organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(9H-Carbazol-9-yl)eth­yl]-4-(methyl­sulfon­yl)aniline

aDivision of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA, and bDepartment of Chemistry and Biochemistry, 100 West 18th Avenue, The Ohio State University, Columbus, OH 43210, USA
*Correspondence e-mail: li.728@osu.edu

(Received 11 February 2014; accepted 17 February 2014; online 22 February 2014)

In the title mol­ecule, C21H20N2O2S, the dihedral angle between the mean plane of the carbazole ring system [maximum deviation = 0.021 (4) Å] and the benzene ring is 80.15 (6)°. In the crystal, mol­ecules are linked by N—H⋯O and weak C—H⋯O hydrogen bonds into a C(8) chain along [001].

Related literature

For a related structure, see: Lai et al. (2014[Lai, H., Gallucci, J. C. & Li, C. (2014). Acta Cryst. E70, o190.]) For the synthesis, see: Abdel-Magid et al. (1996[Abdel-Magid, A. F., Carson, K. G., Harris, B. D., Maryanoff, C. A. & Shah, R. D. (1996). J. Org. Chem. 61, 3849-3862.]); Hallberg et al. (1982[Hallberg, A., Deardorff, D. & Martin, A. (1982). Heterocycles, 19, 75-82.]). For hydrogen bond graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N2O2S

  • Mr = 364.45

  • Orthorhombic, P n a 21

  • a = 15.061 (3) Å

  • b = 21.992 (4) Å

  • c = 5.437 (1) Å

  • V = 1800.9 (6) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.7749 Å

  • μ = 0.21 mm−1

  • T = 150 K

  • 0.13 × 0.01 × 0.01 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.635, Tmax = 0.746

  • 21673 measured reflections

  • 4447 independent reflections

  • 3950 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.05

  • 4447 reflections

  • 240 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack parameter determined using 1610 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.88 (4) 2.16 (4) 3.012 (3) 164 (3)
C21—H21B⋯O1ii 0.98 2.31 3.281 (4) 171
Symmetry codes: (i) [-x, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Carbazole based compounds are important in drug discovery. As part of our ongoing effort to develop bioactive carbazole compounds (Lai et al., 2014), herein we report the crystal structure of the title compound (I). Compound (I) was obtained by reductive amination of carbazole-9-acetaldehyde through a direct procedure from Abdel-Magid et al. (1996). Carbazole-9-acetaldehyde was synthesized according to the method of Hallberg et al. (1982). The molecular structure of (I) is shown in Fig.1. A portion of the unit cell shown in Fig. 2 illustrates how the molecules are linked by strong intermolecular N—H···O hydrogen bonds. These hydrogen bonds form a one-dimensional chain along [0 0 1] with a graph set descriptor of C(8) (Bernstein et al., 1995).

Related literature top

For a related structure, see: Lai et al. (2014) For the synthesis, see: Abdel-Magid et al. (1996); Hallberg et al. (1982). For hydrogen bond graph-set notation, see: Bernstein et al. (1995).

Experimental top

All chemicals used were purchased from commercial sources and used without further purification. Carbazole-9-acetaldehyde (2.09 g, 10 mmol) and 4-(methylsulfonyl)aniline (1.71 g, 10 mmol) were mixed in 1,2-dichloroethane (35 ml), followed by the addition of sodium triacetoxyborohydrate (2.97 g, 14 mmol). The reaction mixture was stirred at room temporature under a N2 atmosphere for 12 h and then quenched by aqueous saturated NaHCO3. The resulted mixture was extracted with EtOAc, dried (MgSO4) and concentrated to give the crude product as nearly colorless oil, which was further purified by column chromatography (Hexane/EtOAc 1/1) to provide white solid (2.89 g, 79%). This solid was characterized by NMR to be the title compound. Crystals were grown from MeOH/H2O (50:1 v/v) solution by slow evaporation.

Refinement top

For the methyl group, the hydrogen atoms were added in calculated positions using a riding-model with C—H = 0.98 Å and U(H) = 1.5Ueq(C). The torsion angle, which defines the orientation of the methyl group about the C—S bond, was refined. The hydrogen atom bonded to N2 was refined isotropically. The rest of the hydrogen atoms were included in the model in calculated positions using a riding-model with C—H = 0.95 to 0.99 Å and U(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Crystal packing of (I) showing a portion of the unit cell emphasizing intermolecular N—H···O hydrogen bonds (dotted lines). Hydrogen atoms, except H(1N2), are omitted for clarity.
N-[2-(9H-Carbazol-9-yl)ethyl]-4-(methylsulfonyl)aniline top
Crystal data top
C21H20N2O2SF(000) = 768
Mr = 364.45Dx = 1.344 Mg m3
Orthorhombic, Pna21Synchrotron radiation, λ = 0.7749 Å
Hall symbol: P 2c -2nCell parameters from 5294 reflections
a = 15.061 (3) Åθ = 2.5–30.9°
b = 21.992 (4) ŵ = 0.21 mm1
c = 5.437 (1) ÅT = 150 K
V = 1800.9 (6) Å3Needle, colorless
Z = 40.13 × 0.01 × 0.01 mm
Data collection top
Bruker APEXII
diffractometer
4447 independent reflections
Radiation source: synchrotron3950 reflections with I > 2σ(I)
Si-<111> channel cut crystal monochromatorRint = 0.094
ω scansθmax = 31.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2019
Tmin = 0.635, Tmax = 0.746k = 2929
21673 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.0604P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4447 reflectionsΔρmax = 0.21 e Å3
240 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack parameter determined using 1610 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 constraintsAbsolute structure parameter: 0.04 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H20N2O2SV = 1800.9 (6) Å3
Mr = 364.45Z = 4
Orthorhombic, Pna21Synchrotron radiation, λ = 0.7749 Å
a = 15.061 (3) ŵ = 0.21 mm1
b = 21.992 (4) ÅT = 150 K
c = 5.437 (1) Å0.13 × 0.01 × 0.01 mm
Data collection top
Bruker APEXII
diffractometer
4447 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3950 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.746Rint = 0.094
21673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.33 e Å3
4447 reflectionsAbsolute structure: Flack parameter determined using 1610 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
240 parametersAbsolute structure parameter: 0.04 (6)
1 restraint
Special details top

Experimental. Intensity data were collected at 150 K on a D8 goniostat equipped with a Bruker APEXII CCD detector at Beamline 11.3.1 at the Advanced Light Source (Lawrence Berkeley National Laboratory) using synchrotron radiation tuned to a wavelength of 0.7749 Angstroms. For data collection, frames were measured for a duration of 1 second using omega scans with a frame width of 0.3 degrees out to a maximum 2theta value of about 60 degrees. The data frames were collected using the program APEX2 and processed using the program SAINT within APEX2. The data were corrected for absorption and beam corrections based on the multi-scan technique as implemented in SADABS.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. For the methyl group, the hydrogen atoms were added at calculated positions using a riding model with U(H) = 1.5 * Ueq(bonded carbon atom). The torsion angle, which defines the orientation of the methyl group about the C-S bond, was refined. The hydrogen atom bonded to N(2) was refined isotropically. It is involved in an intermolecular hydrogen bond with atom O(2). The rest of the hydrogen atoms were included in the model at calculated positions using a riding model with U(H) = 1.2 * Ueq(bonded atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1214 (2)0.82284 (13)0.0581 (6)0.0327 (6)
C20.0477 (2)0.84713 (15)0.1764 (7)0.0399 (7)
H20.02190.82760.3150.048*
C30.0132 (2)0.90105 (14)0.0840 (10)0.0506 (9)
H30.03740.91870.160.061*
C40.0514 (3)0.92970 (16)0.1175 (9)0.0539 (11)
H40.02680.96680.17550.065*
C50.1243 (3)0.90545 (16)0.2349 (8)0.0480 (10)
H50.14960.92550.37290.058*
C60.1607 (2)0.85076 (14)0.1479 (6)0.0360 (7)
C70.2347 (2)0.81324 (15)0.2213 (6)0.0354 (7)
C80.2982 (2)0.81655 (16)0.4086 (7)0.0440 (8)
H80.29670.8490.52390.053*
C90.3627 (2)0.77243 (17)0.4247 (8)0.0502 (9)
H90.40590.77460.55160.06*
C100.3653 (2)0.72436 (18)0.2553 (8)0.0494 (9)
H100.41060.69450.26920.059*
C110.3031 (2)0.71940 (15)0.0676 (7)0.0404 (8)
H110.3050.68690.04730.048*
C120.2379 (2)0.76431 (13)0.0553 (6)0.0317 (7)
C130.1389 (2)0.72389 (14)0.2840 (6)0.0328 (6)
H13A0.11360.74330.43270.039*
H13B0.18980.69840.33540.039*
C140.06868 (19)0.68418 (13)0.1617 (5)0.0269 (6)
H14A0.01880.70980.10410.032*
H14B0.09460.66330.01730.032*
C150.02888 (17)0.59855 (12)0.2799 (5)0.0221 (5)
C160.08094 (17)0.60306 (11)0.0661 (5)0.0255 (5)
H160.07220.6360.04420.031*
C170.14500 (18)0.55956 (12)0.0158 (5)0.0246 (5)
H170.18040.56290.12830.03*
C180.15764 (17)0.51094 (13)0.1759 (5)0.0231 (5)
C190.10887 (18)0.50682 (12)0.3933 (5)0.0246 (5)
H190.11920.47430.50490.03*
C200.04564 (18)0.55020 (11)0.4450 (5)0.0235 (5)
H200.01280.54760.59380.028*
C210.32563 (18)0.46030 (14)0.2710 (6)0.0309 (6)
H21A0.35320.49950.23120.046*
H21B0.31060.45930.44630.046*
H21C0.36730.42730.23350.046*
N10.16909 (16)0.77046 (11)0.1140 (5)0.0316 (5)
N20.03638 (16)0.63949 (10)0.3373 (5)0.0266 (5)
H1N20.072 (2)0.6283 (16)0.458 (8)0.033 (9)*
O10.25201 (17)0.45669 (11)0.1613 (4)0.0384 (6)
O20.18686 (14)0.39497 (10)0.1746 (4)0.0342 (5)
S0.22847 (4)0.45106 (3)0.09511 (14)0.02501 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (14)0.0268 (13)0.0363 (17)0.0085 (11)0.0104 (13)0.0006 (12)
C20.0363 (16)0.0383 (17)0.0449 (18)0.0062 (13)0.0093 (14)0.0000 (15)
C30.0440 (18)0.0332 (15)0.075 (3)0.0018 (13)0.020 (2)0.006 (2)
C40.051 (2)0.0314 (16)0.079 (3)0.0054 (16)0.033 (2)0.0126 (19)
C50.051 (2)0.0380 (17)0.055 (2)0.0196 (16)0.0268 (18)0.0199 (17)
C60.0396 (16)0.0318 (14)0.0365 (16)0.0144 (13)0.0123 (13)0.0060 (13)
C70.0398 (17)0.0363 (16)0.0300 (15)0.0186 (13)0.0082 (13)0.0045 (13)
C80.0500 (18)0.0485 (18)0.0336 (15)0.0260 (15)0.0034 (18)0.0030 (18)
C90.052 (2)0.055 (2)0.044 (2)0.0253 (16)0.0139 (19)0.010 (2)
C100.0450 (19)0.046 (2)0.057 (2)0.0137 (16)0.0106 (18)0.0116 (18)
C110.0416 (17)0.0318 (15)0.048 (2)0.0100 (14)0.0013 (16)0.0027 (14)
C120.0352 (16)0.0296 (14)0.0303 (15)0.0144 (12)0.0021 (12)0.0013 (12)
C130.0346 (15)0.0324 (14)0.0314 (15)0.0075 (12)0.0042 (13)0.0071 (12)
C140.0296 (13)0.0272 (13)0.0240 (13)0.0030 (11)0.0001 (10)0.0033 (10)
C150.0219 (12)0.0227 (12)0.0217 (12)0.0022 (10)0.0025 (10)0.0006 (10)
C160.0274 (12)0.0248 (12)0.0244 (14)0.0007 (9)0.0009 (11)0.0049 (11)
C170.0241 (12)0.0293 (13)0.0204 (12)0.0039 (10)0.0008 (10)0.0008 (10)
C180.0221 (11)0.0255 (12)0.0217 (11)0.0003 (10)0.0032 (10)0.0012 (10)
C190.0260 (12)0.0274 (13)0.0206 (12)0.0019 (11)0.0036 (10)0.0029 (10)
C200.0232 (12)0.0276 (12)0.0198 (12)0.0021 (10)0.0014 (10)0.0015 (10)
C210.0214 (12)0.0408 (16)0.0306 (14)0.0027 (12)0.0032 (11)0.0024 (13)
N10.0343 (12)0.0285 (11)0.0320 (13)0.0062 (9)0.0019 (12)0.0060 (11)
N20.0258 (11)0.0275 (11)0.0266 (12)0.0027 (9)0.0041 (10)0.0058 (10)
O10.0463 (13)0.0475 (14)0.0214 (11)0.0148 (10)0.0013 (10)0.0018 (9)
O20.0349 (11)0.0261 (10)0.0414 (12)0.0012 (8)0.0067 (9)0.0009 (8)
S0.0255 (3)0.0285 (3)0.0210 (3)0.0031 (2)0.0026 (3)0.0023 (3)
Geometric parameters (Å, º) top
C1—C21.389 (5)C13—H13A0.99
C1—N11.391 (4)C13—H13B0.99
C1—C61.408 (5)C14—N21.454 (4)
C2—C31.388 (5)C14—H14A0.99
C2—H20.95C14—H14B0.99
C3—C41.388 (7)C15—N21.369 (4)
C3—H30.95C15—C161.406 (4)
C4—C51.377 (7)C15—C201.414 (4)
C4—H40.95C16—C171.386 (4)
C5—C61.404 (5)C16—H160.95
C5—H50.95C17—C181.392 (4)
C6—C71.443 (5)C17—H170.95
C7—C81.399 (5)C18—C191.395 (4)
C7—C121.405 (5)C18—S1.751 (3)
C8—C91.376 (5)C19—C201.377 (4)
C8—H80.95C19—H190.95
C9—C101.403 (6)C20—H200.95
C9—H90.95C21—S1.760 (3)
C10—C111.389 (5)C21—H21A0.98
C10—H100.95C21—H21B0.98
C11—C121.394 (5)C21—H21C0.98
C11—H110.95N2—H1N20.88 (4)
C12—N11.393 (4)O1—S1.444 (2)
C13—N11.453 (4)O2—S1.449 (2)
C13—C141.524 (4)
C2—C1—N1129.0 (3)N2—C14—C13109.4 (2)
C2—C1—C6122.5 (3)N2—C14—H14A109.8
N1—C1—C6108.5 (3)C13—C14—H14A109.8
C3—C2—C1117.4 (4)N2—C14—H14B109.8
C3—C2—H2121.3C13—C14—H14B109.8
C1—C2—H2121.3H14A—C14—H14B108.2
C4—C3—C2121.2 (4)N2—C15—C16122.8 (2)
C4—C3—H3119.4N2—C15—C20118.6 (2)
C2—C3—H3119.4C16—C15—C20118.6 (2)
C5—C4—C3121.3 (3)C17—C16—C15120.2 (2)
C5—C4—H4119.3C17—C16—H16119.9
C3—C4—H4119.3C15—C16—H16119.9
C4—C5—C6119.1 (4)C16—C17—C18120.1 (3)
C4—C5—H5120.4C16—C17—H17119.9
C6—C5—H5120.4C18—C17—H17119.9
C5—C6—C1118.5 (4)C17—C18—C19120.5 (3)
C5—C6—C7134.3 (4)C17—C18—S120.3 (2)
C1—C6—C7107.2 (3)C19—C18—S119.0 (2)
C8—C7—C12119.0 (3)C20—C19—C18119.5 (2)
C8—C7—C6134.4 (3)C20—C19—H19120.3
C12—C7—C6106.6 (3)C18—C19—H19120.3
C9—C8—C7119.5 (3)C19—C20—C15121.0 (3)
C9—C8—H8120.3C19—C20—H20119.5
C7—C8—H8120.3C15—C20—H20119.5
C8—C9—C10120.6 (4)S—C21—H21A109.5
C8—C9—H9119.7S—C21—H21B109.5
C10—C9—H9119.7H21A—C21—H21B109.5
C11—C10—C9121.5 (4)S—C21—H21C109.5
C11—C10—H10119.2H21A—C21—H21C109.5
C9—C10—H10119.2H21B—C21—H21C109.5
C10—C11—C12117.0 (3)C1—N1—C12108.7 (3)
C10—C11—H11121.5C1—N1—C13124.1 (3)
C12—C11—H11121.5C12—N1—C13125.8 (3)
N1—C12—C11128.6 (3)C15—N2—C14122.4 (2)
N1—C12—C7108.9 (3)C15—N2—H1N2115 (2)
C11—C12—C7122.4 (3)C14—N2—H1N2118 (2)
N1—C13—C14110.1 (3)O1—S—O2117.85 (15)
N1—C13—H13A109.6O1—S—C18109.12 (14)
C14—C13—H13A109.6O2—S—C18107.56 (13)
N1—C13—H13B109.6O1—S—C21108.10 (16)
C14—C13—H13B109.6O2—S—C21107.20 (14)
H13A—C13—H13B108.2C18—S—C21106.46 (14)
N1—C1—C2—C3179.1 (3)C20—C15—C16—C172.3 (4)
C6—C1—C2—C30.1 (5)C15—C16—C17—C180.5 (4)
C1—C2—C3—C40.5 (5)C16—C17—C18—C192.8 (4)
C2—C3—C4—C50.7 (6)C16—C17—C18—S172.1 (2)
C3—C4—C5—C60.2 (5)C17—C18—C19—C202.2 (4)
C4—C5—C6—C10.4 (5)S—C18—C19—C20172.7 (2)
C4—C5—C6—C7179.7 (3)C18—C19—C20—C150.6 (4)
C2—C1—C6—C50.5 (4)N2—C15—C20—C19178.3 (2)
N1—C1—C6—C5178.8 (3)C16—C15—C20—C192.8 (4)
C2—C1—C6—C7180.0 (3)C2—C1—N1—C12179.9 (3)
N1—C1—C6—C70.7 (3)C6—C1—N1—C120.6 (3)
C5—C6—C7—C80.7 (6)C2—C1—N1—C1312.9 (5)
C1—C6—C7—C8179.9 (3)C6—C1—N1—C13167.8 (3)
C5—C6—C7—C12178.8 (3)C11—C12—N1—C1178.7 (3)
C1—C6—C7—C120.6 (3)C7—C12—N1—C10.2 (3)
C12—C7—C8—C90.8 (5)C11—C12—N1—C1314.3 (5)
C6—C7—C8—C9178.7 (4)C7—C12—N1—C13167.2 (3)
C7—C8—C9—C100.0 (5)C14—C13—N1—C177.2 (4)
C8—C9—C10—C110.3 (6)C14—C13—N1—C1287.8 (3)
C9—C10—C11—C120.1 (5)C16—C15—N2—C1411.9 (4)
C10—C11—C12—N1179.2 (3)C20—C15—N2—C14169.2 (2)
C10—C11—C12—C70.9 (5)C13—C14—N2—C15178.3 (2)
C8—C7—C12—N1179.9 (3)C17—C18—S—O110.9 (3)
C6—C7—C12—N10.2 (3)C19—C18—S—O1164.0 (2)
C8—C7—C12—C111.2 (5)C17—C18—S—O2139.8 (2)
C6—C7—C12—C11178.4 (3)C19—C18—S—O235.1 (2)
N1—C13—C14—N2177.6 (2)C17—C18—S—C21105.5 (2)
N2—C15—C16—C17178.8 (3)C19—C18—S—C2179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.88 (4)2.16 (4)3.012 (3)164 (3)
C21—H21B···O1ii0.982.313.281 (4)171
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.88 (4)2.16 (4)3.012 (3)164 (3)
C21—H21B···O1ii0.982.313.281 (4)170.9
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

Crystallographic data were collected through the SCrALS (Service Crystallography at Advanced Light Source) program at the Small-Crystal Crystallography Beamline 11.3.1 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The ALS is supported by the US Department of Energy, Office of Energy Sciences Materials Sciences Division, under contract DE—AC02–05CH11231. We thank Dr Jeanette Krause of the University of Cincinnati and Dr Allen G. Oliver of the University of Notre Dame for the data collection.

References

First citationAbdel-Magid, A. F., Carson, K. G., Harris, B. D., Maryanoff, C. A. & Shah, R. D. (1996). J. Org. Chem. 61, 3849–3862.  PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHallberg, A., Deardorff, D. & Martin, A. (1982). Heterocycles, 19, 75–82.  CAS Google Scholar
First citationLai, H., Gallucci, J. C. & Li, C. (2014). Acta Cryst. E70, o190.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds