σ2(Fo2) + (0.0916P)2 + 0.4242P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
8818 reflections | Δρmax = 0.63 e Å−3 |
236 parameters | Δρmin = −0.30 e Å−3 |
C16H11NO2·C5H9NO | V = 1759.65 (7) Å3 |
Mr = 348.39 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.1962 (3) Å | µ = 0.09 mm−1 |
b = 10.0002 (2) Å | T = 170 K |
c = 13.5600 (3) Å | 0.54 × 0.40 × 0.24 mm |
β = 100.469 (3)° |
Agilent SuperNova (Single source at offset, Eos) diffractometer | 8818 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO, Agilent, 2013) | 5708 reflections with I > 2σ(I) |
Tmin = 0.815, Tmax = 1.000 | Rint = 0.028 |
22206 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.204 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.63 e Å−3 |
8818 reflections | Δρmin = −0.30 e Å−3 |
236 parameters |
Experimental. Absorption correction: CrysAlis PRO (Agilent, 2013); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.06128 (8) | 0.79304 (9) | 0.09092 (7) | 0.0333 (2) | |
O2 | 0.16449 (8) | 0.38928 (10) | −0.01022 (8) | 0.0365 (2) | |
N1 | 0.10893 (8) | 0.60420 (10) | 0.01257 (7) | 0.0272 (2) | |
H1 | 0.1127 | 0.6383 | −0.0465 | 0.033* | |
C1 | 0.13055 (9) | 0.47257 (12) | 0.04002 (9) | 0.0260 (2) | |
C2 | 0.10664 (8) | 0.45632 (11) | 0.14421 (8) | 0.0230 (2) | |
C3 | 0.12077 (8) | 0.33036 (11) | 0.20052 (9) | 0.0240 (2) | |
C4 | 0.09962 (10) | 0.20708 (12) | 0.15227 (10) | 0.0300 (2) | |
H4 | 0.0764 | 0.2042 | 0.0818 | 0.036* | |
C5 | 0.11244 (11) | 0.08926 (13) | 0.20683 (12) | 0.0366 (3) | |
H5 | 0.0982 | 0.0059 | 0.1736 | 0.044* | |
C6 | 0.14610 (11) | 0.09271 (14) | 0.31006 (12) | 0.0370 (3) | |
H6 | 0.1540 | 0.0118 | 0.3473 | 0.044* | |
C7 | 0.16818 (10) | 0.21392 (14) | 0.35876 (11) | 0.0334 (3) | |
H7 | 0.1918 | 0.2160 | 0.4292 | 0.040* | |
C8 | 0.15569 (9) | 0.33222 (13) | 0.30448 (9) | 0.0275 (2) | |
H8 | 0.1709 | 0.4152 | 0.3381 | 0.033* | |
C9 | 0.07716 (8) | 0.57673 (11) | 0.17357 (8) | 0.02304 (19) | |
C10 | 0.04640 (8) | 0.61711 (11) | 0.26815 (8) | 0.0232 (2) | |
C11 | −0.04123 (10) | 0.56355 (15) | 0.29686 (10) | 0.0324 (3) | |
H11 | −0.0829 | 0.5013 | 0.2547 | 0.039* | |
C12 | −0.06732 (11) | 0.60162 (19) | 0.38744 (12) | 0.0418 (3) | |
H12 | −0.1276 | 0.5662 | 0.4067 | 0.050* | |
C13 | −0.00602 (12) | 0.69086 (17) | 0.44990 (11) | 0.0406 (3) | |
H13 | −0.0241 | 0.7158 | 0.5121 | 0.049* | |
C14 | 0.08136 (12) | 0.74379 (15) | 0.42201 (10) | 0.0362 (3) | |
H14 | 0.1237 | 0.8042 | 0.4653 | 0.043* | |
C15 | 0.10711 (10) | 0.70841 (13) | 0.33056 (9) | 0.0290 (2) | |
H15 | 0.1661 | 0.7465 | 0.3105 | 0.035* | |
C16 | 0.08056 (9) | 0.67456 (12) | 0.09100 (9) | 0.0254 (2) | |
O3 | 0.67483 (9) | 0.76077 (11) | 0.35649 (9) | 0.0429 (3) | |
N2 | 0.65279 (9) | 0.53588 (12) | 0.32844 (9) | 0.0348 (2) | |
C17 | 0.66039 (10) | 0.66246 (14) | 0.30065 (11) | 0.0333 (3) | |
C18 | 0.64860 (19) | 0.66600 (18) | 0.18720 (12) | 0.0554 (5) | |
H18A | 0.5915 | 0.7263 | 0.1580 | 0.066* | |
H18B | 0.7129 | 0.6983 | 0.1672 | 0.066* | |
C19 | 0.62610 (16) | 0.52685 (18) | 0.15209 (12) | 0.0483 (4) | |
H19A | 0.6767 | 0.4966 | 0.1112 | 0.058* | |
H19B | 0.5562 | 0.5208 | 0.1109 | 0.058* | |
C20 | 0.63358 (14) | 0.44090 (16) | 0.24659 (13) | 0.0447 (4) | |
H20A | 0.5685 | 0.3917 | 0.2467 | 0.054* | |
H20B | 0.6908 | 0.3758 | 0.2514 | 0.054* | |
C21 | 0.65804 (14) | 0.4951 (2) | 0.43134 (12) | 0.0479 (4) | |
H21A | 0.5906 | 0.4613 | 0.4404 | 0.072* | |
H21B | 0.6773 | 0.5719 | 0.4757 | 0.072* | |
H21C | 0.7098 | 0.4244 | 0.4478 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0447 (5) | 0.0228 (4) | 0.0320 (4) | 0.0014 (4) | 0.0059 (4) | 0.0003 (3) |
O2 | 0.0443 (5) | 0.0350 (5) | 0.0337 (5) | 0.0028 (4) | 0.0161 (4) | −0.0076 (4) |
N1 | 0.0337 (5) | 0.0265 (5) | 0.0219 (4) | −0.0021 (4) | 0.0062 (4) | −0.0016 (4) |
C1 | 0.0263 (5) | 0.0271 (5) | 0.0247 (5) | −0.0012 (4) | 0.0050 (4) | −0.0041 (4) |
C2 | 0.0235 (4) | 0.0221 (5) | 0.0232 (4) | −0.0005 (3) | 0.0039 (4) | −0.0028 (4) |
C3 | 0.0219 (4) | 0.0218 (4) | 0.0283 (5) | 0.0014 (4) | 0.0046 (4) | −0.0026 (4) |
C4 | 0.0304 (5) | 0.0230 (5) | 0.0355 (6) | 0.0006 (4) | 0.0028 (5) | −0.0054 (4) |
C5 | 0.0329 (6) | 0.0221 (5) | 0.0536 (8) | 0.0002 (4) | 0.0049 (6) | −0.0022 (5) |
C6 | 0.0316 (6) | 0.0278 (6) | 0.0515 (8) | 0.0042 (5) | 0.0074 (6) | 0.0094 (6) |
C7 | 0.0300 (5) | 0.0358 (6) | 0.0341 (6) | 0.0071 (5) | 0.0047 (5) | 0.0060 (5) |
C8 | 0.0277 (5) | 0.0254 (5) | 0.0292 (5) | 0.0035 (4) | 0.0040 (4) | −0.0002 (4) |
C9 | 0.0242 (4) | 0.0219 (4) | 0.0230 (4) | −0.0008 (4) | 0.0043 (4) | −0.0018 (4) |
C10 | 0.0249 (4) | 0.0219 (4) | 0.0234 (4) | 0.0016 (4) | 0.0054 (4) | −0.0007 (4) |
C11 | 0.0268 (5) | 0.0382 (7) | 0.0331 (6) | −0.0036 (5) | 0.0077 (4) | −0.0008 (5) |
C12 | 0.0332 (6) | 0.0589 (10) | 0.0371 (7) | −0.0004 (6) | 0.0163 (5) | 0.0034 (7) |
C13 | 0.0460 (8) | 0.0513 (9) | 0.0275 (6) | 0.0078 (6) | 0.0148 (6) | −0.0004 (6) |
C14 | 0.0479 (7) | 0.0354 (7) | 0.0258 (5) | −0.0018 (6) | 0.0083 (5) | −0.0061 (5) |
C15 | 0.0345 (6) | 0.0270 (5) | 0.0264 (5) | −0.0047 (4) | 0.0081 (4) | −0.0038 (4) |
C16 | 0.0275 (5) | 0.0244 (5) | 0.0239 (5) | −0.0018 (4) | 0.0036 (4) | −0.0020 (4) |
O3 | 0.0568 (6) | 0.0368 (5) | 0.0397 (5) | −0.0118 (5) | 0.0214 (5) | −0.0127 (4) |
N2 | 0.0366 (5) | 0.0342 (6) | 0.0347 (6) | −0.0033 (4) | 0.0091 (4) | −0.0007 (5) |
C17 | 0.0317 (5) | 0.0324 (6) | 0.0368 (6) | −0.0018 (5) | 0.0085 (5) | −0.0040 (5) |
C18 | 0.0896 (14) | 0.0413 (9) | 0.0326 (7) | −0.0106 (9) | 0.0043 (8) | 0.0021 (6) |
C19 | 0.0630 (10) | 0.0473 (9) | 0.0359 (7) | −0.0088 (8) | 0.0126 (7) | −0.0103 (7) |
C20 | 0.0566 (9) | 0.0310 (7) | 0.0478 (8) | −0.0027 (6) | 0.0134 (7) | −0.0093 (6) |
C21 | 0.0487 (8) | 0.0598 (10) | 0.0359 (7) | −0.0088 (8) | 0.0098 (6) | 0.0105 (7) |
O1—C16 | 1.2118 (15) | C11—H11 | 0.9500 |
O2—C1 | 1.2121 (15) | C12—C13 | 1.385 (2) |
N1—C16 | 1.3824 (15) | C12—H12 | 0.9500 |
N1—C1 | 1.3835 (16) | C13—C14 | 1.383 (2) |
N1—H1 | 0.8800 | C13—H13 | 0.9500 |
C1—C2 | 1.5113 (16) | C14—C15 | 1.3898 (18) |
C2—C9 | 1.3476 (16) | C14—H14 | 0.9500 |
C2—C3 | 1.4672 (16) | C15—H15 | 0.9500 |
C3—C4 | 1.3998 (16) | O3—C17 | 1.2344 (17) |
C3—C8 | 1.4013 (17) | N2—C17 | 1.3296 (19) |
C4—C5 | 1.3851 (19) | N2—C21 | 1.4433 (19) |
C4—H4 | 0.9500 | N2—C20 | 1.448 (2) |
C5—C6 | 1.390 (2) | C17—C18 | 1.518 (2) |
C5—H5 | 0.9500 | C18—C19 | 1.483 (2) |
C6—C7 | 1.386 (2) | C18—H18A | 0.9900 |
C6—H6 | 0.9500 | C18—H18B | 0.9900 |
C7—C8 | 1.3872 (18) | C19—C20 | 1.531 (2) |
C7—H7 | 0.9500 | C19—H19A | 0.9900 |
C8—H8 | 0.9500 | C19—H19B | 0.9900 |
C9—C10 | 1.4703 (15) | C20—H20A | 0.9900 |
C9—C16 | 1.4936 (16) | C20—H20B | 0.9900 |
C10—C11 | 1.3926 (17) | C21—H21A | 0.9800 |
C10—C15 | 1.3947 (16) | C21—H21B | 0.9800 |
C11—C12 | 1.388 (2) | C21—H21C | 0.9800 |
C16—N1—C1 | 110.41 (10) | C12—C13—H13 | 119.9 |
C16—N1—H1 | 124.8 | C13—C14—C15 | 119.86 (13) |
C1—N1—H1 | 124.8 | C13—C14—H14 | 120.1 |
O2—C1—N1 | 125.57 (12) | C15—C14—H14 | 120.1 |
O2—C1—C2 | 127.79 (12) | C14—C15—C10 | 120.10 (12) |
N1—C1—C2 | 106.62 (10) | C14—C15—H15 | 120.0 |
C9—C2—C3 | 129.02 (11) | C10—C15—H15 | 120.0 |
C9—C2—C1 | 107.49 (10) | O1—C16—N1 | 125.67 (12) |
C3—C2—C1 | 123.40 (10) | O1—C16—C9 | 127.31 (11) |
C4—C3—C8 | 118.88 (11) | N1—C16—C9 | 107.01 (10) |
C4—C3—C2 | 121.14 (11) | C17—N2—C21 | 123.38 (14) |
C8—C3—C2 | 119.97 (10) | C17—N2—C20 | 114.78 (13) |
C5—C4—C3 | 120.32 (13) | C21—N2—C20 | 121.78 (14) |
C5—C4—H4 | 119.8 | O3—C17—N2 | 126.55 (14) |
C3—C4—H4 | 119.8 | O3—C17—C18 | 125.38 (14) |
C4—C5—C6 | 120.16 (13) | N2—C17—C18 | 108.07 (13) |
C4—C5—H5 | 119.9 | C19—C18—C17 | 106.32 (14) |
C6—C5—H5 | 119.9 | C19—C18—H18A | 110.5 |
C7—C6—C5 | 120.18 (13) | C17—C18—H18A | 110.5 |
C7—C6—H6 | 119.9 | C19—C18—H18B | 110.5 |
C5—C6—H6 | 119.9 | C17—C18—H18B | 110.5 |
C6—C7—C8 | 119.91 (13) | H18A—C18—H18B | 108.7 |
C6—C7—H7 | 120.0 | C18—C19—C20 | 106.22 (13) |
C8—C7—H7 | 120.0 | C18—C19—H19A | 110.5 |
C7—C8—C3 | 120.54 (12) | C20—C19—H19A | 110.5 |
C7—C8—H8 | 119.7 | C18—C19—H19B | 110.5 |
C3—C8—H8 | 119.7 | C20—C19—H19B | 110.5 |
C2—C9—C10 | 130.04 (11) | H19A—C19—H19B | 108.7 |
C2—C9—C16 | 108.31 (10) | N2—C20—C19 | 104.41 (13) |
C10—C9—C16 | 121.64 (10) | N2—C20—H20A | 110.9 |
C11—C10—C15 | 119.78 (11) | C19—C20—H20A | 110.9 |
C11—C10—C9 | 120.87 (11) | N2—C20—H20B | 110.9 |
C15—C10—C9 | 119.33 (10) | C19—C20—H20B | 110.9 |
C12—C11—C10 | 119.61 (13) | H20A—C20—H20B | 108.9 |
C12—C11—H11 | 120.2 | N2—C21—H21A | 109.5 |
C10—C11—H11 | 120.2 | N2—C21—H21B | 109.5 |
C13—C12—C11 | 120.44 (13) | H21A—C21—H21B | 109.5 |
C13—C12—H12 | 119.8 | N2—C21—H21C | 109.5 |
C11—C12—H12 | 119.8 | H21A—C21—H21C | 109.5 |
C14—C13—C12 | 120.19 (13) | H21B—C21—H21C | 109.5 |
C14—C13—H13 | 119.9 |
Cg2 and Cg3 are the centroids of the C3–C8 and C10–C15 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.88 | 1.95 | 2.7800 (15) | 156 |
C5—H5···O1ii | 0.95 | 2.41 | 3.3639 (17) | 179 |
C21—H21A···O1iii | 0.98 | 2.59 | 3.498 (2) | 154 |
C21—H21B···O1iv | 0.98 | 2.73 | 3.436 (2) | 129 |
C15—H15···Cg2v | 0.95 | 2.96 | 3.8081 (14) | 149 |
C20—H20A···Cg3iii | 0.99 | 2.91 | 3.6508 (18) | 133 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+1/2, y+1/2, −z+1/2. |
Cg2 and Cg3 are the centroids of the C3–C8 and C10–C15 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.88 | 1.95 | 2.7800 (15) | 156.0 |
C5—H5···O1ii | 0.95 | 2.41 | 3.3639 (17) | 179.3 |
C21—H21A···O1iii | 0.98 | 2.59 | 3.498 (2) | 153.6 |
C21—H21B···O1iv | 0.98 | 2.73 | 3.436 (2) | 128.9 |
C15—H15···Cg2v | 0.95 | 2.96 | 3.8081 (14) | 149 |
C20—H20A···Cg3iii | 0.99 | 2.91 | 3.6508 (18) | 133 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors are obliged to the Ministry of Education and Science of the Russian Federation for the Scholarship of the President of the Russian Federation for Students and PhD Students Training Abroad (2013–2014).
References
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Billiet, L., Gok, O., Dove, A. P., Sanyal, A., Nguyen, L.-T. T. & Du Prez, F. E. (2011). Macromolecules, 44, 7874–7878. Web of Science CrossRef CAS Google Scholar
CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Mitzi, D. B. & Afzali, A. (2007). Cryst. Growth Des. 7, 691–697. Web of Science CSD CrossRef CAS Google Scholar
Parsons, W. H. & Du Bois, J. (2013). J. Am. Chem. Soc. 135, 10582–10585. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yeh, H.-C., Wu, W.-C., Wen, Y.-S., Dai, D.-C., Wang, J.-K. & Chen, C.-T. (2004). J. Org. Chem. 69, 6455–6462. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, Z.-Q., Uth, S., Sandman, D. J. & Foxman, B. M. (2004). J. Phys. Org. Chem. 17, 769–776. Web of Science CSD CrossRef CAS Google Scholar
Zhu, J., Waengler, C., Lennox, R. B. & Schirrmacher, R. (2012). Langmuir, 28, 5508–5512. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Maleimide derivatives can be used as building blocks in the synthesis of a wide range of biologically active compounds (Parsons et al., 2013), polymeric materials (Billiet et al., 2011), nanoparticles (Zhu et al., 2012), etc.
The present work describes the synthesis and crystal structure of 2,3-diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate, C16H11NO2.C5H9NO (Fig. 1). The bond lengths and angles within the 2,3-diphenylmaleimide molecule (Table 1) are in a good agreement with those found in the related compounds (Zhang et al. (2004); Mitzi et al. (2007)). The dihedral angles between the maleimide and phenyl rings are 34.7 (2)° and 64.8 (2)°. In the crystal, the 2,3-diphenylmaleimide and 1-methylpyrrolidin-2-one molecules form centrosymmetrical dimeric associates via strong N—H···O hydrogen bonds (Table 2) and π-π stacking interactions between the two neighboring maleimide rings (the centroid-centroid distance is 3.495 (2) Å). Further the associates are linked by weak C—H···O (Table 2) and C—H···π hydrogen bonds into three-dimensional framework (Fig. 2).