organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o270-o271

1-Piperonylpiperazinium 4-nitro­benzoate monohydrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 22 January 2014; accepted 5 February 2014; online 12 February 2014)

In the title hydrated salt [systematic name: 1-(1,3-benzodioxol-5-ylmeth­yl)piperazin-1-ium 4-nitro­benzoate monohydrate], C12H17N2O2+·C7H4NO4·H2O, the piperazinium ring of the cation adopts a slightly distorted chair conformation. The piperonyl and piperazine rings are rotated with respect to each other with an N—C—C—C torsion angle of 45.6 (2)°. In the anion, the nitro group is almost coplanar with the adjacent benzene ring, forming a dihedral angle of only 3.9 (4)°. In the crystal, the cations, anions and water mol­ecules are linked through N—H⋯O and O—H⋯O hydrogen bonds into chains along the a axis. In addition, weaker inter­molecular C—H⋯O inter­actions are also observed within the chains. The anions form centrosymmetric couples through π-stacking inter­actions, with an inter­centroid distance of 3.681 (4) Å between the benzene rings.

Related literature

For the drug, piribedil {systematic name: 2-[4-(benzo[1,3]dioxol-5-ylmeth­yl)piperazin-1-yl]pyrimidine}, an anti­parkin­sonian agent, see: Millan et al. (2001[Millan, M. J., Cussac, D. & Milligan, G. (2001). J. Pharmacol. Exp. Ther. 297, 876-887.]). For piperonylpiperazine derivatives with α-adrenergic antagonist and vasodilator properties, see: Gobert et al. (2003[Gobert, A., Di Cara, B., Cistarelli, L. & Millan, M. J. (2003). J. Pharmacol. Exp. Ther. 305, 338-46.]); Gilbert et al. (1968[Gilbert, R., Canevari, R. J. M. J., Laubie, M. J. & Le Douarec, J. C. (1968). J. Med. Chem. 11, 1151-1155.]). For the use of piperazine in the construction of various bioactive mol­ecules, see: Choudhary et al. (2006[Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819-1826.]). For the anti­microbial activity of piperazine derivatives, see: Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.]). For related biologically active compounds, see: Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). For a review on the current pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]). For a related structure, see: Capuano et al. (2000[Capuano, B., Crosby, I. T., Gable, R. W. & Lloyd, E. J. (2000). Acta Cryst. C56, 339-340.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N2O2+·C7H4NO4·H2O

  • Mr = 405.40

  • Triclinic, [P \overline 1]

  • a = 6.0745 (5) Å

  • b = 12.0617 (11) Å

  • c = 13.4817 (10) Å

  • α = 92.561 (7)°

  • β = 98.753 (7)°

  • γ = 93.326 (7)°

  • V = 973.20 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.90 mm−1

  • T = 173 K

  • 0.42 × 0.36 × 0.24 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.882, Tmax = 1.000

  • 6403 measured reflections

  • 3761 independent reflections

  • 3196 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.03

  • 3761 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AA⋯O1Wi 0.94 1.84 2.7800 (16) 172
N2A—H2AB⋯O1Bii 0.93 1.80 2.7262 (16) 175
C9A—H9AA⋯O2Aiii 0.99 2.58 3.3260 (19) 132
C10A—H10A⋯O1Wiv 0.99 2.51 3.2833 (19) 135
O1W—H1WA⋯O2Bv 0.90 1.76 2.6526 (16) 170
O1W—H1WB⋯O1Bii 0.92 1.90 2.7867 (16) 163
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) x-1, y, z; (v) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

1-(3,4-Methylenedioxybenzyl)piperazine or 1-piperonylpiperazine is a psychoactive drug of the piperazine class and is used to synthesise the drug, piribedil, an antiparkinsonian agent (Millan et al., 2001). Piperonylpiperazine derivatives also has α-adrenergic antagonist properties (Gobert et al., 2003) and peripheral vasodilator properties (Gilbert et al., 1968). The piperazine moiety is extensively employed to construct various bioactive molecules with anti-bacterial, antimalarial activity and as antipsychotic agents (Choudhary et al., 2006). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives is reported (Kharb et al., 2012). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al., 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is available (Elliott, 2011). The crystal structure of an N-piperonyl analogue of the atypical antipsychotic clozapine (Capuano et al., 2000) is reported. In continuation of our work on salts of piperonylpiperazines, this paper reports the crystal structure of the title compound, (I), C12H17N2O2+ . C7H4NO4- . H2O.

The asymmetric unit of the title compound, (I), contains one independent 1-piperonylpiperazinium monocation, one 4-nitrobenzoate monoanion and one water molecule (Fig. 1). The piperazine ring in the cation adopts a slightly disordered chair conformation (puckering parameters Q, θ, and φ = 0.590 (2)Å, 3.8 (6)° and 1.68 (4)°; (Cremer & Pople, 1975). The piperonyl and piperazine rings are twisted with respect to each other with an N1A/C1A/C2A/C8A torsion angle of 45.6 (2)°. In the anion, the nitro substituent is slightly twisted from the mean plane of the phenyl ring with a dihedral angle of 3.9 (4)°. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, the cations and anions interact through N—H···O intermolecular hydrogen bonds while weak C—H···O intermolecular interactions are observed between the cations (Fig. 2). The crystal packing is stabilized by these N—H···O and O—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) involving the water molecules which form 1D chains along [1 0 0]. In addition, weak Cg5–Cg5 ππ stacking interactions with an intercentroid distance of 3.681 (4)Å (Symmetry operation 2-x, -y, -z; Cg5 is the centroid between the phenyl rings, C1B–C6B, of the anions) contribute to the crystal packing.

Related literature top

For the drug, piribedil {systematic name: 2-[4-(benzo[1,3]dioxol-5-ylmethyl)piperazin-1-yl]pyrimidine}, an antiparkinsonian agent, see: Millan et al. (2001). For piperonylpiperazine derivatives with α-adrenergic antagonist and vasodilator properties, see: Gobert et al. (2003); Gilbert et al. (1968). For the use of piperazine in the construction of various bioactive molecules, see: Choudhary et al. (2006). For the antimicrobial activity of piperazine derivatives, see: Kharb et al. (2012); For related biologically active compounds, see: Brockunier et al. (2004); Bogatcheva et al. (2006). For a review on the current pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011). For a related structure, see: Capuano et al. (2000). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

1-piperonylpiperazine ( 2.2g, 0.01 mol) and p-nitrobenzoic acid (1.67 g, 0.01 mol) were dissolved in hot N,N-dimethylformamide and stirred for 10 mins at 323 K. The resulting solution was allowed to cool slowly at room temperature. The crystals of the title salt appeared after a few days was used as such for x-ray studies (m. p:448-451 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) , 0.99Å (CH2), 0.92 or 0.94Å (NH2), 0.89 or 0.91Å (OH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH2) or 1.5 (OH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of one independent monocation-monoanion-water molecule unit in the asymmetric unit of (I) (C12H17N2O2+ . C7H4NO4- . H2O) showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate N—H···O, O—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.
1-(1,3-Benzodioxol-5-ylmethyl)piperazin-1-ium 4-nitrobenzoate monohydrate top
Crystal data top
C12H17N2O2+·C7H4NO4·H2OZ = 2
Mr = 405.40F(000) = 428
Triclinic, P1Dx = 1.383 Mg m3
a = 6.0745 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 12.0617 (11) ÅCell parameters from 2866 reflections
c = 13.4817 (10) Åθ = 3.3–72.4°
α = 92.561 (7)°µ = 0.90 mm1
β = 98.753 (7)°T = 173 K
γ = 93.326 (7)°Irregular, colourless
V = 973.20 (14) Å30.42 × 0.36 × 0.24 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3761 independent reflections
Radiation source: Enhance (Cu) X-ray Source3196 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.021
ω scansθmax = 72.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 77
Tmin = 0.882, Tmax = 1.000k = 1413
6403 measured reflectionsl = 1615
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.0984P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.27 e Å3
3761 reflectionsΔρmin = 0.20 e Å3
263 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H17N2O2+·C7H4NO4·H2Oγ = 93.326 (7)°
Mr = 405.40V = 973.20 (14) Å3
Triclinic, P1Z = 2
a = 6.0745 (5) ÅCu Kα radiation
b = 12.0617 (11) ŵ = 0.90 mm1
c = 13.4817 (10) ÅT = 173 K
α = 92.561 (7)°0.42 × 0.36 × 0.24 mm
β = 98.753 (7)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
3761 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3196 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 1.000Rint = 0.021
6403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3761 reflectionsΔρmin = 0.20 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.5807 (2)0.15502 (11)0.58196 (11)0.0590 (4)
O2A0.5429 (2)0.34467 (10)0.59022 (10)0.0501 (3)
N1A0.1474 (2)0.41016 (10)0.31368 (9)0.0318 (3)
N2A0.1698 (2)0.54167 (10)0.14110 (9)0.0332 (3)
H2AA0.24330.49180.08910.040*
H2AB0.12480.60530.11150.040*
C1A0.1964 (3)0.31162 (14)0.36785 (13)0.0403 (4)
H1AA0.27620.25320.31950.048*
H1AB0.29650.33080.41660.048*
C2A0.0109 (3)0.26602 (13)0.42328 (11)0.0369 (3)
C3A0.0366 (3)0.15269 (14)0.41979 (13)0.0446 (4)
H3A0.07720.10470.38110.054*
C4A0.2234 (3)0.10638 (14)0.47100 (14)0.0500 (4)
H4A0.23930.02850.46780.060*
C5A0.3822 (3)0.17849 (14)0.52603 (12)0.0426 (4)
C6A0.6796 (3)0.25825 (15)0.62731 (13)0.0466 (4)
H6AA0.83180.27120.61060.056*
H6AB0.69070.25750.70130.056*
C7A0.3587 (3)0.29153 (13)0.53067 (11)0.0375 (3)
C8A0.1769 (3)0.33840 (13)0.48093 (12)0.0378 (3)
H8A0.16320.41650.48510.045*
C9A0.3555 (2)0.45704 (13)0.27135 (11)0.0337 (3)
H9AA0.44510.47220.32540.040*
H9AB0.44360.40280.22120.040*
C10A0.3064 (3)0.56353 (13)0.22182 (12)0.0353 (3)
H10A0.44810.59430.19270.042*
H10B0.22450.61900.27260.042*
C11A0.0375 (2)0.48756 (13)0.18124 (12)0.0349 (3)
H11A0.13500.53970.23000.042*
H11B0.12000.46850.12560.042*
C12A0.0217 (3)0.38327 (12)0.23225 (11)0.0336 (3)
H12A0.11240.32950.18260.040*
H12B0.11650.34830.25980.040*
O1B1.02663 (19)0.27812 (9)0.04752 (9)0.0437 (3)
O2B1.3475 (2)0.26959 (12)0.05605 (11)0.0591 (4)
O3B0.8956 (2)0.16582 (12)0.28622 (10)0.0616 (4)
O4B0.5845 (2)0.15818 (12)0.18715 (11)0.0595 (4)
N1B0.7773 (2)0.12428 (11)0.21838 (10)0.0409 (3)
C1B1.0487 (2)0.14427 (11)0.07692 (11)0.0301 (3)
C2B1.1819 (2)0.09318 (13)0.15270 (12)0.0357 (3)
H2B1.33350.11950.17230.043*
C3B1.0959 (3)0.00431 (13)0.19982 (12)0.0369 (3)
H3B1.18680.03190.25050.044*
C4B0.8739 (2)0.02983 (12)0.17066 (11)0.0319 (3)
C5B0.7362 (2)0.02062 (12)0.09760 (11)0.0329 (3)
H5B0.58320.00400.08030.039*
C6B0.8256 (2)0.10799 (12)0.04996 (11)0.0329 (3)
H6B0.73410.14310.00130.039*
C7B1.1503 (3)0.23837 (12)0.02427 (12)0.0355 (3)
O1W0.34602 (17)0.60766 (9)0.01811 (8)0.0378 (3)
H1WA0.46090.64780.00040.057*
H1WB0.24430.65710.03170.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0637 (8)0.0486 (8)0.0625 (8)0.0261 (6)0.0051 (7)0.0006 (6)
O2A0.0471 (7)0.0435 (7)0.0574 (8)0.0115 (5)0.0010 (6)0.0032 (6)
N1A0.0333 (6)0.0342 (6)0.0301 (6)0.0046 (5)0.0096 (5)0.0081 (5)
N2A0.0372 (7)0.0298 (6)0.0332 (6)0.0004 (5)0.0060 (5)0.0086 (5)
C1A0.0417 (8)0.0422 (9)0.0399 (8)0.0020 (7)0.0123 (7)0.0149 (7)
C2A0.0452 (9)0.0383 (8)0.0305 (7)0.0060 (7)0.0124 (6)0.0105 (6)
C3A0.0591 (10)0.0377 (9)0.0374 (8)0.0035 (7)0.0081 (7)0.0026 (7)
C4A0.0716 (12)0.0331 (8)0.0468 (10)0.0140 (8)0.0095 (9)0.0039 (7)
C5A0.0532 (10)0.0405 (9)0.0366 (8)0.0172 (7)0.0085 (7)0.0059 (7)
C6A0.0491 (10)0.0522 (10)0.0404 (9)0.0139 (8)0.0073 (7)0.0065 (8)
C7A0.0456 (9)0.0368 (8)0.0326 (8)0.0072 (7)0.0123 (6)0.0029 (6)
C8A0.0468 (9)0.0317 (8)0.0384 (8)0.0078 (6)0.0138 (7)0.0081 (6)
C9A0.0312 (7)0.0382 (8)0.0332 (7)0.0041 (6)0.0081 (6)0.0055 (6)
C10A0.0354 (7)0.0349 (8)0.0368 (8)0.0078 (6)0.0065 (6)0.0053 (6)
C11A0.0315 (7)0.0378 (8)0.0375 (8)0.0017 (6)0.0105 (6)0.0094 (6)
C12A0.0374 (8)0.0328 (7)0.0335 (7)0.0074 (6)0.0114 (6)0.0067 (6)
O1B0.0434 (6)0.0370 (6)0.0553 (7)0.0035 (5)0.0167 (5)0.0182 (5)
O2B0.0420 (7)0.0654 (9)0.0692 (9)0.0174 (6)0.0100 (6)0.0172 (7)
O3B0.0658 (9)0.0635 (9)0.0555 (8)0.0021 (7)0.0009 (7)0.0353 (7)
O4B0.0504 (7)0.0568 (8)0.0712 (9)0.0115 (6)0.0075 (7)0.0281 (7)
N1B0.0471 (8)0.0380 (7)0.0393 (7)0.0017 (6)0.0096 (6)0.0128 (6)
C1B0.0330 (7)0.0255 (7)0.0334 (7)0.0031 (5)0.0107 (6)0.0002 (6)
C2B0.0300 (7)0.0373 (8)0.0395 (8)0.0008 (6)0.0050 (6)0.0015 (6)
C3B0.0381 (8)0.0400 (8)0.0327 (8)0.0077 (6)0.0022 (6)0.0080 (6)
C4B0.0390 (8)0.0286 (7)0.0299 (7)0.0032 (6)0.0092 (6)0.0056 (6)
C5B0.0302 (7)0.0327 (7)0.0350 (8)0.0017 (6)0.0032 (6)0.0062 (6)
C6B0.0338 (7)0.0309 (7)0.0338 (7)0.0033 (6)0.0027 (6)0.0068 (6)
C7B0.0367 (8)0.0295 (7)0.0436 (9)0.0019 (6)0.0170 (7)0.0028 (6)
O1W0.0347 (5)0.0365 (6)0.0422 (6)0.0020 (4)0.0061 (5)0.0073 (5)
Geometric parameters (Å, º) top
O1A—C5A1.373 (2)C9A—C10A1.509 (2)
O1A—C6A1.421 (2)C10A—H10A0.9900
O2A—C6A1.431 (2)C10A—H10B0.9900
O2A—C7A1.3802 (19)C11A—H11A0.9900
N1A—C1A1.4619 (19)C11A—H11B0.9900
N1A—C9A1.4617 (18)C11A—C12A1.511 (2)
N1A—C12A1.4648 (18)C12A—H12A0.9900
N2A—H2AA0.9422C12A—H12B0.9900
N2A—H2AB0.9268O1B—C7B1.2622 (19)
N2A—C10A1.4888 (19)O2B—C7B1.2400 (19)
N2A—C11A1.4913 (18)O3B—N1B1.2192 (18)
C1A—H1AA0.9900O4B—N1B1.2231 (18)
C1A—H1AB0.9900N1B—C4B1.4693 (19)
C1A—C2A1.509 (2)C1B—C2B1.393 (2)
C2A—C3A1.384 (2)C1B—C6B1.388 (2)
C2A—C8A1.408 (2)C1B—C7B1.516 (2)
C3A—H3A0.9500C2B—H2B0.9500
C3A—C4A1.395 (2)C2B—C3B1.387 (2)
C4A—H4A0.9500C3B—H3B0.9500
C4A—C5A1.366 (3)C3B—C4B1.379 (2)
C5A—C7A1.379 (2)C4B—C5B1.379 (2)
C6A—H6AA0.9900C5B—H5B0.9500
C6A—H6AB0.9900C5B—C6B1.385 (2)
C7A—C8A1.367 (2)C6B—H6B0.9500
C8A—H8A0.9500O1W—H1WA0.8987
C9A—H9AA0.9900O1W—H1WB0.9158
C9A—H9AB0.9900
C5A—O1A—C6A106.07 (13)C10A—C9A—H9AA109.6
C7A—O2A—C6A105.74 (13)C10A—C9A—H9AB109.6
C1A—N1A—C12A111.33 (12)N2A—C10A—C9A109.95 (12)
C9A—N1A—C1A109.81 (12)N2A—C10A—H10A109.7
C9A—N1A—C12A108.99 (11)N2A—C10A—H10B109.7
H2AA—N2A—H2AB107.3C9A—C10A—H10A109.7
C10A—N2A—H2AA113.1C9A—C10A—H10B109.7
C10A—N2A—H2AB113.7H10A—C10A—H10B108.2
C10A—N2A—C11A110.93 (11)N2A—C11A—H11A109.7
C11A—N2A—H2AA104.7N2A—C11A—H11B109.7
C11A—N2A—H2AB106.6N2A—C11A—C12A109.91 (12)
N1A—C1A—H1AA109.0H11A—C11A—H11B108.2
N1A—C1A—H1AB109.0C12A—C11A—H11A109.7
N1A—C1A—C2A112.76 (13)C12A—C11A—H11B109.7
H1AA—C1A—H1AB107.8N1A—C12A—C11A110.19 (12)
C2A—C1A—H1AA109.0N1A—C12A—H12A109.6
C2A—C1A—H1AB109.0N1A—C12A—H12B109.6
C3A—C2A—C1A120.29 (15)C11A—C12A—H12A109.6
C3A—C2A—C8A119.60 (15)C11A—C12A—H12B109.6
C8A—C2A—C1A120.09 (14)H12A—C12A—H12B108.1
C2A—C3A—H3A118.8O3B—N1B—O4B123.48 (14)
C2A—C3A—C4A122.45 (17)O3B—N1B—C4B117.98 (14)
C4A—C3A—H3A118.8O4B—N1B—C4B118.52 (13)
C3A—C4A—H4A121.6C2B—C1B—C7B119.39 (13)
C5A—C4A—C3A116.74 (16)C6B—C1B—C2B119.79 (14)
C5A—C4A—H4A121.6C6B—C1B—C7B120.82 (13)
O1A—C5A—C7A110.07 (15)C1B—C2B—H2B119.6
C4A—C5A—O1A128.41 (16)C3B—C2B—C1B120.75 (14)
C4A—C5A—C7A121.52 (16)C3B—C2B—H2B119.6
O1A—C6A—O2A108.35 (14)C2B—C3B—H3B121.1
O1A—C6A—H6AA110.0C4B—C3B—C2B117.81 (14)
O1A—C6A—H6AB110.0C4B—C3B—H3B121.1
O2A—C6A—H6AA110.0C3B—C4B—N1B119.33 (13)
O2A—C6A—H6AB110.0C3B—C4B—C5B122.89 (14)
H6AA—C6A—H6AB108.4C5B—C4B—N1B117.78 (13)
C5A—C7A—O2A109.55 (14)C4B—C5B—H5B120.7
C8A—C7A—O2A127.90 (14)C4B—C5B—C6B118.61 (13)
C8A—C7A—C5A122.54 (15)C6B—C5B—H5B120.7
C2A—C8A—H8A121.4C1B—C6B—H6B119.9
C7A—C8A—C2A117.14 (14)C5B—C6B—C1B120.13 (13)
C7A—C8A—H8A121.4C5B—C6B—H6B119.9
N1A—C9A—H9AA109.6O1B—C7B—C1B117.18 (13)
N1A—C9A—H9AB109.6O2B—C7B—O1B125.94 (15)
N1A—C9A—C10A110.19 (12)O2B—C7B—C1B116.88 (14)
H9AA—C9A—H9AB108.1H1WA—O1W—H1WB106.6
O1A—C5A—C7A—O2A0.01 (19)C9A—N1A—C1A—C2A173.67 (12)
O1A—C5A—C7A—C8A179.33 (15)C9A—N1A—C12A—C11A61.80 (15)
O2A—C7A—C8A—C2A179.03 (14)C10A—N2A—C11A—C12A55.02 (16)
N1A—C1A—C2A—C3A135.98 (16)C11A—N2A—C10A—C9A55.19 (16)
N1A—C1A—C2A—C8A45.6 (2)C12A—N1A—C1A—C2A65.54 (16)
N1A—C9A—C10A—N2A58.74 (16)C12A—N1A—C9A—C10A61.96 (15)
N2A—C11A—C12A—N1A58.34 (16)O3B—N1B—C4B—C3B3.6 (2)
C1A—N1A—C9A—C10A175.85 (12)O3B—N1B—C4B—C5B176.66 (15)
C1A—N1A—C12A—C11A176.93 (12)O4B—N1B—C4B—C3B175.27 (15)
C1A—C2A—C3A—C4A178.95 (15)O4B—N1B—C4B—C5B4.5 (2)
C1A—C2A—C8A—C7A178.88 (13)N1B—C4B—C5B—C6B178.38 (13)
C2A—C3A—C4A—C5A0.3 (3)C1B—C2B—C3B—C4B1.4 (2)
C3A—C2A—C8A—C7A0.5 (2)C2B—C1B—C6B—C5B0.6 (2)
C3A—C4A—C5A—O1A179.27 (16)C2B—C1B—C7B—O1B176.26 (13)
C3A—C4A—C5A—C7A0.0 (3)C2B—C1B—C7B—O2B4.0 (2)
C4A—C5A—C7A—O2A179.42 (16)C2B—C3B—C4B—N1B179.53 (13)
C4A—C5A—C7A—C8A0.1 (3)C2B—C3B—C4B—C5B0.2 (2)
C5A—O1A—C6A—O2A4.64 (19)C3B—C4B—C5B—C6B1.3 (2)
C5A—C7A—C8A—C2A0.2 (2)C4B—C5B—C6B—C1B0.9 (2)
C6A—O1A—C5A—C4A177.74 (18)C6B—C1B—C2B—C3B1.8 (2)
C6A—O1A—C5A—C7A2.89 (19)C6B—C1B—C7B—O1B3.2 (2)
C6A—O2A—C7A—C5A2.88 (18)C6B—C1B—C7B—O2B176.51 (14)
C6A—O2A—C7A—C8A177.85 (16)C7B—C1B—C2B—C3B177.71 (13)
C7A—O2A—C6A—O1A4.63 (19)C7B—C1B—C6B—C5B178.89 (13)
C8A—C2A—C3A—C4A0.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O1Wi0.941.842.7800 (16)172
N2A—H2AB···O1Bii0.931.802.7262 (16)175
C9A—H9AA···O2Aiii0.992.583.3260 (19)132
C10A—H10A···O1Wiv0.992.513.2833 (19)135
O1W—H1WA···O2Bv0.901.762.6526 (16)170
O1W—H1WB···O1Bii0.921.902.7867 (16)163
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O1Wi0.941.842.7800 (16)171.5
N2A—H2AB···O1Bii0.931.802.7262 (16)175.4
C9A—H9AA···O2Aiii0.992.583.3260 (19)132.0
C10A—H10A···O1Wiv0.992.513.2833 (19)134.9
O1W—H1WA···O2Bv0.901.762.6526 (16)169.8
O1W—H1WB···O1Bii0.921.902.7867 (16)162.8
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x+2, y+1, z.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCapuano, B., Crosby, I. T., Gable, R. W. & Lloyd, E. J. (2000). Acta Cryst. C56, 339–340.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGilbert, R., Canevari, R. J. M. J., Laubie, M. J. & Le Douarec, J. C. (1968). J. Med. Chem. 11, 1151–1155.  PubMed Web of Science Google Scholar
First citationGobert, A., Di Cara, B., Cistarelli, L. & Millan, M. J. (2003). J. Pharmacol. Exp. Ther. 305, 338–46.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationMillan, M. J., Cussac, D. & Milligan, G. (2001). J. Pharmacol. Exp. Ther. 297, 876–887.  Web of Science PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o270-o271
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds