organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o357-o358

5-((Meth­­oxy­imino)­{2-[(2-methyl­phen­­oxy)meth­yl]phen­yl}meth­yl)-N-phenyl-1,3,4-oxa­diazol-2-amine

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bNational Research Centre for Grapes, Pune 412 307, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 11 February 2014; accepted 19 February 2014; online 26 February 2014)

In the title mol­ecule, C24H22N4O3, the plane of the oxa­diazole ring forms a dihedral angle of 32.41 (12)° with that of the phenyl ring and dihedral angles of 74.51 (10) and 56.38 (10)° with the planes of the benzene rings. In the crystal, pairs of N—H⋯N hydrogen bonds link molecules into inversion dimers featuring R22(8) graph-set motifs.

Related literature

For background information and applications of oxa­diazole derivatives, see: Schnurch et al. (2006[Schnurch, M., Flasik, R., Khan, A. F., Spina, M., Mihovilovic, M. D. & Stanetty, P. (2006). Eur. J. Org. Chem. pp. 3283-3307.]); Crabtree (2005[Crabtree, R. H. (2005). J. Organomet. Chem. 690, 5451-5457.]); Venkatakrishnan et al. (2000[Venkatakrishnan, K., von Moltke, L. L. & Greenblatt, D. J. (2000). Clin. Pharmacokinet. 38, 111-180.]); Brown et al. (1992[Brown, A. R., Bradley, D. D. C., Burns, P. L., Burroughes, J. H., Friend, R. H., Greenham, N. C., Burn, P. L., Holmes, A. B. & Kraft, A. (1992). Appl. Phys. Lett. 61, 2793-2795.]). For biological activity of oxa­diazole derivatives, see: Omar et al. (1996[Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819-825.]); Talawar et al. (1996[Talawar, M. B., Dejai, S. R., Sommanavar, Y. S., Marihal, S. C. & Bennur, S. C. (1996). Indian J. Heterocycl. Chem. 5, 215-218.]); Hamad et al. (1996[Hamad, M. M., Said, S. A. & El-Ekyabi, Y. M. (1996). Monatsh. Chem. 127, 549-555.]); Tully et al. (1991[Tully, W. R., Gardner, C. R., Gillespie, R. J. & Westwood, R. (1991). J. Med. Chem. 34, 2060-2067.]); Barry et al. (1991[Barry, S. O., Frank, E. B., Frank, B., Clark, M. S. G., Hadley, M. S., Hatcher, J., Riley, G. J., Rosenberg, H. E., Wadsworth, H. J. & &Wyman, P. (1991). J. Med. Chem. 34, 2726-2735.]); Ladduwahetty et al. (1996[Ladduwahetty, T., Baker, R., Cascieri, M. A., Chambers, M. S., Haworth, K., Keown, L. E., MacIntyre, D. E., Metzger, J. M., Owen, S., Rycroft, W., Sadowski, S. S., Seward, E. M., Shepheard, S. L., Swain, C. J., Tattersall, F. D., Watt, A. P., Williamon, D. W. & Hargreaves, R. J. (1996). J. Med. Chem. 39, 2907-2914.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Shang et al. (2005[Shang, Z.-H., Li, W. & Wang, S.-Q. (2005). Acta Cryst. E61, o704-o705.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22N4O3

  • Mr = 414.46

  • Triclinic, [P \overline 1]

  • a = 7.0629 (4) Å

  • b = 12.5553 (9) Å

  • c = 13.3705 (11) Å

  • α = 68.321 (7)°

  • β = 83.678 (6)°

  • γ = 78.567 (6)°

  • V = 1079.04 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.874, Tmax = 1.000

  • 7584 measured reflections

  • 4233 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.121

  • S = 1.01

  • 4233 reflections

  • 286 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6′⋯N3i 0.93 (2) 1.99 (2) 2.922 (2) 174
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Derivatives of oxadiazole systems are a growing research interest, as they are precursors to functional N-heterocyclic compounds, as well as being used in pharmaceuticals as metabolically stable surrogates and photographically active systems (Schnurch et al., 2006; Crabtree, 2005; Venkatakrishnan, et al., 2000). Symmetrical and unsymmetrical 1,3,4-oxadiazoles have been reported to be versatile compounds displaying a variety of biological effects, which include anti-inflammatory (Omar et al., 1996), antifungal (Talawar et al., 1996) and antimicrobial (Hamad et al., 1996) activities. They have been utilized as bioisosteres of the carboxamide moiety in benzodiazepine receptor agonists, muscarinic receptor agonists, NK1 receptor antagonists, and Phe–Gly peptidomimetics (Tully et al., 1991; Barry et al., 1991; Ladduwahetty et al., 1996; Borg et al., 1999). Moreover, oxadiazole derivatives have been widely used as electron-conducting and hole-blocking materials in moleculebased as well as polymeric light-emitting devices (LEDs) due to the electron-deficient and favourable electron-transport properties of the oxadiazole rings (Brown et al., 1992).

In the molecule of the title compound, Fig.1, bond lengths are in normal ranges (Allen et al., 1987) and are comparable with a related structure (Shang et al., 2005). The oxadiazole ring (O1/N3/N4/C17/C18) forms a dihedral angle of 32.41 (12)° with the phenyl ring (C19-C24) and dihedral angles 74.51 (10) and 56.38 (10)° with the benzene rings (C1-C6 and C8-C13, respectfully). In the crystal, pairs of N—H···N hydrogen bonds form inversion dimers (Fig. 2).

Related literature top

For background information and applications of oxadiazole derivatives, see: Schnurch et al. (2006); Crabtree (2005); Venkatakrishnan et al. (2000); Brown et al. (1992). For biological activity of oxadiazole derivatives, see: Omar et al. (1996); Talawar et al. (1996); Hamad et al. (1996); Tully et al. (1991); Barry et al. (1991); Ladduwahetty et al. (1996); Borg et al. (1999). For standard bond lengths, see: Allen et al. (1987). For a related structure, see: Shang et al. (2005).

Experimental top

To a suspension of 2-[(2-(methoxyimino)-2-{2-[(2-methylphenoxy)methyl]phenyl}acetyl]-*N* -phenylhydrazinecarbothioamide (2.240 g, 5 mmol) in ethanol, potassium hydroxide solution (4 N, 30 ml) was added with cooling and shaking. A solution of 10% iodine in potassium iodide was added drop wise with stirring till the color of iodine persisted. The mixture was refluxed on a water bath for 4 h, and then left to cool. The separated solid was filtered off washed with water, by the process of slow evaporation recrystallized it from methanol.

Refinement top

H6' attached to N6 was located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C),.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines showing and inversion dimer.
5-((Methoxyimino){2-[(2-methylphenoxy)methyl]phenyl}methyl)-N-phenyl-1,3,4-oxadiazol-2-amine top
Crystal data top
C24H22N4O3Z = 2
Mr = 414.46F(000) = 436
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0629 (4) ÅCell parameters from 2043 reflections
b = 12.5553 (9) Åθ = 3.9–25.8°
c = 13.3705 (11) ŵ = 0.09 mm1
α = 68.321 (7)°T = 293 K
β = 83.678 (6)°Block, colourless
γ = 78.567 (6)°0.30 × 0.20 × 0.20 mm
V = 1079.04 (13) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4233 independent reflections
Radiation source: fine-focus sealed tube2679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1513
Tmin = 0.874, Tmax = 1.000l = 1613
7584 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
4233 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C24H22N4O3γ = 78.567 (6)°
Mr = 414.46V = 1079.04 (13) Å3
Triclinic, P1Z = 2
a = 7.0629 (4) ÅMo Kα radiation
b = 12.5553 (9) ŵ = 0.09 mm1
c = 13.3705 (11) ÅT = 293 K
α = 68.321 (7)°0.30 × 0.20 × 0.20 mm
β = 83.678 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4233 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2679 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 1.000Rint = 0.023
7584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
4233 reflectionsΔρmin = 0.15 e Å3
286 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59108 (16)0.51331 (10)0.15728 (10)0.0477 (3)
O20.09810 (18)0.40040 (11)0.31402 (11)0.0599 (4)
N50.2555 (2)0.44773 (13)0.25488 (13)0.0503 (4)
O30.57360 (17)0.21849 (12)0.42203 (11)0.0591 (4)
N30.7893 (2)0.43994 (14)0.04992 (13)0.0505 (4)
C10.3357 (2)0.25405 (15)0.23721 (14)0.0408 (4)
C20.4559 (3)0.15355 (15)0.29884 (15)0.0443 (5)
C170.5374 (2)0.41397 (15)0.15669 (15)0.0428 (4)
N40.6492 (2)0.36807 (13)0.09560 (13)0.0503 (4)
C70.6318 (3)0.15775 (16)0.34995 (16)0.0513 (5)
H7A0.69620.07940.38870.062*
H7B0.72160.19710.29490.062*
N60.8571 (2)0.60402 (15)0.07479 (14)0.0549 (5)
C160.3681 (2)0.37311 (15)0.22091 (14)0.0420 (4)
C180.7501 (3)0.52194 (16)0.09016 (15)0.0448 (5)
C80.7125 (3)0.22372 (16)0.48381 (16)0.0460 (5)
C90.9052 (3)0.17465 (16)0.47816 (16)0.0514 (5)
H90.94850.13680.42970.062*
C101.0330 (3)0.18281 (17)0.54587 (18)0.0599 (6)
H101.16310.15120.54190.072*
C150.0188 (3)0.48144 (17)0.35618 (17)0.0598 (5)
H15A0.05090.49150.40890.090*
H15B0.13530.45270.38930.090*
H15C0.05100.55480.29880.090*
C30.4104 (3)0.04676 (16)0.31252 (17)0.0576 (6)
H30.48850.02060.35420.069*
C60.1759 (3)0.24319 (18)0.19236 (16)0.0525 (5)
H60.09410.30980.15250.063*
C130.6458 (3)0.28167 (17)0.55509 (17)0.0540 (5)
C110.9692 (3)0.23681 (19)0.61822 (18)0.0621 (6)
H111.05490.24030.66460.074*
C120.7771 (3)0.28617 (18)0.62222 (17)0.0607 (6)
H120.73490.32340.67130.073*
C190.8052 (3)0.71032 (17)0.09168 (16)0.0536 (5)
C50.1362 (3)0.1356 (2)0.20575 (18)0.0628 (6)
H50.03020.12980.17370.075*
C40.2533 (3)0.0375 (2)0.26631 (19)0.0650 (6)
H40.22660.03540.27620.078*
C240.9531 (4)0.7683 (2)0.08959 (18)0.0709 (6)
H241.08060.73540.07980.085*
C220.7283 (6)0.9234 (2)0.1171 (2)0.1028 (10)
H220.70210.99510.12580.123*
C230.9130 (5)0.8743 (2)0.1019 (2)0.0896 (8)
H231.01370.91300.09970.108*
C200.6179 (3)0.7598 (2)0.1058 (2)0.0837 (8)
H200.51650.72230.10620.100*
C140.4381 (3)0.3382 (2)0.5583 (2)0.0883 (8)
H14A0.40590.39560.48880.133*
H14B0.41890.37480.61110.133*
H14C0.35670.28020.57710.133*
C210.5811 (5)0.8661 (2)0.1194 (3)0.1116 (10)
H210.45430.89920.13040.134*
H6'0.975 (3)0.5895 (19)0.039 (2)0.088 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0448 (7)0.0463 (7)0.0474 (8)0.0087 (6)0.0157 (6)0.0156 (6)
O20.0570 (8)0.0457 (8)0.0728 (10)0.0148 (7)0.0342 (7)0.0234 (7)
N50.0458 (9)0.0449 (9)0.0513 (11)0.0104 (8)0.0191 (7)0.0114 (8)
O30.0436 (8)0.0714 (9)0.0732 (11)0.0007 (7)0.0062 (7)0.0419 (8)
N30.0400 (9)0.0536 (10)0.0539 (11)0.0067 (8)0.0127 (7)0.0193 (9)
C10.0410 (10)0.0443 (10)0.0348 (11)0.0065 (8)0.0075 (8)0.0144 (9)
C20.0458 (11)0.0436 (11)0.0424 (11)0.0060 (9)0.0030 (8)0.0162 (9)
C170.0406 (10)0.0390 (10)0.0426 (12)0.0018 (8)0.0049 (8)0.0117 (9)
N40.0422 (9)0.0528 (10)0.0534 (11)0.0075 (8)0.0116 (7)0.0200 (8)
C70.0509 (12)0.0461 (11)0.0528 (13)0.0024 (9)0.0045 (9)0.0178 (10)
N60.0481 (10)0.0530 (10)0.0604 (12)0.0149 (9)0.0221 (8)0.0203 (9)
C160.0389 (10)0.0398 (10)0.0396 (11)0.0010 (8)0.0043 (8)0.0097 (9)
C180.0379 (10)0.0484 (11)0.0395 (12)0.0031 (9)0.0089 (8)0.0110 (9)
C80.0406 (11)0.0459 (11)0.0514 (13)0.0130 (9)0.0007 (9)0.0147 (9)
C90.0472 (11)0.0489 (11)0.0564 (13)0.0068 (9)0.0030 (9)0.0175 (10)
C100.0468 (12)0.0605 (13)0.0670 (16)0.0124 (10)0.0052 (11)0.0140 (12)
C150.0588 (13)0.0536 (12)0.0630 (14)0.0063 (10)0.0255 (10)0.0256 (11)
C30.0673 (14)0.0433 (11)0.0595 (14)0.0084 (10)0.0009 (11)0.0169 (10)
C60.0474 (11)0.0636 (13)0.0448 (12)0.0046 (10)0.0010 (9)0.0205 (10)
C130.0448 (11)0.0598 (12)0.0638 (14)0.0206 (10)0.0104 (10)0.0271 (11)
C110.0621 (14)0.0693 (14)0.0570 (15)0.0264 (12)0.0048 (11)0.0167 (12)
C120.0643 (14)0.0704 (14)0.0591 (15)0.0340 (12)0.0134 (11)0.0297 (12)
C190.0650 (13)0.0486 (12)0.0401 (12)0.0123 (11)0.0133 (9)0.0105 (9)
C50.0560 (13)0.0876 (17)0.0600 (15)0.0243 (13)0.0056 (11)0.0401 (13)
C40.0752 (15)0.0620 (14)0.0699 (16)0.0254 (13)0.0125 (12)0.0346 (13)
C240.0824 (16)0.0648 (15)0.0629 (16)0.0224 (13)0.0050 (12)0.0170 (12)
C220.157 (3)0.0627 (17)0.089 (2)0.027 (2)0.025 (2)0.0315 (16)
C230.130 (3)0.0741 (18)0.0700 (19)0.0429 (18)0.0010 (17)0.0207 (15)
C200.0751 (17)0.0590 (15)0.112 (2)0.0109 (13)0.0269 (14)0.0335 (15)
C140.0543 (14)0.114 (2)0.129 (2)0.0165 (14)0.0132 (14)0.0842 (19)
C210.113 (2)0.0676 (18)0.140 (3)0.0059 (18)0.0436 (19)0.0384 (19)
Geometric parameters (Å, º) top
O1—C181.354 (2)C15—H15B0.9600
O1—C171.377 (2)C15—H15C0.9600
O2—N51.3912 (18)C3—C41.372 (3)
O2—C151.422 (2)C3—H30.9300
N5—C161.287 (2)C6—C51.377 (3)
O3—C81.3759 (19)C6—H60.9300
O3—C71.418 (2)C13—C121.382 (3)
N3—C181.300 (2)C13—C141.501 (3)
N3—N41.407 (2)C11—C121.380 (3)
C1—C61.386 (2)C11—H110.9300
C1—C21.397 (2)C12—H120.9300
C1—C161.489 (2)C19—C201.370 (3)
C2—C31.382 (2)C19—C241.380 (3)
C2—C71.501 (2)C5—C41.365 (3)
C17—N41.284 (2)C5—H50.9300
C17—C161.456 (2)C4—H40.9300
C7—H7A0.9700C24—C231.371 (3)
C7—H7B0.9700C24—H240.9300
N6—C181.339 (2)C22—C231.356 (4)
N6—C191.406 (2)C22—C211.368 (4)
N6—H6'0.93 (2)C22—H220.9300
C8—C91.385 (2)C23—H230.9300
C8—C131.392 (3)C20—C211.383 (3)
C9—C101.389 (2)C20—H200.9300
C9—H90.9300C14—H14A0.9600
C10—C111.366 (3)C14—H14B0.9600
C10—H100.9300C14—H14C0.9600
C15—H15A0.9600C21—H210.9300
C18—O1—C17102.10 (15)C4—C3—C2121.79 (18)
N5—O2—C15109.64 (13)C4—C3—H3119.1
C16—N5—O2110.37 (14)C2—C3—H3119.1
C8—O3—C7117.77 (14)C5—C6—C1121.23 (18)
C18—N3—N4105.98 (15)C5—C6—H6119.4
C6—C1—C2119.05 (16)C1—C6—H6119.4
C6—C1—C16118.34 (15)C12—C13—C8117.91 (18)
C2—C1—C16122.56 (14)C12—C13—C14121.1 (2)
C3—C2—C1118.43 (16)C8—C13—C14120.98 (17)
C3—C2—C7119.19 (16)C10—C11—C12119.67 (18)
C1—C2—C7122.38 (16)C10—C11—H11120.2
N4—C17—O1112.81 (16)C12—C11—H11120.2
N4—C17—C16127.54 (17)C11—C12—C13121.6 (2)
O1—C17—C16119.65 (16)C11—C12—H12119.2
C17—N4—N3106.21 (14)C13—C12—H12119.2
O3—C7—C2108.75 (15)C20—C19—C24119.4 (2)
O3—C7—H7A109.9C20—C19—N6123.6 (2)
C2—C7—H7A109.9C24—C19—N6116.96 (19)
O3—C7—H7B109.9C4—C5—C6119.65 (17)
C2—C7—H7B109.9C4—C5—H5120.2
H7A—C7—H7B108.3C6—C5—H5120.2
C18—N6—C19129.13 (18)C5—C4—C3119.83 (19)
C18—N6—H6'111.4 (14)C5—C4—H4120.1
C19—N6—H6'118.8 (14)C3—C4—H4120.1
N5—C16—C17115.10 (16)C23—C24—C19120.3 (2)
N5—C16—C1126.20 (17)C23—C24—H24119.9
C17—C16—C1118.63 (16)C19—C24—H24119.9
N3—C18—N6125.74 (18)C23—C22—C21119.2 (3)
N3—C18—O1112.89 (17)C23—C22—H22120.4
N6—C18—O1121.25 (18)C21—C22—H22120.4
O3—C8—C9123.67 (17)C22—C23—C24120.8 (3)
O3—C8—C13115.14 (16)C22—C23—H23119.6
C9—C8—C13121.19 (17)C24—C23—H23119.6
C8—C9—C10119.03 (19)C19—C20—C21119.3 (3)
C8—C9—H9120.5C19—C20—H20120.3
C10—C9—H9120.5C21—C20—H20120.3
C11—C10—C9120.60 (19)C13—C14—H14A109.5
C11—C10—H10119.7C13—C14—H14B109.5
C9—C10—H10119.7H14A—C14—H14B109.5
O2—C15—H15A109.5C13—C14—H14C109.5
O2—C15—H15B109.5H14A—C14—H14C109.5
H15A—C15—H15B109.5H14B—C14—H14C109.5
O2—C15—H15C109.5C22—C21—C20121.1 (3)
H15A—C15—H15C109.5C22—C21—H21119.5
H15B—C15—H15C109.5C20—C21—H21119.5
C15—O2—N5—C16176.64 (15)C7—O3—C8—C13178.30 (18)
C6—C1—C2—C30.1 (3)O3—C8—C9—C10178.63 (18)
C16—C1—C2—C3177.78 (18)C13—C8—C9—C100.6 (3)
C6—C1—C2—C7179.86 (17)C8—C9—C10—C111.0 (3)
C16—C1—C2—C72.4 (3)C1—C2—C3—C40.8 (3)
C18—O1—C17—N40.61 (19)C7—C2—C3—C4178.94 (19)
C18—O1—C17—C16179.83 (15)C2—C1—C6—C51.3 (3)
O1—C17—N4—N30.39 (19)C16—C1—C6—C5179.06 (18)
C16—C17—N4—N3179.14 (16)O3—C8—C13—C12177.67 (17)
C18—N3—N4—C171.28 (19)C9—C8—C13—C121.7 (3)
C8—O3—C7—C2174.85 (15)O3—C8—C13—C142.7 (3)
C3—C2—C7—O3120.2 (2)C9—C8—C13—C14177.93 (19)
C1—C2—C7—O360.0 (2)C9—C10—C11—C121.6 (3)
O2—N5—C16—C17179.34 (14)C10—C11—C12—C130.5 (3)
O2—N5—C16—C12.2 (2)C8—C13—C12—C111.1 (3)
N4—C17—C16—N5164.43 (18)C14—C13—C12—C11178.5 (2)
O1—C17—C16—N515.1 (2)C18—N6—C19—C2014.8 (3)
N4—C17—C16—C112.9 (3)C18—N6—C19—C24167.7 (2)
O1—C17—C16—C1167.60 (14)C1—C6—C5—C41.5 (3)
C6—C1—C16—N563.0 (3)C6—C5—C4—C30.6 (3)
C2—C1—C16—N5114.7 (2)C2—C3—C4—C50.6 (3)
C6—C1—C16—C17114.00 (19)C20—C19—C24—C230.2 (3)
C2—C1—C16—C1768.3 (2)N6—C19—C24—C23177.8 (2)
N4—N3—C18—N6174.36 (17)C21—C22—C23—C240.4 (4)
N4—N3—C18—O11.76 (19)C19—C24—C23—C220.5 (4)
C19—N6—C18—N3162.55 (19)C24—C19—C20—C211.0 (4)
C19—N6—C18—O121.6 (3)N6—C19—C20—C21178.5 (2)
C17—O1—C18—N31.49 (19)C23—C22—C21—C200.5 (5)
C17—O1—C18—N6174.82 (16)C19—C20—C21—C221.2 (4)
C7—O3—C8—C91.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···N3i0.93 (2)1.99 (2)2.922 (2)174
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6'···N3i0.93 (2)1.99 (2)2.922 (2)174
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for the purchase of a single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarry, S. O., Frank, E. B., Frank, B., Clark, M. S. G., Hadley, M. S., Hatcher, J., Riley, G. J., Rosenberg, H. E., Wadsworth, H. J. & &Wyman, P. (1991). J. Med. Chem. 34, 2726–2735.  PubMed Web of Science Google Scholar
First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrown, A. R., Bradley, D. D. C., Burns, P. L., Burroughes, J. H., Friend, R. H., Greenham, N. C., Burn, P. L., Holmes, A. B. & Kraft, A. (1992). Appl. Phys. Lett. 61, 2793–2795.  CrossRef CAS Web of Science Google Scholar
First citationCrabtree, R. H. (2005). J. Organomet. Chem. 690, 5451–5457.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamad, M. M., Said, S. A. & El-Ekyabi, Y. M. (1996). Monatsh. Chem. 127, 549–555.  CrossRef CAS Google Scholar
First citationLadduwahetty, T., Baker, R., Cascieri, M. A., Chambers, M. S., Haworth, K., Keown, L. E., MacIntyre, D. E., Metzger, J. M., Owen, S., Rycroft, W., Sadowski, S. S., Seward, E. M., Shepheard, S. L., Swain, C. J., Tattersall, F. D., Watt, A. P., Williamon, D. W. & Hargreaves, R. J. (1996). J. Med. Chem. 39, 2907–2914.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOmar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819–825.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchnurch, M., Flasik, R., Khan, A. F., Spina, M., Mihovilovic, M. D. & Stanetty, P. (2006). Eur. J. Org. Chem. pp. 3283–3307.  Google Scholar
First citationShang, Z.-H., Li, W. & Wang, S.-Q. (2005). Acta Cryst. E61, o704–o705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalawar, M. B., Dejai, S. R., Sommanavar, Y. S., Marihal, S. C. & Bennur, S. C. (1996). Indian J. Heterocycl. Chem. 5, 215–218.  CAS Google Scholar
First citationTully, W. R., Gardner, C. R., Gillespie, R. J. & Westwood, R. (1991). J. Med. Chem. 34, 2060–2067.  CrossRef PubMed CAS Web of Science Google Scholar
First citationVenkatakrishnan, K., von Moltke, L. L. & Greenblatt, D. J. (2000). Clin. Pharmacokinet. 38, 111–180.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o357-o358
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds