organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R,4S)-3-Methyl-4-phenyl-2-[(R)-1-phenyl­eth­yl]-3,4-di­hydro­isoquinolin-2-ium tetra­fluorido­borate

aAcadémie Militaire, Fondouk Jedid, 8012 Nabeul, Tunisia, and bCentre de Recherche de Gif sur Yvette, ICSN-CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: pascal.retailleau@cnrs.fr

(Received 27 January 2014; accepted 30 January 2014; online 8 February 2014)

The title salt, C24H24N+·BF4, is one of two possible dias­tereoisomers having a different configuration of the asymmetric centre in the α-phenyl­ethyl substituent, whose absolute configuration was established to be R. The two phenyl substituents of the cation have a cofacial orientation, albeit with a long centroid–centroid separation of 4.129 (3) Å. The crystal structure exhibits numerous C—H⋯F contacts between counter-ions, with the tetra­fluorido­borate anion surrounded by five iminium cations.

Related literature

For related literature, see: Adam et al. (2001[Adam, W., Saha-Molier, C. R. & Ganeshpure, P. A. (2001). Chem. Rev. 101, 3499.]); Bohé et al. (1999[Bohé, L., Lusinchi, M. & Lusinchi, X. (1999). Tetrahedron, 55, 141-154.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Davies & Coote (1988[Davies, S. G. & Coote, S. J. (1988). J. Chem. Soc. Chem. Commun. pp. 648-649.])

[Scheme 1]

Experimental

Crystal data
  • C24H24N+·BF4

  • Mr = 413.25

  • Tetragonal, P 41 21 2

  • a = 9.367 (4) Å

  • c = 49.137 (14) Å

  • V = 4311 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.33 × 0.26 × 0.26 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 10992 measured reflections

  • 2353 independent reflections

  • 1192 reflections with I > 2σ(I)

  • Rint = 0.092

  • 3 standard reflections every 60 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.215

  • S = 1.08

  • 2353 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯F27 0.93 2.39 3.292 (9) 164
C1—H1⋯F30 0.93 2.55 3.170 (12) 125
C18—H18⋯F29 0.98 2.55 3.292 (10) 132
C24—H24⋯F30i 0.93 2.60 3.430 (15) 148
C4—H4⋯F27ii 0.98 2.54 3.498 (8) 165
C11—H11A⋯F28ii 0.96 2.50 3.268 (11) 137
C14—H14⋯F28iii 0.93 2.54 3.249 (10) 133
C7—H7⋯F27iv 0.93 2.65 3.399 (10) 138
Symmetry codes: (i) x-1, y, z; (ii) x, y-1, z; (iii) x-1, y-1, z; (iv) y, x, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NONIUS (Riche, 1989[Riche, C. (1989). NONIUS. Institut de Chimie des Substances Naturelles du CNRS, France.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years, much effort has been devoted to the development of organocatalytic processes that afford metal-free procedures (Adam et al., 2001), such as asymmetric epoxidation catalysed by chiral iminium salts. It has been proved that iminium salts are effective catalysts at low loadings for enantioselective epoxidation using Oxone® (2KHSO5.KHSO4.K2SO4) as the stoichiometric oxidant.

As a part of our interest in catalytic epoxidation by dihydroisoquinolinium-derived iminium salts (Bohé et al., 1999), we report herein the synthesis from the corresponding (3R,4S)-3-methyl-4-phenyl-3,4-dihydroisoquinoleine (Davies et al., 1988), by N-alkylation with (1-bromoethyl)benzene, and the crystal structure determination of the title compound. It was isolated as one of the two diastereoisomeric products; it is a new dihydroisoquinolinium-derived iminium salt containing an asymmetric centre in an exocyclic substituent at the nitrogen atom. The X-ray analyses confirmed the 2D NMR data and allowed us to define the absolute configuration of the exocyclic substituent at the nitrogen atom to be R (Fig. 1). The tetrahydroisoquinoline unit is substituted by methyl group in position 3, a phenyl substituent in position 4, both in axial conformation, and a (1-phenylethyl) group at the nitrogen atom (Fig.1). The six-heteromembered ring adopts a screw-boat conformation (rather than a half-chair one as previously described), as indicated by puckering analysis [Q = 0.474 (6) Å, θ = 113.8 (7)°, φ = 93.9 (8) °] (Cremer & Pople, 1975). The two phenyl rings in position C4 and C18 are almost facing each other with a dihedral angle of 19.3 (4)° but with a rather long centroid-centroid distance of 4.129 (3)Å. In the crystal of the iminium salt, significant contacts between cationic species are uniquely mediated by BF4- anions, each of them being surrounded by five cations (Fig. 2). The tetrafluoridoborate anions are involved in intensive thermal motion, thus some B–F bond lengths and angles [range from 1.281 (10) to 1.327 (10) Å and from 98.9 (9) to 116.6 (8)°, respectively] deviate significantly from their standard values.

Related literature top

For related literature, see: Adam et al. (2001); Bohé et al. (1999); Cremer & Pople (1975); Davies & Coote (1988)

Experimental top

Title compound was prepared by reaction of (3R,4S)-3-methyl-4-phenyl-3,4-dihydroisoquinoleine (1.990 g, 9 mmol) and rac-(1-bromoethyl) benzene (6.2 ml, 45 mmol). The mixture was heated at 318 K for 36 h. The reaction was monitored by TLC.

Two diastereoisomers were obtained in 1:1 ratio. These diastereoisomers were separated by column chromatography. Each compound was treated by 1 equiv of AgBF4 in acetonitrile. Filtration and concentration in vacuo afforded a white solid.

Only one diastereoisomer (the title compound) was successfully recrystallized. Crystals were grown by placing a solution of this dastereoisomer (45mg) in CH3COCH3 (0.5 ml) at the bottom of a test tube, then carefully covering it with pure hexane (50 ml).The test tube was covered and left undisturbed.

Colorless crystals of the title compound appeared after several days. [α]D24 = -16.1 (c 0.4; CHCl3), m.p. 447 K.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.96 (methyl), or 0.98 Å (methine), with Uiso(H) = xUeq(C) where x = 1.5 for methyl H and 1.2 for all other H atoms.

The systematic absences permitted P41212 and P43212 as possible space groups, but in the absence of significant resonant scattering, it was not possible to distinguish between these enantiomeric space groups and the Friedel-equivalent reflections were merged. P41212 was selected because the enantiomer has been assigned by reference to unchanging chiral centres in the synthetic procedure.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NONIUS (Riche, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Johnson, 1965), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Environment of the BF4- anion in the crystal of the title compound. Geometric parameters for the non-conventional C–H···F hydrogen bonds shown as cyan dotted lines are provided in supplementary material section.
(3R,4S)-3-Methyl-4-phenyl-2-[(R)-1-phenylethyl]-3,4-dihydroisoquinolin-2-ium tetrafluoridoborate top
Crystal data top
C24H24N+·BF4Dx = 1.273 Mg m3
Mr = 413.25Cu Kα radiation, λ = 1.5418 Å
Tetragonal, P41212Cell parameters from 25 reflections
Hall symbol: P 4abw 2nwθ = 7.9–13.4°
a = 9.367 (4) ŵ = 0.81 mm1
c = 49.137 (14) ÅT = 293 K
V = 4311 (3) Å3Prism, colourless
Z = 80.33 × 0.26 × 0.26 mm
F(000) = 1728
Data collection top
Nonius CAD-4
diffractometer
Rint = 0.092
Radiation source: X-ray tubeθmax = 67.0°, θmin = 3.6°
Graphite monochromatorh = 1110
θ/2θ scansk = 311
10992 measured reflectionsl = 058
2353 independent reflections3 standard reflections every 60 min
1192 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: difference Fourier map
wR(F2) = 0.215H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1069P)2 + 0.3684P]
where P = (Fo2 + 2Fc2)/3
2353 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H24N+·BF4Z = 8
Mr = 413.25Cu Kα radiation
Tetragonal, P41212µ = 0.81 mm1
a = 9.367 (4) ÅT = 293 K
c = 49.137 (14) Å0.33 × 0.26 × 0.26 mm
V = 4311 (3) Å3
Data collection top
Nonius CAD-4
diffractometer
Rint = 0.092
10992 measured reflections3 standard reflections every 60 min
2353 independent reflections intensity decay: 1%
1192 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
2353 reflectionsΔρmin = 0.18 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5567 (6)0.4341 (7)0.05389 (13)0.0603 (17)
H10.55500.53200.05070.068*
N20.5135 (5)0.3893 (5)0.07701 (9)0.0529 (13)
C30.5210 (7)0.2316 (6)0.08264 (11)0.0539 (16)
H30.45090.20860.09680.060*
C40.4824 (6)0.1472 (6)0.05687 (10)0.0517 (15)
H40.50960.04770.06020.058*
C50.6173 (8)0.1095 (8)0.01273 (13)0.0717 (19)
H50.59330.01310.01290.080*
C60.6996 (9)0.1639 (10)0.00821 (14)0.085 (2)
H60.73340.10310.02170.095*
C70.7322 (8)0.3084 (10)0.00929 (14)0.083 (2)
H70.78640.34440.02360.093*
C80.6845 (8)0.3968 (8)0.01059 (12)0.072 (2)
H80.70320.49410.00960.081*
C90.6083 (6)0.3428 (7)0.03230 (11)0.0565 (16)
C100.5708 (6)0.1985 (7)0.03335 (12)0.0552 (16)
C110.6686 (7)0.1929 (8)0.09325 (14)0.077 (2)
H11A0.67830.09090.09380.088*
H11B0.68060.23110.11120.088*
H11C0.73990.23210.08140.088*
C120.3215 (7)0.1476 (7)0.05072 (12)0.0581 (17)
C130.2383 (8)0.0355 (8)0.05968 (13)0.074 (2)
H130.28070.03810.06950.083*
C140.0943 (8)0.0300 (9)0.05445 (14)0.085 (2)
H140.04110.04790.06040.095*
C150.0293 (8)0.1376 (11)0.04074 (16)0.090 (3)
H150.06830.13500.03730.100*
C160.1104 (9)0.2492 (10)0.03213 (16)0.100 (3)
H160.06720.32340.02260.113*
C170.2526 (8)0.2549 (9)0.03710 (15)0.087 (2)
H170.30460.33340.03110.097*
C180.4575 (7)0.4894 (7)0.09788 (11)0.0611 (17)
H180.48120.58560.09150.068*
C190.5320 (8)0.4718 (8)0.12507 (14)0.087 (2)
H19A0.50690.55000.13680.100*
H19B0.63350.47080.12230.100*
H19C0.50270.38360.13330.100*
C200.2977 (7)0.4823 (7)0.09907 (12)0.0562 (16)
C210.2243 (8)0.3923 (8)0.11650 (14)0.079 (2)
H210.27360.33170.12820.088*
C220.0726 (9)0.3937 (11)0.1163 (2)0.102 (3)
H220.02200.33370.12790.115*
C230.0022 (10)0.4820 (12)0.09934 (19)0.102 (3)
H230.09710.48270.09960.114*
C240.0700 (10)0.5679 (12)0.08225 (19)0.114 (3)
H240.01900.62580.07030.128*
C250.2198 (9)0.5703 (9)0.08234 (15)0.089 (2)
H250.26750.63300.07080.100*
B260.7073 (11)0.7827 (9)0.0634 (2)0.078 (3)
F270.5714 (5)0.7850 (5)0.05584 (14)0.151 (3)
F280.7744 (6)0.9020 (6)0.06260 (15)0.160 (3)
F290.7185 (7)0.7172 (11)0.08622 (15)0.248 (5)
F300.7760 (9)0.6905 (9)0.0478 (2)0.237 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (4)0.063 (4)0.066 (4)0.017 (3)0.004 (3)0.003 (3)
N20.053 (3)0.054 (3)0.052 (3)0.002 (3)0.007 (2)0.005 (2)
C30.056 (4)0.054 (4)0.051 (3)0.004 (3)0.006 (3)0.007 (3)
C40.050 (4)0.051 (4)0.054 (3)0.006 (3)0.002 (3)0.002 (3)
C50.072 (5)0.079 (5)0.064 (4)0.000 (4)0.002 (4)0.013 (4)
C60.088 (6)0.105 (7)0.062 (4)0.003 (5)0.016 (4)0.013 (5)
C70.075 (5)0.109 (7)0.065 (4)0.006 (5)0.021 (4)0.001 (5)
C80.072 (5)0.082 (5)0.063 (4)0.013 (4)0.008 (4)0.004 (4)
C90.052 (4)0.068 (4)0.050 (3)0.008 (3)0.010 (3)0.001 (3)
C100.052 (4)0.061 (4)0.053 (3)0.006 (3)0.008 (3)0.001 (3)
C110.063 (5)0.095 (6)0.072 (4)0.009 (4)0.016 (4)0.004 (4)
C120.054 (4)0.066 (4)0.054 (3)0.016 (4)0.010 (3)0.004 (3)
C130.074 (5)0.082 (5)0.066 (4)0.026 (4)0.004 (4)0.004 (4)
C140.068 (5)0.107 (7)0.079 (5)0.043 (5)0.014 (4)0.018 (5)
C150.043 (4)0.135 (8)0.090 (5)0.009 (5)0.001 (4)0.002 (6)
C160.067 (6)0.115 (7)0.119 (7)0.003 (5)0.018 (5)0.024 (6)
C170.053 (5)0.100 (6)0.107 (5)0.014 (4)0.012 (4)0.023 (5)
C180.065 (4)0.060 (4)0.058 (3)0.001 (3)0.007 (3)0.007 (3)
C190.078 (5)0.111 (7)0.072 (4)0.003 (5)0.006 (4)0.023 (5)
C200.058 (4)0.050 (4)0.060 (4)0.001 (3)0.007 (3)0.004 (3)
C210.075 (5)0.074 (5)0.087 (5)0.005 (4)0.008 (4)0.022 (4)
C220.066 (6)0.106 (7)0.135 (8)0.011 (5)0.030 (5)0.008 (6)
C230.062 (5)0.133 (9)0.110 (7)0.021 (6)0.008 (5)0.015 (6)
C240.076 (7)0.164 (11)0.103 (7)0.029 (6)0.003 (5)0.003 (7)
C250.088 (6)0.100 (7)0.080 (5)0.008 (5)0.015 (5)0.014 (5)
B260.078 (7)0.047 (5)0.108 (7)0.003 (5)0.021 (6)0.003 (5)
F270.085 (4)0.079 (3)0.287 (7)0.014 (3)0.087 (4)0.040 (4)
F280.098 (4)0.106 (4)0.277 (7)0.051 (3)0.015 (4)0.001 (5)
F290.135 (6)0.415 (15)0.194 (6)0.101 (7)0.062 (5)0.166 (9)
F300.176 (8)0.193 (8)0.343 (11)0.014 (6)0.014 (7)0.147 (8)
Geometric parameters (Å, º) top
C1—N21.277 (7)C14—C151.356 (10)
C1—C91.446 (8)C14—H140.9300
C1—H10.9300C15—C161.360 (11)
N2—C181.485 (7)C15—H150.9300
N2—C31.505 (7)C16—C171.356 (10)
C3—C111.521 (8)C16—H160.9300
C3—C41.536 (8)C17—H170.9300
C3—H30.9800C18—C201.500 (9)
C4—C101.500 (8)C18—C191.516 (9)
C4—C121.537 (8)C18—H180.9800
C4—H40.9800C19—H19A0.9600
C5—C101.383 (9)C19—H19B0.9600
C5—C61.383 (9)C19—H19C0.9600
C5—H50.9300C20—C251.374 (9)
C6—C71.389 (10)C20—C211.385 (9)
C6—H60.9300C21—C221.421 (11)
C7—C81.356 (9)C21—H210.9300
C7—H70.9300C22—C231.347 (11)
C8—C91.379 (8)C22—H220.9300
C8—H80.9300C23—C241.325 (12)
C9—C101.398 (8)C23—H230.9300
C11—H11A0.9600C24—C251.403 (11)
C11—H11B0.9600C24—H240.9300
C11—H11C0.9600C25—H250.9300
C12—C171.369 (10)B26—F291.281 (10)
C12—C131.380 (9)B26—F281.283 (9)
C13—C141.374 (10)B26—F301.323 (11)
C13—H130.9300B26—F271.327 (10)
N2—C1—C9124.4 (6)C15—C14—C13120.4 (8)
N2—C1—H1117.8C15—C14—H14119.8
C9—C1—H1117.8C13—C14—H14119.8
C1—N2—C18121.3 (5)C14—C15—C16118.3 (7)
C1—N2—C3118.1 (5)C14—C15—H15120.8
C18—N2—C3120.6 (5)C16—C15—H15120.8
N2—C3—C11109.9 (5)C17—C16—C15121.5 (8)
N2—C3—C4110.0 (4)C17—C16—H16119.2
C11—C3—C4112.0 (5)C15—C16—H16119.2
N2—C3—H3108.3C16—C17—C12121.5 (8)
C11—C3—H3108.3C16—C17—H17119.2
C4—C3—H3108.3C12—C17—H17119.2
C10—C4—C3109.9 (5)N2—C18—C20110.6 (5)
C10—C4—C12112.9 (5)N2—C18—C19112.2 (5)
C3—C4—C12113.1 (5)C20—C18—C19114.8 (5)
C10—C4—H4106.9N2—C18—H18106.2
C3—C4—H4106.9C20—C18—H18106.2
C12—C4—H4106.9C19—C18—H18106.2
C10—C5—C6119.9 (7)C18—C19—H19A109.5
C10—C5—H5120.0C18—C19—H19B109.5
C6—C5—H5120.0H19A—C19—H19B109.5
C5—C6—C7120.7 (7)C18—C19—H19C109.5
C5—C6—H6119.7H19A—C19—H19C109.5
C7—C6—H6119.7H19B—C19—H19C109.5
C8—C7—C6119.7 (7)C25—C20—C21118.2 (7)
C8—C7—H7120.2C25—C20—C18118.7 (6)
C6—C7—H7120.2C21—C20—C18123.1 (6)
C7—C8—C9120.2 (7)C20—C21—C22119.1 (7)
C7—C8—H8119.9C20—C21—H21120.4
C9—C8—H8119.9C22—C21—H21120.4
C8—C9—C10120.9 (6)C23—C22—C21120.0 (8)
C8—C9—C1121.6 (6)C23—C22—H22120.0
C10—C9—C1117.4 (5)C21—C22—H22120.0
C5—C10—C9118.5 (6)C24—C23—C22122.0 (9)
C5—C10—C4123.0 (6)C24—C23—H23119.0
C9—C10—C4118.5 (5)C22—C23—H23119.0
C3—C11—H11A109.5C23—C24—C25119.2 (9)
C3—C11—H11B109.5C23—C24—H24120.4
H11A—C11—H11B109.5C25—C24—H24120.4
C3—C11—H11C109.5C20—C25—C24121.5 (8)
H11A—C11—H11C109.5C20—C25—H25119.2
H11B—C11—H11C109.5C24—C25—H25119.2
C17—C12—C13116.6 (6)F29—B26—F28113.9 (9)
C17—C12—C4124.1 (6)F29—B26—F3098.9 (9)
C13—C12—C4119.3 (6)F28—B26—F30108.2 (9)
C14—C13—C12121.5 (8)F29—B26—F27109.4 (9)
C14—C13—H13119.2F28—B26—F27116.6 (8)
C12—C13—H13119.2F30—B26—F27108.3 (8)
C9—C1—N2—C18178.0 (5)C3—C4—C12—C1783.7 (7)
C9—C1—N2—C32.2 (9)C10—C4—C12—C13139.5 (6)
C1—N2—C3—C1185.5 (6)C3—C4—C12—C1395.0 (7)
C18—N2—C3—C1194.3 (6)C17—C12—C13—C141.9 (10)
C1—N2—C3—C438.2 (7)C4—C12—C13—C14179.3 (6)
C18—N2—C3—C4141.9 (5)C12—C13—C14—C151.5 (11)
N2—C3—C4—C1051.8 (6)C13—C14—C15—C160.7 (12)
C11—C3—C4—C1070.7 (6)C14—C15—C16—C170.4 (13)
N2—C3—C4—C1275.3 (6)C15—C16—C17—C120.8 (14)
C11—C3—C4—C12162.2 (6)C13—C12—C17—C161.5 (11)
C10—C5—C6—C72.2 (11)C4—C12—C17—C16179.7 (7)
C5—C6—C7—C80.9 (12)C1—N2—C18—C20103.3 (7)
C6—C7—C8—C92.3 (11)C3—N2—C18—C2076.9 (7)
C7—C8—C9—C104.3 (10)C1—N2—C18—C19127.1 (6)
C7—C8—C9—C1179.6 (6)C3—N2—C18—C1952.7 (8)
N2—C1—C9—C8164.3 (6)N2—C18—C20—C2588.9 (7)
N2—C1—C9—C1019.5 (9)C19—C18—C20—C25142.9 (7)
C6—C5—C10—C90.3 (10)N2—C18—C20—C2191.9 (7)
C6—C5—C10—C4179.4 (6)C19—C18—C20—C2136.3 (9)
C8—C9—C10—C52.9 (9)C25—C20—C21—C220.4 (11)
C1—C9—C10—C5179.2 (6)C18—C20—C21—C22179.6 (7)
C8—C9—C10—C4177.4 (6)C20—C21—C22—C230.1 (13)
C1—C9—C10—C41.1 (9)C21—C22—C23—C240.9 (15)
C3—C4—C10—C5146.2 (6)C22—C23—C24—C252.0 (16)
C12—C4—C10—C586.6 (7)C21—C20—C25—C241.5 (12)
C3—C4—C10—C933.5 (8)C18—C20—C25—C24179.3 (7)
C12—C4—C10—C993.7 (7)C23—C24—C25—C202.3 (15)
C10—C4—C12—C1741.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F270.932.393.292 (9)164
C1—H1···F300.932.553.170 (12)125
C18—H18···F290.982.553.292 (10)132
C24—H24···F30i0.932.603.430 (15)148
C4—H4···F27ii0.982.543.498 (8)165
C11—H11A···F28ii0.962.503.268 (11)137
C14—H14···F28iii0.932.543.249 (10)133
C7—H7···F27iv0.932.653.399 (10)138
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x1, y1, z; (iv) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F270.932.393.292 (9)163.8
C1—H1···F300.932.553.170 (12)124.8
C18—H18···F290.982.553.292 (10)132.2
C24—H24···F30i0.932.603.430 (15)148.3
C4—H4···F27ii0.982.543.498 (8)165.2
C11—H11A···F28ii0.962.503.268 (11)136.8
C14—H14···F28iii0.932.543.249 (10)133.4
C7—H7···F27iv0.932.653.399 (10)137.8
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x1, y1, z; (iv) y, x, z.
 

Acknowledgements

The authors thank Dr Marie-Thérèse Martin for her help and advice in NMR spectroscopy.

References

First citationAdam, W., Saha-Molier, C. R. & Ganeshpure, P. A. (2001). Chem. Rev. 101, 3499.  Web of Science CrossRef PubMed Google Scholar
First citationBohé, L., Lusinchi, M. & Lusinchi, X. (1999). Tetrahedron, 55, 141–154.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDavies, S. G. & Coote, S. J. (1988). J. Chem. Soc. Chem. Commun. pp. 648–649.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiche, C. (1989). NONIUS. Institut de Chimie des Substances Naturelles du CNRS, France.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds