metal-organic compounds
Bis[5-(pyridin-2-yl-κN)tetrazolido-κN1]copper(II)
aSchool of Mechatronic Engineering, China University of Mining and Technology (Xuzhou), Jiangsu 221116, People's Republic of China, bOpto-Electronic Engineering College, Zaozhuang University, Shandong 277160, People's Republic of China, and cCollege of Chemistry Chemical Engineering and Materials Science, Zaozhuang University, Shandong 277160, People's Republic of China
*Correspondence e-mail: lijq786@163.com
In the title complex, [Cu(C6H4N5)2], the CuII ion lies on an inversion center and is coordinated by two chelating 5-(pyridin-2-yl)tetrazolide ligands in a slightly distorted square-planar coordination geometry. In the crystal, π–π stacking interactions, with centroid–centroid distances in the range 3.4301 (14)–3.4387 (13) Å, link the complex molecules along [101].
CCDC reference: 984058
Related literature
For background to coordination complexes, see: Lu et al. (2011); Yang et al. (2012).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 984058
10.1107/S1600536814002062/lh5686sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814002062/lh5686Isup2.hkl
The title complex was synthesized by the addition of CuNO3 (2 mmol) to an ethanol solution of Hpytz (4 mmol). The mixed solution was allowed to evaporated solwly at room temperature, and blue prismatic crystals were isolated in about 15 days. Analysis calculated for C12H8N10Cu: C 40.51, H 2.27, N 39.37%; Found: C 40.48, H 2,21, N 39.30%.
The H atoms on carbon were placed in calculated positions [C—H = 0.93 Å (aromatic), and Uiso(H) = 1.2Ueq(Caromatic)] using a riding model approximation.
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C6H4N5)2] | F(000) = 358 |
Mr = 355.82 | Dx = 1.864 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5391 (9) Å | Cell parameters from 1641 reflections |
b = 13.128 (2) Å | θ = 2.3–25.1° |
c = 8.7950 (15) Å | µ = 1.74 mm−1 |
β = 97.650 (3)° | T = 291 K |
V = 633.88 (18) Å3 | Block, blue |
Z = 2 | 0.44 × 0.35 × 0.30 mm |
Rigaku R-AXIS RAPID diffractometer | 1241 independent reflections |
Radiation source: fine-focus sealed tube | 1063 reflections with I > 2σ(I) |
Detector resolution: 10 pixels mm-1 | Rint = 0.037 |
ω scan | θmax = 26.0°, θmin = 2.8° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −6→6 |
Tmin = 0.486, Tmax = 0.593 | k = −9→16 |
3328 measured reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(Fo2) + (0.055P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1241 reflections | Δρmax = 0.48 e Å−3 |
106 parameters | Δρmin = −0.42 e Å−3 |
[Cu(C6H4N5)2] | V = 633.88 (18) Å3 |
Mr = 355.82 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.5391 (9) Å | µ = 1.74 mm−1 |
b = 13.128 (2) Å | T = 291 K |
c = 8.7950 (15) Å | 0.44 × 0.35 × 0.30 mm |
β = 97.650 (3)° |
Rigaku R-AXIS RAPID diffractometer | 1241 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1063 reflections with I > 2σ(I) |
Tmin = 0.486, Tmax = 0.593 | Rint = 0.037 |
3328 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.48 e Å−3 |
1241 reflections | Δρmin = −0.42 e Å−3 |
106 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.5000 | 0.5000 | 0.03232 (18) | |
N3 | 0.4142 (4) | 0.54997 (16) | 0.3062 (2) | 0.0405 (5) | |
N5 | 0.5268 (4) | 0.39183 (15) | 0.2804 (2) | 0.0396 (5) | |
N1 | 0.0300 (3) | 0.34667 (17) | 0.49523 (18) | 0.0316 (5) | |
C5 | 0.2056 (4) | 0.31234 (17) | 0.4168 (2) | 0.0303 (5) | |
N2 | 0.2605 (4) | 0.49021 (12) | 0.3709 (2) | 0.0325 (5) | |
C6 | 0.3376 (4) | 0.39545 (17) | 0.3530 (2) | 0.0311 (5) | |
C4 | 0.2523 (4) | 0.21184 (17) | 0.3970 (3) | 0.0389 (6) | |
H4 | 0.3775 | 0.1913 | 0.3433 | 0.047* | |
N4 | 0.5743 (5) | 0.49081 (14) | 0.2522 (3) | 0.0430 (6) | |
C1 | −0.1079 (4) | 0.27709 (18) | 0.5552 (3) | 0.0376 (6) | |
H1 | −0.2307 | 0.2990 | 0.6099 | 0.045* | |
C3 | 0.1085 (5) | 0.14121 (19) | 0.4590 (3) | 0.0426 (6) | |
H3 | 0.1346 | 0.0719 | 0.4471 | 0.051* | |
C2 | −0.0724 (5) | 0.17453 (18) | 0.5379 (3) | 0.0421 (6) | |
H2 | −0.1714 | 0.1279 | 0.5797 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0308 (3) | 0.0254 (3) | 0.0450 (3) | 0.00163 (14) | 0.02087 (19) | 0.00056 (15) |
N3 | 0.0396 (12) | 0.0350 (12) | 0.0520 (13) | −0.0013 (10) | 0.0251 (10) | 0.0024 (10) |
N5 | 0.0390 (11) | 0.0353 (11) | 0.0491 (12) | −0.0004 (9) | 0.0231 (9) | −0.0020 (9) |
N1 | 0.0297 (10) | 0.0279 (11) | 0.0393 (11) | 0.0002 (7) | 0.0128 (9) | 0.0002 (7) |
C5 | 0.0277 (11) | 0.0298 (12) | 0.0351 (11) | −0.0005 (9) | 0.0105 (9) | −0.0012 (9) |
N2 | 0.0316 (11) | 0.0285 (11) | 0.0410 (12) | −0.0005 (7) | 0.0180 (9) | 0.0007 (7) |
C6 | 0.0301 (12) | 0.0283 (11) | 0.0369 (12) | 0.0000 (9) | 0.0119 (9) | −0.0027 (9) |
C4 | 0.0399 (13) | 0.0331 (13) | 0.0473 (14) | 0.0015 (10) | 0.0190 (11) | −0.0042 (10) |
N4 | 0.0422 (13) | 0.0370 (13) | 0.0562 (14) | −0.0011 (8) | 0.0298 (11) | −0.0010 (9) |
C1 | 0.0347 (12) | 0.0342 (13) | 0.0470 (14) | −0.0003 (10) | 0.0176 (11) | 0.0009 (10) |
C3 | 0.0496 (15) | 0.0266 (12) | 0.0556 (15) | 0.0015 (11) | 0.0216 (13) | −0.0033 (11) |
C2 | 0.0461 (14) | 0.0324 (14) | 0.0512 (15) | −0.0061 (11) | 0.0193 (12) | 0.0030 (11) |
Cu1—N2 | 1.956 (2) | C5—C4 | 1.360 (3) |
Cu1—N2i | 1.956 (2) | C5—C6 | 1.466 (3) |
Cu1—N1i | 2.021 (2) | N2—C6 | 1.331 (3) |
Cu1—N1 | 2.021 (2) | C4—C3 | 1.381 (3) |
N3—N4 | 1.314 (3) | C4—H4 | 0.9300 |
N3—N2 | 1.339 (3) | C1—C2 | 1.372 (3) |
N5—C6 | 1.299 (3) | C1—H1 | 0.9300 |
N5—N4 | 1.355 (2) | C3—C2 | 1.364 (4) |
N1—C1 | 1.343 (3) | C3—H3 | 0.9300 |
N1—C5 | 1.343 (3) | C2—H2 | 0.9300 |
N2—Cu1—N2i | 180.0 | N5—C6—N2 | 112.6 (2) |
N2—Cu1—N1i | 98.42 (7) | N5—C6—C5 | 129.6 (2) |
N2i—Cu1—N1i | 81.58 (7) | N2—C6—C5 | 117.8 (2) |
N2—Cu1—N1 | 81.58 (7) | C5—C4—C3 | 118.1 (2) |
N2i—Cu1—N1 | 98.42 (7) | C5—C4—H4 | 120.9 |
N1i—Cu1—N1 | 180.0 | C3—C4—H4 | 120.9 |
N4—N3—N2 | 107.76 (19) | N3—N4—N5 | 110.1 (2) |
C6—N5—N4 | 104.1 (2) | N1—C1—C2 | 121.8 (2) |
C1—N1—C5 | 117.5 (2) | N1—C1—H1 | 119.1 |
C1—N1—Cu1 | 128.11 (16) | C2—C1—H1 | 119.1 |
C5—N1—Cu1 | 114.33 (15) | C2—C3—C4 | 119.1 (2) |
N1—C5—C4 | 123.7 (2) | C2—C3—H3 | 120.4 |
N1—C5—C6 | 112.3 (2) | C4—C3—H3 | 120.4 |
C4—C5—C6 | 124.1 (2) | C3—C2—C1 | 119.8 (2) |
C6—N2—N3 | 105.40 (19) | C3—C2—H2 | 120.1 |
C6—N2—Cu1 | 113.75 (15) | C1—C2—H2 | 120.1 |
N3—N2—Cu1 | 140.20 (15) |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H4N5)2] |
Mr | 355.82 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 291 |
a, b, c (Å) | 5.5391 (9), 13.128 (2), 8.7950 (15) |
β (°) | 97.650 (3) |
V (Å3) | 633.88 (18) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.74 |
Crystal size (mm) | 0.44 × 0.35 × 0.30 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.486, 0.593 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3328, 1241, 1063 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.087, 1.03 |
No. of reflections | 1241 |
No. of parameters | 106 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.42 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant 21203164) and China Postdoctoral Science Foundation funded project (grant 2013M531586).
References
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA Google Scholar
Lu, Z.-Z., Zhang, R., Li, Y.-Z., Guo, Z.-J. & Zheng, H.-G. (2011). J. Am. Chem. Soc. pp. 4172–4174. Web of Science CSD CrossRef Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J. E., Tang, C. C., Allan, D. R., Rizkallah, P. J., Hubberstey, P., Champness, N. R., Thomas, K. M., Blake, A. J. & Schröder, M. (2012). Nat. Mater. pp. 710–716. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination complexes (polymers) have drawn broad attention in recent decades due to their promising applications in catalysis, sensing and gas adsorption/separation (Yang et al., 2012; Lu et al., 2011). Despite several investigations, a detailed analysis of single crystal structures of coordination complexes is also of importance for the study of specific bonding between supramolecules in the solid state.
We report here a coordination complex, formulated as Cu(pytz)2 (pytz = 5-(pyridin-2-yl)tetrazolide). The molecular structure of the title compound is shown in Fig. 1. The CuII ion is located on an inversion center. The pytz ligand coordinates to the CuII ion via two symmetry related pyridine N atoms and two symmetry related tetrazolide N atoms. The Cu—N bond distances are 1.956 (2) and 2.021 (2) Å. In the crystal, π–π stacking interactions with centroid–centroid distances of 3.4386 (13)Å for Cg1···Cg3(-x+1, -y+1, -z+1), 3.4387 (14)Å for Cg2···Cg3 (-1+x, y, z) and 3.4301 (14)Å for Cg3–Cg3 (-1+x, -1+y, -1+z) link the complex molecules along [101]. Cg1, Cg2 and Cg3 are the centroids of the Cu1/N1/C5/C6/N2, Cu1/N1i/C5i/C6i/N2i (symmetry code (i):-x, -y+1, -z+1) and N2/N3/N4/N5/N6 rings, respectively. These stacking interactions allow for intermolecular Cu···N contacts of 2.993 (1)Å (Fig. 2).