metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[5-(pyridin-2-yl-κN)tetra­zolido-κN1]copper(II)

aSchool of Mechatronic Engineering, China University of Mining and Technology (Xuzhou), Jiangsu 221116, People's Republic of China, bOpto-Electronic Engineering College, Zaozhuang University, Shandong 277160, People's Republic of China, and cCollege of Chemistry Chemical Engineering and Materials Science, Zaozhuang University, Shandong 277160, People's Republic of China
*Correspondence e-mail: lijq786@163.com

(Received 17 January 2014; accepted 29 January 2014; online 5 February 2014)

In the title complex, [Cu(C6H4N5)2], the CuII ion lies on an inversion center and is coordinated by two chelating 5-(pyridin-2-yl)tetra­zolide ligands in a slightly distorted square-planar coordination geometry. In the crystal, ππ stacking inter­actions, with centroid–centroid distances in the range 3.4301 (14)–3.4387 (13) Å, link the complex mol­ecules along [101].

Related literature

For background to coordination complexes, see: Lu et al. (2011[Lu, Z.-Z., Zhang, R., Li, Y.-Z., Guo, Z.-J. & Zheng, H.-G. (2011). J. Am. Chem. Soc. pp. 4172-4174.]); Yang et al. (2012[Yang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J. E., Tang, C. C., Allan, D. R., Rizkallah, P. J., Hubberstey, P., Champness, N. R., Thomas, K. M., Blake, A. J. & Schröder, M. (2012). Nat. Mater. pp. 710-716.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H4N5)2]

  • Mr = 355.82

  • Monoclinic, P 21 /c

  • a = 5.5391 (9) Å

  • b = 13.128 (2) Å

  • c = 8.7950 (15) Å

  • β = 97.650 (3)°

  • V = 633.88 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 291 K

  • 0.44 × 0.35 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.486, Tmax = 0.593

  • 3328 measured reflections

  • 1241 independent reflections

  • 1063 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.03

  • 1241 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA..]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coordination complexes (polymers) have drawn broad attention in recent decades due to their promising applications in catalysis, sensing and gas adsorption/separation (Yang et al., 2012; Lu et al., 2011). Despite several investigations, a detailed analysis of single crystal structures of coordination complexes is also of importance for the study of specific bonding between supramolecules in the solid state.

We report here a coordination complex, formulated as Cu(pytz)2 (pytz = 5-(pyridin-2-yl)tetrazolide). The molecular structure of the title compound is shown in Fig. 1. The CuII ion is located on an inversion center. The pytz ligand coordinates to the CuII ion via two symmetry related pyridine N atoms and two symmetry related tetrazolide N atoms. The Cu—N bond distances are 1.956 (2) and 2.021 (2) Å. In the crystal, ππ stacking interactions with centroid–centroid distances of 3.4386 (13)Å for Cg1···Cg3(-x+1, -y+1, -z+1), 3.4387 (14)Å for Cg2···Cg3 (-1+x, y, z) and 3.4301 (14)Å for Cg3–Cg3 (-1+x, -1+y, -1+z) link the complex molecules along [101]. Cg1, Cg2 and Cg3 are the centroids of the Cu1/N1/C5/C6/N2, Cu1/N1i/C5i/C6i/N2i (symmetry code (i):-x, -y+1, -z+1) and N2/N3/N4/N5/N6 rings, respectively. These stacking interactions allow for intermolecular Cu···N contacts of 2.993 (1)Å (Fig. 2).

Related literature top

For background to coordination complexes, see: Lu et al. (2011); Yang et al. (2012).

Experimental top

The title complex was synthesized by the addition of CuNO3 (2 mmol) to an ethanol solution of Hpytz (4 mmol). The mixed solution was allowed to evaporated solwly at room temperature, and blue prismatic crystals were isolated in about 15 days. Analysis calculated for C12H8N10Cu: C 40.51, H 2.27, N 39.37%; Found: C 40.48, H 2,21, N 39.30%.

Refinement top

The H atoms on carbon were placed in calculated positions [C—H = 0.93 Å (aromatic), and Uiso(H) = 1.2Ueq(Caromatic)] using a riding model approximation.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator (-x, -y+1, -z+1).
[Figure 2] Fig. 2. Part of the crystal structure indicating ππ stacking interactions along [101] and dashed lines to show closest intermolecular Cu···N contacts.
Bis[5-(pyridin-2-yl-κN)tetrazolido-κN1]copper(II) top
Crystal data top
[Cu(C6H4N5)2]F(000) = 358
Mr = 355.82Dx = 1.864 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5391 (9) ÅCell parameters from 1641 reflections
b = 13.128 (2) Åθ = 2.3–25.1°
c = 8.7950 (15) ŵ = 1.74 mm1
β = 97.650 (3)°T = 291 K
V = 633.88 (18) Å3Block, blue
Z = 20.44 × 0.35 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1241 independent reflections
Radiation source: fine-focus sealed tube1063 reflections with I > 2σ(I)
Detector resolution: 10 pixels mm-1Rint = 0.037
ω scanθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 66
Tmin = 0.486, Tmax = 0.593k = 916
3328 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1241 reflectionsΔρmax = 0.48 e Å3
106 parametersΔρmin = 0.42 e Å3
Crystal data top
[Cu(C6H4N5)2]V = 633.88 (18) Å3
Mr = 355.82Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.5391 (9) ŵ = 1.74 mm1
b = 13.128 (2) ÅT = 291 K
c = 8.7950 (15) Å0.44 × 0.35 × 0.30 mm
β = 97.650 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1241 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1063 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.593Rint = 0.037
3328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
1241 reflectionsΔρmin = 0.42 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.03232 (18)
N30.4142 (4)0.54997 (16)0.3062 (2)0.0405 (5)
N50.5268 (4)0.39183 (15)0.2804 (2)0.0396 (5)
N10.0300 (3)0.34667 (17)0.49523 (18)0.0316 (5)
C50.2056 (4)0.31234 (17)0.4168 (2)0.0303 (5)
N20.2605 (4)0.49021 (12)0.3709 (2)0.0325 (5)
C60.3376 (4)0.39545 (17)0.3530 (2)0.0311 (5)
C40.2523 (4)0.21184 (17)0.3970 (3)0.0389 (6)
H40.37750.19130.34330.047*
N40.5743 (5)0.49081 (14)0.2522 (3)0.0430 (6)
C10.1079 (4)0.27709 (18)0.5552 (3)0.0376 (6)
H10.23070.29900.60990.045*
C30.1085 (5)0.14121 (19)0.4590 (3)0.0426 (6)
H30.13460.07190.44710.051*
C20.0724 (5)0.17453 (18)0.5379 (3)0.0421 (6)
H20.17140.12790.57970.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0308 (3)0.0254 (3)0.0450 (3)0.00163 (14)0.02087 (19)0.00056 (15)
N30.0396 (12)0.0350 (12)0.0520 (13)0.0013 (10)0.0251 (10)0.0024 (10)
N50.0390 (11)0.0353 (11)0.0491 (12)0.0004 (9)0.0231 (9)0.0020 (9)
N10.0297 (10)0.0279 (11)0.0393 (11)0.0002 (7)0.0128 (9)0.0002 (7)
C50.0277 (11)0.0298 (12)0.0351 (11)0.0005 (9)0.0105 (9)0.0012 (9)
N20.0316 (11)0.0285 (11)0.0410 (12)0.0005 (7)0.0180 (9)0.0007 (7)
C60.0301 (12)0.0283 (11)0.0369 (12)0.0000 (9)0.0119 (9)0.0027 (9)
C40.0399 (13)0.0331 (13)0.0473 (14)0.0015 (10)0.0190 (11)0.0042 (10)
N40.0422 (13)0.0370 (13)0.0562 (14)0.0011 (8)0.0298 (11)0.0010 (9)
C10.0347 (12)0.0342 (13)0.0470 (14)0.0003 (10)0.0176 (11)0.0009 (10)
C30.0496 (15)0.0266 (12)0.0556 (15)0.0015 (11)0.0216 (13)0.0033 (11)
C20.0461 (14)0.0324 (14)0.0512 (15)0.0061 (11)0.0193 (12)0.0030 (11)
Geometric parameters (Å, º) top
Cu1—N21.956 (2)C5—C41.360 (3)
Cu1—N2i1.956 (2)C5—C61.466 (3)
Cu1—N1i2.021 (2)N2—C61.331 (3)
Cu1—N12.021 (2)C4—C31.381 (3)
N3—N41.314 (3)C4—H40.9300
N3—N21.339 (3)C1—C21.372 (3)
N5—C61.299 (3)C1—H10.9300
N5—N41.355 (2)C3—C21.364 (4)
N1—C11.343 (3)C3—H30.9300
N1—C51.343 (3)C2—H20.9300
N2—Cu1—N2i180.0N5—C6—N2112.6 (2)
N2—Cu1—N1i98.42 (7)N5—C6—C5129.6 (2)
N2i—Cu1—N1i81.58 (7)N2—C6—C5117.8 (2)
N2—Cu1—N181.58 (7)C5—C4—C3118.1 (2)
N2i—Cu1—N198.42 (7)C5—C4—H4120.9
N1i—Cu1—N1180.0C3—C4—H4120.9
N4—N3—N2107.76 (19)N3—N4—N5110.1 (2)
C6—N5—N4104.1 (2)N1—C1—C2121.8 (2)
C1—N1—C5117.5 (2)N1—C1—H1119.1
C1—N1—Cu1128.11 (16)C2—C1—H1119.1
C5—N1—Cu1114.33 (15)C2—C3—C4119.1 (2)
N1—C5—C4123.7 (2)C2—C3—H3120.4
N1—C5—C6112.3 (2)C4—C3—H3120.4
C4—C5—C6124.1 (2)C3—C2—C1119.8 (2)
C6—N2—N3105.40 (19)C3—C2—H2120.1
C6—N2—Cu1113.75 (15)C1—C2—H2120.1
N3—N2—Cu1140.20 (15)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C6H4N5)2]
Mr355.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)5.5391 (9), 13.128 (2), 8.7950 (15)
β (°) 97.650 (3)
V3)633.88 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.44 × 0.35 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.486, 0.593
No. of measured, independent and
observed [I > 2σ(I)] reflections
3328, 1241, 1063
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.03
No. of reflections1241
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.42

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant 21203164) and China Postdoctoral Science Foundation funded project (grant 2013M531586).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA  Google Scholar
First citationLu, Z.-Z., Zhang, R., Li, Y.-Z., Guo, Z.-J. & Zheng, H.-G. (2011). J. Am. Chem. Soc. pp. 4172–4174.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA..  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J. E., Tang, C. C., Allan, D. R., Rizkallah, P. J., Hubberstey, P., Champness, N. R., Thomas, K. M., Blake, A. J. & Schröder, M. (2012). Nat. Mater. pp. 710–716.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds