metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m106-m107

Di­aqua­bis­­(cinnamato-κ2O,O′)cadmium

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, bDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA, and cDepartment of Chemistry, Faculty of Science, Thaksin University, (Patthalung Campus), Patthalung 93110, Thailand
*Correspondence e-mail: sumpun.w@psu.ac.th

(Received 23 January 2014; accepted 18 February 2014; online 26 February 2014)

The title complex, [Cd(C9H7O2)2(H2O)2], was obtained as an unintended product of the reaction of cadmium nitrate with hexa­methyl­ene­tetra­mine and cinnamic acid. The CdII ion lies on a twofold rotation axis and is coordinated in a slightly distorted trigonal–prismatic environment. In the crystal, the V-shaped mol­ecules are arranged in an inter­locking fashion along [010] and O—H⋯O hydrogen bonds link the mol­ecules, forming a two-dimensional network parallel to (001).

Related literature

For a previous conference report of the title compound, see: Amma et al. (1983[Amma, E. L., Griffith, E. A. H., Charles, N. G. & Rodesiler, P. F. (1983). ACS Abstr. Papers, p. 39.]). For related structures, see: Hosomi et al. (2000[Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e123.]); Mak et al. (1985[Mak, T. C. W., Yip, W. H., O'Reilly, E. J., Smith, G. & Kennard, C. H. L. (1985). Inorg. Chim. Acta, 100, 267-273.]); Smith et al. (1981[Smith, G., O'Reilly, E. J., Kennard, C. H. L., Stadnicka, K. & Oleksyn, B. (1981). Inorg. Chim. Acta, 47, 111-120.]); O'Reilly et al. (1984[O'Reilly, E. J., Smith, G. & Kennard, C. H. L. (1984). Inorg. Chim. Acta, 90, 63-71.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H7O2)2(H2O)2]

  • Mr = 442.72

  • Monoclinic, C 2

  • a = 11.7872 (12) Å

  • b = 5.3498 (5) Å

  • c = 13.8817 (14) Å

  • β = 99.913 (1)°

  • V = 862.30 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 100 K

  • 0.28 × 0.09 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.617, Tmax = 0.746

  • 5087 measured reflections

  • 2531 independent reflections

  • 2529 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.046

  • S = 1.05

  • 2531 reflections

  • 150 parameters

  • 3 restraints

  • All H-atom parameters refined

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack parameter determined using 1059 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.018 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.82 (2) 1.86 (2) 2.679 (3) 174 (4)
O3—H3B⋯O2ii 0.80 (2) 1.86 (3) 2.658 (3) 171 (5)
Symmetry codes: (i) -x+2, y-1, -z+2; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained as an accidental product of the reaction of cadmium nitrate with hexamethylenetetramine and cinnamic acid in ethanol in an attempt to synthesize a potentially interesting framework compound of the metal with both tetraamine and carboxylic acid groups. The potentially bridging hexamethylenetetramine ligand may have acted as a linker between cadmium ions; however, it was not incorporated into the material. A mononuclear cadmium complex with water and cinnamate ligands was the product formed in 75% yield, from an ethanolic solution.

The structure of diaqua-bis(cinnamato)-cadmium(II) had been previously recorded and was presented at the 1983 meeting of the American Chemical Society, but complete structural details are not available (Amma et al., 1983). In the Cambridge Structural Database (Version 5.35, with updates up to May 2013; Allen, 2002) [REFCODE: BUYTUK] only the data collection temperature (room temperature), unit cell parameters and space group, and the R value (10.4%) are reported but no atomic coordinates are available. Given the relatively poor precision of the previously reported structure and the lack of three-dimensional coordinates, we herein report the crystal structure of the title compound at 100 K.

The CdII lies on a two-fold rotation axis and is coordinated by two cinnamate ligands and two water molecules (Fig. 1). The carboxylate groups are bidentate-chelating, the water molecules monodentate and non bridging. The two oxygen atoms of each carboxylate group take coordination sites, the overall coordination environment of the metal center is best described as distorted trigonal prism, with angles varying between 92.86 (11)° (between the O atoms of the two water molecules), and 116.30 (8)° (for the angle between a water molecule O atom and a neighboring carboxylate group, using the carboxylate carbon atom as a substitute for the average of the two oxygen atoms).

The Cd—O bond distances are in the expected ranges. The bonds involving the water O atoms are 2.208 (2) Å , which compares well with those in similar Cd(II) complexes (O'Reilly et al., 1984, Mak et al., 1985). The Cd—O bond distances involving the two carboxylate O atoms are longer than those involving the water molecules, as would be expected due to the chelating coordination mode of the cinnamate ligand. The actual bond distances are 2.330 (2) and 2.375 (2) Å for Cd—O1 and Cd—O2, respectively. The similarity of the two Cd—O distances indicates an essentially symmetric coordination and a delocalization of the negative charge of the cinnamate carboxylate group. This is confirmed by the C—O bond distances within the carboxylate groups, which are also the same within experimental error, with values of 1.276 (3) and 1.269 (3) Å for O1—C9 and O2—C9, respectively.

In the crystal, the V-shape of the molecule results in a linear arrangement along [010] with the Cd(OH2)2 part of one molecule oriented towards the V-shaped part of a symmetry related molecule (Fig. 2). In addition, intermolecular O—H···O hydrogen bonds connect molecules forming a two-dimensional network parallel to (001) (Fig. 3).

A search against the Cambridge Structural Database provided several similar reported structures that are related to the title compound: the zinc derivative diaqua-bis(cinnamato)-zinc(II) (Hosomi et al., 2000; CSD refcode KIYSEQ), and several of the zinc and cadmium phenoxyacetato derivatives: diaqua-bis(phenoxyacetato)-cadmium(II) (Mak et al., 1985, csd refcode DEBGAS) and diaqua-bis(phenoxyacetato)-zinc(II) (Smith et al., 1981, CSD refcode PHXCUB), diaqua-bis(4-fluorophenoxyacetato)-cadmium(II) (O'Reilly et al., 1984; CSD refcode CUPMUV). Figures 4 and 5 show representative overlays of the title compound diaqua-bis(cinnamic)-cadmium(II) with diaqua-bis(phenoxyacetato)-zinc(II) (Smith et al., 1981), indicating the isomorphous nature of the two compounds.

Related literature top

For a previous conference report of the title compound without three-dimensional coordinates, see: Amma et al. (1983). For related structures, see: Hosomi et al. (2000); Mak et al. (1985); Smith et al. (1981); O'Reilly et al. (1984). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a stirred colorless solution of Cd(NO3)2·4H2O (0.3084 g, 1 mmol) in 10 mL of water was added hexamethylenetetramine (0.2802 g, 2 mmol) in 5 mL of water to give a colorless solution. Then, cinnamic acid (0.2962 g, 2 mmol) in 20 mL of ethanol was added to a give a colorless solution. The solution was stirred at room temperature for 6 h, was filtered and then left to evaporate at room temperature. After several days, colorless needle shaped crystals suitable for X-ray analysis were obtained in 75% yield. A single-crystal was isolated while suspended in mineral oil, was mounted with the help of a trace of mineral oil on a Mitegen micromesh mount and flash frozen to 100 K on the diffractometer.

Refinement top

Reflection 0 0 1 was affected by the beam stop and was omitted from the refinement. All H atoms positions were refined. Positions of carbon bound H atoms were freely refined, O bound H atoms were refined with an O—H distances restrained of 0.84 (2) Å. All Uiso(H) values were refined.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compund, shown with ellipsoids at the 50% probability level. Symmetry operator (i): –x + 2, y, –z + 2.
[Figure 2] Fig. 2. Part of the crystal structure showing molecules arranged along [010]. Hydrogen bonds are shown as blue dotted lines.
[Figure 3] Fig. 3. Part of the crystal structure showing layers perpendicular to the c-axis direction of the structure. Hydrogen bonds are illustrated by blue dotted lines.
[Figure 4] Fig. 4. Overlaid stick presentation of diaqua-bis(cinnamate)-cadmium(II) (blue) and diaqua-bis(phenoxyacetato)-zinc(II) (red) (Smith et al., 1981).
[Figure 5] Fig. 5. Overlaid stick presentation of diaqua-bis(cinnamic)-cadmium(ii) (blue) and diaqua-bis(phenoxyacetato)-zinc(II) (red) (Smith et al., 1981).
Diaquabis(cinnamato-κ2O,O')cadmium top
Crystal data top
[Cd(C9H7O2)2(H2O)2]F(000) = 444
Mr = 442.72Dx = 1.705 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 11.7872 (12) ÅCell parameters from 4501 reflections
b = 5.3498 (5) Åθ = 3.0–31.4°
c = 13.8817 (14) ŵ = 1.30 mm1
β = 99.913 (1)°T = 100 K
V = 862.30 (15) Å3Plate, colourless
Z = 20.28 × 0.09 × 0.02 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2531 independent reflections
Radiation source: fine focus sealed tube2529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and φ scansθmax = 31.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1716
Tmin = 0.617, Tmax = 0.746k = 77
5087 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020All H-atom parameters refined
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0239P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2531 reflectionsΔρmax = 1.09 e Å3
150 parametersΔρmin = 0.42 e Å3
3 restraintsAbsolute structure: Flack parameter determined using 1059 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (14)
Crystal data top
[Cd(C9H7O2)2(H2O)2]V = 862.30 (15) Å3
Mr = 442.72Z = 2
Monoclinic, C2Mo Kα radiation
a = 11.7872 (12) ŵ = 1.30 mm1
b = 5.3498 (5) ÅT = 100 K
c = 13.8817 (14) Å0.28 × 0.09 × 0.02 mm
β = 99.913 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2529 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.746Rint = 0.021
5087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020All H-atom parameters refined
wR(F2) = 0.046Δρmax = 1.09 e Å3
S = 1.05Δρmin = 0.42 e Å3
2531 reflectionsAbsolute structure: Flack parameter determined using 1059 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
150 parametersAbsolute structure parameter: 0.018 (14)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.42839 (2)1.00000.00869 (6)
O30.90970 (17)0.1439 (4)1.07385 (17)0.0152 (4)
H3A0.943 (3)0.013 (5)1.091 (3)0.020 (10)*
H3B0.841 (2)0.127 (10)1.064 (4)0.044 (14)*
O10.96843 (16)0.7270 (4)0.87606 (14)0.0116 (4)
C10.8274 (2)1.4604 (9)0.65368 (19)0.0130 (8)
H10.910 (3)1.43 (2)0.661 (2)0.027 (8)*
O20.81721 (16)0.6060 (4)0.93838 (15)0.0129 (4)
C20.7702 (3)1.6408 (5)0.5914 (2)0.0160 (5)
H20.810 (3)1.741 (8)0.558 (3)0.013 (9)*
C30.6509 (3)1.6611 (6)0.5806 (2)0.0170 (5)
H30.615 (3)1.787 (8)0.540 (3)0.020 (10)*
C40.5903 (3)1.5009 (6)0.6322 (2)0.0180 (6)
H40.505 (3)1.511 (7)0.623 (3)0.021 (10)*
C50.6473 (3)1.3212 (6)0.6945 (2)0.0163 (5)
H50.605 (3)1.209 (8)0.726 (3)0.020 (10)*
C60.7674 (2)1.2971 (5)0.70604 (19)0.0116 (5)
C70.8322 (2)1.1060 (5)0.76880 (19)0.0113 (5)
H70.915 (3)1.100 (7)0.769 (3)0.019 (10)*
C80.7895 (2)0.9423 (16)0.82500 (18)0.0134 (6)
H80.708 (3)0.92 (2)0.831 (3)0.031 (9)*
C90.8621 (2)0.7486 (5)0.88228 (19)0.0097 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00734 (9)0.00637 (10)0.01212 (10)0.0000.00096 (6)0.000
O30.0085 (9)0.0093 (9)0.0282 (11)0.0011 (7)0.0046 (8)0.0044 (8)
O10.0089 (8)0.0106 (9)0.0152 (9)0.0004 (7)0.0022 (7)0.0007 (7)
C10.0150 (10)0.011 (2)0.0127 (10)0.0026 (11)0.0010 (8)0.0008 (10)
O20.0082 (8)0.0122 (9)0.0179 (9)0.0003 (7)0.0013 (7)0.0047 (7)
C20.0233 (14)0.0117 (12)0.0128 (12)0.0010 (10)0.0027 (10)0.0027 (10)
C30.0237 (14)0.0140 (13)0.0122 (12)0.0054 (11)0.0001 (10)0.0019 (10)
C40.0170 (12)0.0210 (15)0.0158 (13)0.0058 (9)0.0024 (11)0.0034 (9)
C50.0158 (12)0.0182 (13)0.0152 (13)0.0025 (10)0.0038 (11)0.0040 (10)
C60.0142 (12)0.0113 (13)0.0091 (11)0.0020 (9)0.0013 (9)0.0010 (9)
C70.0118 (11)0.0110 (12)0.0104 (11)0.0014 (9)0.0002 (9)0.0001 (9)
C80.0109 (9)0.0130 (15)0.0158 (9)0.0069 (19)0.0015 (7)0.0020 (19)
C90.0100 (11)0.0082 (11)0.0103 (11)0.0015 (9)0.0003 (9)0.0012 (9)
Geometric parameters (Å, º) top
Cd1—O3i2.208 (2)O2—C91.269 (3)
Cd1—O32.208 (2)C2—C31.392 (4)
Cd1—O1i2.330 (2)C2—H20.89 (4)
Cd1—O12.330 (2)C3—C41.391 (4)
Cd1—O22.3753 (19)C3—H30.94 (4)
Cd1—O2i2.375 (2)C4—C51.386 (4)
Cd1—C92.708 (3)C4—H40.99 (4)
Cd1—C9i2.708 (3)C5—C61.403 (4)
O3—H3A0.82 (2)C5—H50.93 (4)
O3—H3B0.80 (2)C6—C71.469 (4)
O1—C91.276 (3)C7—C81.328 (7)
C1—C21.390 (5)C7—H70.98 (4)
C1—C61.403 (5)C8—C91.485 (7)
C1—H10.98 (4)C8—H80.99 (4)
O3i—Cd1—O392.86 (11)C2—C1—C6121.4 (3)
O3i—Cd1—O1i141.89 (7)C2—C1—H1124 (5)
O3—Cd1—O1i99.10 (8)C6—C1—H1114 (5)
O3i—Cd1—O199.10 (8)C9—O2—Cd190.74 (15)
O3—Cd1—O1141.89 (7)C1—C2—C3119.6 (3)
O1i—Cd1—O193.45 (10)C1—C2—H2120 (3)
O3i—Cd1—O2126.04 (8)C3—C2—H2121 (2)
O3—Cd1—O287.88 (7)C4—C3—C2119.7 (3)
O1i—Cd1—O290.65 (7)C4—C3—H3122 (2)
O1—Cd1—O255.96 (7)C2—C3—H3118 (2)
O3i—Cd1—O2i87.88 (7)C5—C4—C3120.8 (3)
O3—Cd1—O2i126.04 (8)C5—C4—H4120 (2)
O1i—Cd1—O2i55.96 (7)C3—C4—H4120 (2)
O1—Cd1—O2i90.65 (7)C4—C5—C6120.4 (3)
O2—Cd1—O2i132.85 (10)C4—C5—H5119 (3)
O3i—Cd1—C9116.30 (8)C6—C5—H5120 (3)
O3—Cd1—C9115.41 (8)C5—C6—C1118.2 (3)
O1i—Cd1—C990.85 (7)C5—C6—C7122.9 (3)
O1—Cd1—C928.08 (7)C1—C6—C7118.9 (3)
O2—Cd1—C927.95 (7)C8—C7—C6126.6 (3)
O2i—Cd1—C9112.16 (8)C8—C7—H7117 (2)
O3i—Cd1—C9i115.41 (8)C6—C7—H7116 (2)
O3—Cd1—C9i116.30 (8)C7—C8—C9122.2 (2)
O1i—Cd1—C9i28.08 (7)C7—C8—H8127 (5)
O1—Cd1—C9i90.85 (8)C9—C8—H8111 (5)
O2—Cd1—C9i112.16 (8)O2—C9—O1120.3 (2)
O2i—Cd1—C9i27.96 (7)O2—C9—C8119.0 (3)
C9—Cd1—C9i101.50 (11)O1—C9—C8120.6 (2)
Cd1—O3—H3A119 (3)O2—C9—Cd161.30 (13)
Cd1—O3—H3B123 (4)O1—C9—Cd159.28 (13)
H3A—O3—H3B112 (5)C8—C9—Cd1174.6 (3)
C9—O1—Cd192.64 (15)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1ii0.82 (2)1.86 (2)2.679 (3)174 (4)
O3—H3B···O2iii0.80 (2)1.86 (3)2.658 (3)171 (5)
Symmetry codes: (ii) x+2, y1, z+2; (iii) x+3/2, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.82 (2)1.86 (2)2.679 (3)174 (4)
O3—H3B···O2ii0.80 (2)1.86 (3)2.658 (3)171 (5)
Symmetry codes: (i) x+2, y1, z+2; (ii) x+3/2, y1/2, z+2.
 

Acknowledgements

This work was supported by the Songklanagarind Scholarship for Graduate Studies from Prince of Songkla University. SC would like to thank Ruthairat Nimthong for assistance in the manuscript preparation. The X-ray diffractometer at Youngstown State University was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and by Youngstown State University.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmma, E. L., Griffith, E. A. H., Charles, N. G. & Rodesiler, P. F. (1983). ACS Abstr. Papers, p. 39.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e123.  CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMak, T. C. W., Yip, W. H., O'Reilly, E. J., Smith, G. & Kennard, C. H. L. (1985). Inorg. Chim. Acta, 100, 267–273.  CSD CrossRef CAS Web of Science Google Scholar
First citationO'Reilly, E. J., Smith, G. & Kennard, C. H. L. (1984). Inorg. Chim. Acta, 90, 63–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., O'Reilly, E. J., Kennard, C. H. L., Stadnicka, K. & Oleksyn, B. (1981). Inorg. Chim. Acta, 47, 111–120.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m106-m107
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds