metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m100-m101

Bis[(2-methyl­benz­yl)bis­­(pyridin-2-ylmethyl-κN)amine-κN]manganese(II) bis­­(perchlorate)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 1 October 2013; accepted 10 February 2014; online 15 February 2014)

In the title complex, [Mn(C20H21N3)2](ClO4)2, two tridentate (2-methyl­benz­yl)bis­(pyridin-2-ylmeth­yl)amine (L) ligands form the MnII complex [MnL2](ClO4)2. The MnII ion lies on a twofold axis and the complex cation is significantly distorted from regular octa­hedral geometry. The packing is stabilized by weak C—H⋯O inter­actions between the cations and anions, which link them into a zigzag ribbon along [101]. The perchlorate anion is disordered and was constrained to be tetra­hedral with two orientations having occupancies of 0.768 (4) and 0.232 (4). The 2-methylbenzyl moiety is also disordered over two sets of sites, with occupancies of 0.508 (15) and 0.492 (15).

Related literature

For the importance of flexible coordination complexes of Mn in biomimetic chemistry, see: Zhou et al. (2011[Zhou, D.-F., Chen, Q.-Y., Fu, H.-J. & Yan, Q. (2011). Spectrochim. Acta Part A, 81, 604-608.]); Walsdorff et al. (1999[Walsdorff, C., Park, S., Kim, J., Heo, J., Park, K.-M., Oh, J. & Kim, K. (1999). J. Chem. Soc. Dalton Trans. pp. 923-929.]); Nielsen et al. (2007[Nielsen, A., Veltze, S., Bond, A. D. & McKenzie, C. J. (2007). Polyhedron, 26, 1649-1657.]); Routasalo et al. (2008[Routasalo, T., Helaja, J., Kavakka, J. A. & Koskienen, M. P. (2008). Eur. J. Org. Chem. pp. 3190-3199.]), in catalysis, see: Raycroft et al. (2012[Raycroft, M. A. R., Maxwell, C. I., Oldham, R. A. A., Andrea, A. S., Neverov, A. A. & Brown, R. S. (2012). Inorg. Chem. 51, 10325-10333.]); Berthet et al. (2013[Berthet, N., Martel-Franchet, V., Michel, F., Philouze, C., Hamman, S., Ronot, X. & Thomas, F. (2013). Dalton Trans. 42, 8468-8483.]), in medicinal chemistry, see: Ari et al. (2013[Ari, F., Ulukaya, E., Sarimahmut, M. & Yilmaz, V. T. (2013). Bioorg. Med. Chem. 21, 3016-3021.]); Chang et al. (2004[Chang, C. J., Nolan, E. M., Jaworski, J., Burdette, S. C., Sheng, M. & Lippard, S. J. (2004). Chem. Biol. 11, 203-210.]), in O2 activation and catalysis of redox reactions and oxygenation of organic substrates, see: Karlin et al. (1984[Karlin, K. D., Hayes, J. C., Gultneh, Y., Cruse, R. W., Mckown, J. W., Hutchinson, J. H. & Zubieta, J. (1984). J. Am. Chem. Soc. 106, 2121-2128.]); Karlin & Gultneh (1987[Karlin, K. D. & Gultneh, Y. (1987). Prog. Inorg. Chem. 35, 219-327.]); Hatcher & Karlin (2004[Hatcher, L. Q. & Karlin, K. D. (2004). J. Biol. Inorg. Chem. 9, 669-683.]) and in making polymeric materials that form by self-assembling metal coord­ination compounds, see: Denmark & Jacobsen (2000[Denmark, S. E. & Jacobsen, E. N. (2000). Acc. Chem. Res. 33, 324-324.]); Chatterjee (2008[Chatterjee, D. (2008). Coord. Chem. Rev. 252, 176-198.]); Katsuki (2004[Katsuki, T. (2004). Chem. Soc. Rev. 33, 437-442.]); Kim et al. (2010[Kim, M., Mora, C., Lee, Y. H., Clegg, J. K., Lindoy, L. F., Min, K. S., Thuery, P. & Kim, Y. (2010). Inorg. Chem. Commun. pp. 1148-1151.]). For the study of active sites of enzymes in biological systems as well as in synthetic complexes of inter­est, see: Davies et al. (2004[Davies, C. J., Sloan, G. A. & Faucett, J. (2004). Polyhedron, 23, 3105-3114.]). For the preparation of bis­(pyridin-2-ylmeth­yl)amine (bpa), see: Romary et al. (1967[Romary, J. K., Bund, J. E. & Barger, J. D. (1967). J. Chem. Eng. Data, pp. 1229-1231.]). For structures of similar Mn complexes, see: Glerup et al. (1992[Glerup, J., Goodson, D. K., Hodgson, D. K., Michelson, K., Neilsen, K. M. & Wiehle, H. (1992). Inorg. Chem. 31, 4611-4616.]); Gultneh et al. (2006[Gultneh, Y., Ahvazi, B., Tesema, Y. T., Yisgedu, T. B. & Butcher, R. J. (2006). J. Coord. Chem. 59, 1835-1846.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C20H21N3)2](ClO4)2

  • Mr = 860.63

  • Monoclinic, C 2/c

  • a = 23.162 (3) Å

  • b = 10.4755 (11) Å

  • c = 19.391 (2) Å

  • β = 118.896 (8)°

  • V = 4119.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.42 × 0.37 × 0.18 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: empirical (using intensity measurements) (XEMP; Siemens, 1989[Siemens (1989). XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.72, Tmax = 0.92

  • 4863 measured reflections

  • 4750 independent reflections

  • 3075 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.193

  • S = 1.03

  • 4750 reflections

  • 299 parameters

  • 86 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3AA⋯O3Ai 0.93 2.51 3.106 (5) 122
C6A—H6AA⋯O1Aii 0.93 2.57 3.420 (10) 152
C6A—H6AA⋯O2Aii 0.93 2.56 3.309 (12) 138
C1B—H1BB⋯O4 0.97 2.49 3.266 (5) 136
C1B—H1BB⋯O1A 0.97 2.54 3.356 (11) 142
C3B—H3BA⋯O1 0.93 2.47 3.300 (6) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+1, -z+{\script{3\over 2}}].

Data collection: XSCANS (Siemens, 1991[Siemens (1991). XDISK and XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XDISK (Siemens, 1991[Siemens (1991). XDISK and XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chelating ligands, bis(pyridin-2-ylalky)amine (tridentate) and tris (pyridin-2-ylalkyl) amine (tetradentate) (alkyl = methyl or ethyl) form coordination complexes with a variety of transition metals, including Cu, Fe, and Mn, with variable oxidation states and with a high degree of flexibility and stability. Such complexes are important in biomimetic coordination chemistry (Zhou, et al., 2011; Walsdorff, et al., 1999; Nielsen, et al., 2007; Routasalo, et al., 2008), catalysis (Raycroft, et al., 2012; Berthet et al., 2013), medicinal chemistry (Ari et al., 2013: Chang, et al., 2004), O2 activation, catalysis of redox reactions and oxygenation of organic substrates (Karlin, et al., 1984; Karlin & Gultneh, 1987; Hatcher & Karlin, 2004), and making polymeric materials that form by self-assembling metal coordination compounds (Denmark & Jacobsen, 2000; Chatterjee, 2008; Katsuki, 2004; Kim, et al., 2010). Studies of the coordination, structural and reactivity features of this class of ligands with various metal ions have become an important tool in understanding the detailed structures and reaction mechanisms at the active sites of enzymes in biological systems as well as in synthetic complexes of interest (Davies et al., 2004).

In the title complex, two linear, chelating tridentate ligand molecules (L) form a six-coordinate MnII complex with Mn(ClO4)2·6H2O in which the Mn lies on a twofold axis. The MnII ion is significantly distorted from regular octahedral geometry as shown by the deviations of the angles at Mn from 90° (cis) and 180° (trans). The cis N(py)—Mn—N(py) angles are larger (100.28 (12)°) due to bulky group crowding while the N(amine)—Mn—N(amine) angles are smaller than 90°. The Mn—N bond lengths show Mn—N(amine) (2.365 (3) Å) > Mn—N(py) (2.200 (3) and 2.261 (3) Å). In the related structure of [Mn(bpa)2]2+ (bpa = bis(pyridin-2-ylmethyl)amine) with C2 symmetry (Glerup et al., (1992) the observed order is Mn–N(pyr) > Mn–N(amine), whereas in crystals showing both C2 and Ci isomers in the same unit cell the reverse order is observed; Mn—N(amine) > Mn—N(py) (Gultneh et al., 2006).

The perchlorate anion is disordered and was constrained to be tetrahedral with two orientations of occupancies of 0.768 (4) and 0.232 (4). The 6-methylpyridine ring was also disordered with two orientations having occupancies of 0.508 (15) and 0.492 (15).

The packing arrangement is stabilized by weak C—H···O interactions between cations and anions which link the moieties into a zigzag ribbon in the [101] direction.

Related literature top

For the importance of flexible coordination complexes of Mn in biomimetic chemistry, see: Zhou et al. (2011); Walsdorff et al. (1999); Nielsen et al. (2007); Routasalo et al. (2008), in catalysis, see: Raycroft et al. (2012); Berthet et al. (2013), in medicinal chemistry, see: Ari et al. (2013); Chang et al. (2004), in O2 activation and catalysis of redox reactions and oxygenation of organic substrates, see: Karlin et al. (1984); Karlin & Gultneh, (1987); Hatcher & Karlin, (2004) and in making polymeric materials that form by self-assembling metal coordination compounds, see: Denmark & Jacobsen (2000); Chatterjee (2008); Katsuki (2004); Kim et al. (2010). For the study of active sites of enzymes in biological systems as well as in synthetic complexes of interest, see: Davies et al. (2004). For the preparation of bis(pyridin-2-ylmethyl)amine (bpa), see: Romary et al. (1967). For structures of similar Mn complexes, see: Glerup et al. (1992); Gultneh et al. (2006).

Experimental top

The ligand L was synthesized by the reaction of bis(pyridin-2-ylmethyl)amine (bpa) (Romary et al., 1967) as follows: 2.2 g (11.11 mmol) was dissolved in 15.0 ml of distilled water at 0°C, and 2-methylbenzyl bromide (2.06 g, 11.1 mmol) was added. The mixture was stirred at 0°C for one hour and 0.44 g of NaOH dissolved in 10.0 ml of distilled water was added to it. The mixture was stirred for three days and extracted with methylene chloride (3x40 ml). The extracts were combined and dried over anhydrous MgSO4 overnight. The MgSO4 was filtered off and the filtrate concentrated to give 3.11 g (85% yield) of yellow oil. 1 H NMR CDCl3—TMS) (p.p.m.) 8.50 [d (H6A/B) 2H]; 7.51 [m, (H3A/B, H4A/B, H5A/B) 6H]; 7.10 [m, (C3C, C4C, C5C, C6C) 4H]; 3.81[s, (C1A/B) 4H]; 3.68 [s, (C8C) 2H]; 2.25[s, (C1C) 3H].

To 3.2 g (10.56 mmol) of L dissolved in 15 ml of methanol was added 1.91 g (5.28 mmol) of Mn(ClO4)2·6H2O under an argon atmosphere using Schlenk apparatus and the mixture was stirred overnight. To the colorless solution was added 70 ml of ether which resulted in a colorless precipitate. This was filtered under an argon atmosphere to give 3.3 g (74% yield) of a white powder which was recrystallized by layering ether on a solution of the complex in acetonitrile. IR (mineral oil) 2002,1600, 1570, 1461, 1445, 1391, 1297, 1192, 1078, 1008, 969, 869, 760, 730, 611, 507 cm-1.

Refinement top

H atoms were placed in geometrically idealized positions with a C—H distances of 0.93 and 0.97 Å Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. Both the perchlorate anion and one of the phenyl rings of the cation were disordered. For the anion this was modeled as an idealized tetrahedron with two orientations having occupancies of 0.737 (5) and 0.263 (5). The 6-methylpyridine ring was disordered with two orientations having occupancies of 0.536 (16) and 0.464 (16).

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS (Siemens, 1991); data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the complex cation showing the atom numbering scheme for the unique portion.
[Figure 2] Fig. 2. Packing diagram for the complex viewed along the a axis. C—H···O interactions are shown by dashed lines.
Bis[(2-methylbenzyl)bis(pyridin-2-ylmethyl-κN)amine-κN]manganese(II) bis(perchlorate) top
Crystal data top
[Mn(C20H21N3)2](ClO4)2F(000) = 1788
Mr = 860.63Dx = 1.388 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.162 (3) ÅCell parameters from 45 reflections
b = 10.4755 (11) Åθ = 5.0–12.5°
c = 19.391 (2) ŵ = 0.51 mm1
β = 118.896 (8)°T = 293 K
V = 4119.1 (9) Å3Plate, colorless
Z = 40.42 × 0.37 × 0.18 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.021
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(XEMP; Siemens, 1989)
h = 030
Tmin = 0.72, Tmax = 0.92k = 130
4863 measured reflectionsl = 2522
4750 independent reflections3 standard reflections every 97 reflections
3075 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0957P)2 + 3.680P]
where P = (Fo2 + 2Fc2)/3
4750 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.67 e Å3
86 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Mn(C20H21N3)2](ClO4)2V = 4119.1 (9) Å3
Mr = 860.63Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.162 (3) ŵ = 0.51 mm1
b = 10.4755 (11) ÅT = 293 K
c = 19.391 (2) Å0.42 × 0.37 × 0.18 mm
β = 118.896 (8)°
Data collection top
Bruker P4
diffractometer
3075 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(XEMP; Siemens, 1989)
Rint = 0.021
Tmin = 0.72, Tmax = 0.923 standard reflections every 97 reflections
4863 measured reflections intensity decay: none
4750 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06586 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.03Δρmax = 0.67 e Å3
4750 reflectionsΔρmin = 0.44 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.63686 (7)0.75000.0433 (2)
N10.48410 (13)0.5017 (3)0.64439 (16)0.0464 (6)
N1A0.45745 (14)0.7660 (3)0.64777 (16)0.0494 (7)
N1B0.60038 (14)0.6010 (3)0.76090 (17)0.0514 (7)
C1A0.48177 (18)0.5908 (4)0.5841 (2)0.0516 (8)
H1AA0.45920.54950.53310.062*
H1AB0.52650.60870.59510.062*
C2A0.44771 (16)0.7155 (3)0.57984 (19)0.0491 (8)
C3A0.4120 (2)0.7793 (4)0.5091 (2)0.0662 (11)
H3AA0.40510.74240.46210.079*
C4A0.3868 (2)0.8982 (5)0.5094 (3)0.0752 (12)
H4AA0.36320.94270.46250.090*
C5A0.3967 (2)0.9508 (4)0.5788 (3)0.0699 (11)
H5AA0.37951.03070.57980.084*
C6A0.4326 (2)0.8826 (4)0.6471 (2)0.0593 (9)
H6AA0.43990.91830.69460.071*
C1B0.54401 (18)0.4219 (4)0.6743 (2)0.0567 (9)
H1BA0.54740.38710.63010.068*
H1BB0.54010.35100.70400.068*
C2B0.60584 (17)0.4959 (4)0.7263 (2)0.0544 (9)
C3B0.6657 (2)0.4520 (5)0.7378 (3)0.0777 (13)
H3BA0.66840.37780.71320.093*
C4B0.7221 (2)0.5204 (5)0.7869 (3)0.0892 (15)
H4BA0.76340.49150.79680.107*
C5B0.7161 (2)0.6304 (5)0.8202 (3)0.0777 (13)
H5BA0.75310.67880.85250.093*
C6B0.65518 (18)0.6682 (4)0.8056 (2)0.0614 (10)
H6BA0.65130.74440.82770.074*
C1C0.2892 (19)0.497 (4)0.478 (2)0.111 (9)0.508 (15)
H1CA0.25390.51720.42670.166*0.508 (15)
H1CB0.31520.57190.50140.166*0.508 (15)
H1CC0.27130.46670.51060.166*0.508 (15)
C2C0.3326 (8)0.393 (2)0.4713 (11)0.064 (3)0.508 (15)
C3C0.3123 (8)0.334 (3)0.3998 (12)0.081 (4)0.508 (15)
H3CA0.27030.35100.35840.097*0.508 (15)
C4C0.3534 (15)0.251 (3)0.3883 (12)0.076 (5)0.508 (15)
H4CA0.34540.22990.33780.092*0.508 (15)
C5C0.4054 (8)0.200 (2)0.4526 (13)0.065 (3)0.508 (15)
H5CA0.42740.12980.44720.078*0.508 (15)
C6C0.4260 (7)0.253 (2)0.5268 (11)0.054 (2)0.508 (15)
H6CA0.46350.22170.57020.064*0.508 (15)
C7C0.3917 (7)0.352 (2)0.5365 (10)0.048 (3)0.508 (15)
C8C0.419 (3)0.422 (7)0.615 (2)0.056 (6)0.508 (15)
H8CA0.42700.35850.65540.067*0.508 (15)
H8CB0.38520.47870.61270.067*0.508 (15)
C1CA0.3018 (19)0.497 (5)0.465 (2)0.111 (9)0.492 (15)
H1CD0.26130.49310.41660.166*0.492 (15)
H1CE0.32170.57970.47060.166*0.492 (15)
H1CF0.29290.48400.50840.166*0.492 (15)
C2CA0.3492 (8)0.393 (2)0.4668 (12)0.064 (3)0.492 (15)
C3CA0.3323 (9)0.324 (3)0.3997 (12)0.081 (4)0.492 (15)
H3CB0.29630.35030.35270.097*0.492 (15)
C4CA0.3672 (16)0.217 (3)0.3998 (13)0.076 (5)0.492 (15)
H4CB0.35010.16080.35710.092*0.492 (15)
C5CA0.4269 (8)0.194 (2)0.4635 (14)0.065 (3)0.492 (15)
H5CB0.45580.13610.46040.078*0.492 (15)
C6CA0.4447 (7)0.260 (2)0.5337 (12)0.054 (2)0.492 (15)
H6CB0.48230.23540.57950.064*0.492 (15)
C7CA0.4071 (8)0.360 (2)0.5357 (11)0.048 (3)0.492 (15)
C8CA0.425 (3)0.426 (8)0.614 (2)0.056 (6)0.492 (15)
H8CC0.38900.48020.60680.067*0.492 (15)
H8CD0.43110.36140.65250.067*0.492 (15)
Cl10.61415 (5)0.08236 (10)0.72361 (6)0.0693 (3)
O10.63792 (17)0.1512 (3)0.68050 (19)0.0808 (12)0.768 (4)
O20.65812 (17)0.0170 (3)0.7645 (2)0.0922 (15)0.768 (4)
O30.55217 (15)0.0312 (4)0.6721 (2)0.166 (3)0.768 (4)
O40.6088 (3)0.1638 (3)0.7776 (2)0.147 (2)0.768 (4)
O1A0.5534 (3)0.1107 (10)0.7195 (6)0.0808 (12)0.232 (4)
O2A0.6241 (5)0.0500 (3)0.7298 (7)0.0922 (15)0.232 (4)
O3A0.6141 (5)0.1268 (11)0.6554 (4)0.166 (3)0.232 (4)
O4A0.6649 (4)0.1423 (10)0.7898 (4)0.147 (2)0.232 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0452 (4)0.0479 (4)0.0347 (3)0.0000.0175 (3)0.000
N10.0470 (15)0.0474 (16)0.0440 (14)0.0036 (12)0.0214 (12)0.0047 (12)
N1A0.0570 (17)0.0508 (17)0.0400 (14)0.0020 (14)0.0232 (13)0.0021 (12)
N1B0.0487 (16)0.0544 (18)0.0507 (16)0.0013 (13)0.0238 (13)0.0028 (13)
C1A0.057 (2)0.057 (2)0.0428 (17)0.0020 (16)0.0256 (16)0.0052 (15)
C2A0.0493 (18)0.056 (2)0.0390 (16)0.0032 (16)0.0191 (14)0.0008 (15)
C3A0.070 (2)0.076 (3)0.0411 (18)0.002 (2)0.0171 (17)0.0087 (19)
C4A0.073 (3)0.078 (3)0.058 (2)0.007 (2)0.018 (2)0.023 (2)
C5A0.071 (3)0.057 (2)0.072 (3)0.008 (2)0.026 (2)0.012 (2)
C6A0.071 (2)0.050 (2)0.057 (2)0.0049 (18)0.0307 (19)0.0025 (17)
C1B0.060 (2)0.050 (2)0.059 (2)0.0060 (17)0.0270 (18)0.0027 (17)
C2B0.0505 (19)0.052 (2)0.060 (2)0.0020 (16)0.0262 (17)0.0020 (17)
C3B0.062 (3)0.070 (3)0.101 (3)0.009 (2)0.039 (2)0.008 (3)
C4B0.053 (3)0.086 (3)0.123 (4)0.005 (2)0.038 (3)0.004 (3)
C5B0.048 (2)0.084 (3)0.087 (3)0.007 (2)0.021 (2)0.005 (3)
C6B0.054 (2)0.062 (2)0.062 (2)0.0085 (18)0.0227 (18)0.0058 (19)
C1C0.056 (12)0.133 (6)0.098 (11)0.008 (7)0.002 (8)0.028 (7)
C2C0.036 (7)0.087 (3)0.066 (3)0.013 (5)0.022 (4)0.015 (3)
C3C0.046 (9)0.111 (6)0.062 (3)0.017 (8)0.007 (6)0.014 (3)
C4C0.101 (12)0.064 (14)0.057 (5)0.025 (8)0.034 (6)0.011 (7)
C5C0.048 (9)0.072 (4)0.082 (6)0.028 (7)0.039 (8)0.030 (4)
C6C0.035 (7)0.056 (3)0.070 (4)0.022 (6)0.026 (5)0.014 (3)
C7C0.034 (6)0.061 (3)0.053 (2)0.025 (5)0.025 (4)0.011 (2)
C8C0.055 (9)0.061 (4)0.052 (2)0.011 (6)0.026 (3)0.015 (3)
C1CA0.056 (12)0.133 (6)0.098 (11)0.008 (7)0.002 (8)0.028 (7)
C2CA0.036 (7)0.087 (3)0.066 (3)0.013 (5)0.022 (4)0.015 (3)
C3CA0.046 (9)0.111 (6)0.062 (3)0.017 (8)0.007 (6)0.014 (3)
C4CA0.101 (12)0.064 (14)0.057 (5)0.025 (8)0.034 (6)0.011 (7)
C5CA0.048 (9)0.072 (4)0.082 (6)0.028 (7)0.039 (8)0.030 (4)
C6CA0.035 (7)0.056 (3)0.070 (4)0.022 (6)0.026 (5)0.014 (3)
C7CA0.034 (6)0.061 (3)0.053 (2)0.025 (5)0.025 (4)0.011 (2)
C8CA0.055 (9)0.061 (4)0.052 (2)0.011 (6)0.026 (3)0.015 (3)
Cl10.0697 (7)0.0699 (7)0.0733 (7)0.0084 (5)0.0386 (5)0.0158 (5)
O10.112 (3)0.072 (2)0.083 (2)0.006 (2)0.066 (2)0.0191 (19)
O20.101 (3)0.078 (3)0.098 (3)0.022 (2)0.048 (3)0.028 (2)
O30.110 (4)0.196 (6)0.154 (5)0.040 (4)0.033 (3)0.002 (4)
O40.232 (6)0.129 (4)0.126 (4)0.051 (4)0.125 (4)0.009 (3)
O1A0.112 (3)0.072 (2)0.083 (2)0.006 (2)0.066 (2)0.0191 (19)
O2A0.101 (3)0.078 (3)0.098 (3)0.022 (2)0.048 (3)0.028 (2)
O3A0.110 (4)0.196 (6)0.154 (5)0.040 (4)0.033 (3)0.002 (4)
O4A0.232 (6)0.129 (4)0.126 (4)0.051 (4)0.125 (4)0.009 (3)
Geometric parameters (Å, º) top
Mn1—N1Ai2.201 (3)C1C—H1CA0.9600
Mn1—N1A2.201 (3)C1C—H1CB0.9600
Mn1—N1B2.262 (3)C1C—H1CC0.9600
Mn1—N1Bi2.262 (3)C2C—C3C1.376 (12)
Mn1—N1i2.367 (3)C2C—C7C1.408 (11)
Mn1—N12.367 (3)C3C—C4C1.390 (15)
N1—C8CA1.43 (9)C3C—H3CA0.9300
N1—C1A1.476 (4)C4C—C5C1.354 (14)
N1—C1B1.478 (4)C4C—H4CA0.9300
N1—C8C1.57 (9)C5C—C6C1.396 (11)
N1A—C2A1.334 (4)C5C—H5CA0.9300
N1A—C6A1.347 (5)C6C—C7C1.373 (11)
N1B—C2B1.327 (5)C6C—H6CA0.9300
N1B—C6B1.340 (5)C7C—C8C1.526 (12)
C1A—C2A1.507 (5)C8C—H8CA0.9700
C1A—H1AA0.9700C8C—H8CB0.9700
C1A—H1AB0.9700C1CA—C2CA1.536 (12)
C2A—C3A1.384 (5)C1CA—H1CD0.9600
C3A—C4A1.376 (6)C1CA—H1CE0.9600
C3A—H3AA0.9300C1CA—H1CF0.9600
C4A—C5A1.367 (6)C2CA—C3CA1.371 (12)
C4A—H4AA0.9300C2CA—C7CA1.406 (11)
C5A—C6A1.375 (5)C3CA—C4CA1.388 (15)
C5A—H5AA0.9300C3CA—H3CB0.9300
C6A—H6AA0.9300C4CA—C5CA1.357 (14)
C1B—C2B1.507 (5)C4CA—H4CB0.9300
C1B—H1BA0.9700C5CA—C6CA1.397 (11)
C1B—H1BB0.9700C5CA—H5CB0.9300
C2B—C3B1.373 (5)C6CA—C7CA1.376 (11)
C3B—C4B1.387 (6)C6CA—H6CB0.9300
C3B—H3BA0.9300C7CA—C8CA1.527 (12)
C4B—C5B1.361 (7)C8CA—H8CC0.9700
C4B—H4BA0.9300C8CA—H8CD0.9700
C5B—C6B1.358 (6)Cl1—O2A1.401 (2)
C5B—H5BA0.9300Cl1—O3A1.401 (2)
C6B—H6BA0.9300Cl1—O4A1.402 (2)
C1C—C2C1.528 (12)Cl1—O1A1.402 (2)
N1Ai—Mn1—N1A104.11 (15)N1B—C6B—C5B123.1 (4)
N1Ai—Mn1—N1B91.45 (11)N1B—C6B—H6BA118.5
N1A—Mn1—N1B100.32 (11)C5B—C6B—H6BA118.5
N1Ai—Mn1—N1Bi100.32 (11)C2C—C1C—H1CA109.5
N1A—Mn1—N1Bi91.44 (11)C2C—C1C—H1CB109.5
N1B—Mn1—N1Bi160.87 (16)H1CA—C1C—H1CB109.5
N1Ai—Mn1—N1i76.92 (10)C2C—C1C—H1CC109.5
N1A—Mn1—N1i164.06 (10)H1CA—C1C—H1CC109.5
N1B—Mn1—N1i95.54 (10)H1CB—C1C—H1CC109.5
N1Bi—Mn1—N1i72.83 (10)C3C—C2C—C7C118.7 (11)
N1Ai—Mn1—N1164.06 (10)C3C—C2C—C1C119.1 (13)
N1A—Mn1—N176.92 (10)C7C—C2C—C1C122.2 (13)
N1B—Mn1—N172.83 (10)C2C—C3C—C4C121.1 (12)
N1Bi—Mn1—N195.54 (10)C2C—C3C—H3CA119.4
N1i—Mn1—N1106.56 (14)C4C—C3C—H3CA119.4
C8CA—N1—C1A111 (3)C5C—C4C—C3C118.3 (16)
C8CA—N1—C1B112 (2)C5C—C4C—H4CA120.9
C1A—N1—C1B109.7 (3)C3C—C4C—H4CA120.9
C1A—N1—C8C113 (2)C4C—C5C—C6C120.1 (13)
C1B—N1—C8C113.2 (18)C4C—C5C—H5CA120.0
C8CA—N1—Mn1114.1 (17)C6C—C5C—H5CA120.0
C1A—N1—Mn1103.7 (2)C7C—C6C—C5C120.7 (12)
C1B—N1—Mn1105.9 (2)C7C—C6C—H6CA119.6
C8C—N1—Mn1110.6 (14)C5C—C6C—H6CA119.6
C2A—N1A—C6A118.9 (3)C6C—C7C—C2C118.8 (11)
C2A—N1A—Mn1115.7 (2)C6C—C7C—C8C120.4 (13)
C6A—N1A—Mn1124.7 (2)C2C—C7C—C8C120.6 (14)
C2B—N1B—C6B118.1 (3)C7C—C8C—N1119 (5)
C2B—N1B—Mn1115.8 (2)C7C—C8C—H8CA107.7
C6B—N1B—Mn1125.6 (3)N1—C8C—H8CA107.7
N1—C1A—C2A114.2 (3)C7C—C8C—H8CB107.7
N1—C1A—H1AA108.7N1—C8C—H8CB107.7
C2A—C1A—H1AA108.7H8CA—C8C—H8CB107.1
N1—C1A—H1AB108.7C2CA—C1CA—H1CD109.5
C2A—C1A—H1AB108.7C2CA—C1CA—H1CE109.5
H1AA—C1A—H1AB107.6H1CD—C1CA—H1CE109.5
N1A—C2A—C3A121.4 (4)C2CA—C1CA—H1CF109.5
N1A—C2A—C1A117.1 (3)H1CD—C1CA—H1CF109.5
C3A—C2A—C1A121.3 (3)H1CE—C1CA—H1CF109.5
C4A—C3A—C2A119.0 (4)C3CA—C2CA—C7CA118.3 (12)
C4A—C3A—H3AA120.5C3CA—C2CA—C1CA119.0 (14)
C2A—C3A—H3AA120.5C7CA—C2CA—C1CA122.6 (14)
C5A—C4A—C3A120.0 (4)C2CA—C3CA—C4CA122.0 (14)
C5A—C4A—H4AA120.0C2CA—C3CA—H3CB119.0
C3A—C4A—H4AA120.0C4CA—C3CA—H3CB119.0
C4A—C5A—C6A118.3 (4)C5CA—C4CA—C3CA118.5 (16)
C4A—C5A—H5AA120.9C5CA—C4CA—H4CB120.7
C6A—C5A—H5AA120.9C3CA—C4CA—H4CB120.7
N1A—C6A—C5A122.5 (4)C4CA—C5CA—C6CA119.6 (13)
N1A—C6A—H6AA118.8C4CA—C5CA—H5CB120.2
C5A—C6A—H6AA118.8C6CA—C5CA—H5CB120.2
N1—C1B—C2B112.3 (3)C7CA—C6CA—C5CA120.6 (12)
N1—C1B—H1BA109.1C7CA—C6CA—H6CB119.7
C2B—C1B—H1BA109.1C5CA—C6CA—H6CB119.7
N1—C1B—H1BB109.1C6CA—C7CA—C2CA119.3 (11)
C2B—C1B—H1BB109.1C6CA—C7CA—C8CA119.8 (15)
H1BA—C1B—H1BB107.9C2CA—C7CA—C8CA120.7 (14)
N1B—C2B—C3B122.1 (4)N1—C8CA—C7CA114 (6)
N1B—C2B—C1B118.2 (3)N1—C8CA—H8CC108.6
C3B—C2B—C1B119.7 (4)C7CA—C8CA—H8CC108.6
C2B—C3B—C4B118.8 (4)N1—C8CA—H8CD108.6
C2B—C3B—H3BA120.6C7CA—C8CA—H8CD108.6
C4B—C3B—H3BA120.6H8CC—C8CA—H8CD109.0
C5B—C4B—C3B119.0 (4)O2A—Cl1—O3A109.53 (9)
C5B—C4B—H4BA120.5O2A—Cl1—O4A109.54 (9)
C3B—C4B—H4BA120.5O3A—Cl1—O4A109.50 (9)
C6B—C5B—C4B118.8 (4)O2A—Cl1—O1A109.45 (9)
C6B—C5B—H5BA120.6O3A—Cl1—O1A109.42 (9)
C4B—C5B—H5BA120.6O4A—Cl1—O1A109.38 (9)
C8CA—N1—C1A—C2A86.2 (15)C4B—C5B—C6B—N1B1.3 (7)
C1B—N1—C1A—C2A149.7 (3)C7C—C2C—C3C—C4C10 (4)
C8C—N1—C1A—C2A83.0 (13)C1C—C2C—C3C—C4C172 (4)
Mn1—N1—C1A—C2A36.8 (3)C2C—C3C—C4C—C5C18 (5)
C6A—N1A—C2A—C3A0.9 (5)C3C—C4C—C5C—C6C15 (5)
Mn1—N1A—C2A—C3A169.7 (3)C4C—C5C—C6C—C7C4 (4)
C6A—N1A—C2A—C1A174.3 (3)C5C—C6C—C7C—C2C4 (3)
Mn1—N1A—C2A—C1A15.1 (4)C5C—C6C—C7C—C8C172 (5)
N1—C1A—C2A—N1A37.9 (4)C3C—C2C—C7C—C6C2 (3)
N1—C1A—C2A—C3A146.9 (3)C1C—C2C—C7C—C6C176 (3)
N1A—C2A—C3A—C4A0.9 (6)C3C—C2C—C7C—C8C175 (5)
C1A—C2A—C3A—C4A174.2 (4)C1C—C2C—C7C—C8C7 (6)
C2A—C3A—C4A—C5A0.8 (7)C6C—C7C—C8C—N166 (6)
C3A—C4A—C5A—C6A0.7 (7)C2C—C7C—C8C—N1110 (3)
C2A—N1A—C6A—C5A0.9 (6)C1A—N1—C8C—C7C50 (4)
Mn1—N1A—C6A—C5A168.8 (3)C1B—N1—C8C—C7C75 (4)
C4A—C5A—C6A—N1A0.8 (7)Mn1—N1—C8C—C7C166 (3)
C8CA—N1—C1B—C2B164 (3)C7CA—C2CA—C3CA—C4CA6 (4)
C1A—N1—C1B—C2B72.3 (4)C1CA—C2CA—C3CA—C4CA170 (4)
C8C—N1—C1B—C2B160 (2)C2CA—C3CA—C4CA—C5CA14 (6)
Mn1—N1—C1B—C2B39.1 (3)C3CA—C4CA—C5CA—C6CA15 (5)
C6B—N1B—C2B—C3B3.0 (6)C4CA—C5CA—C6CA—C7CA10 (4)
Mn1—N1B—C2B—C3B170.1 (3)C5CA—C6CA—C7CA—C2CA2 (3)
C6B—N1B—C2B—C1B178.5 (3)C5CA—C6CA—C7CA—C8CA177 (5)
Mn1—N1B—C2B—C1B8.5 (4)C3CA—C2CA—C7CA—C6CA0 (3)
N1—C1B—C2B—N1B22.8 (5)C1CA—C2CA—C7CA—C6CA175 (3)
N1—C1B—C2B—C3B158.6 (4)C3CA—C2CA—C7CA—C8CA175 (5)
N1B—C2B—C3B—C4B0.4 (7)C1CA—C2CA—C7CA—C8CA1 (6)
C1B—C2B—C3B—C4B178.9 (4)C1A—N1—C8CA—C7CA51 (4)
C2B—C3B—C4B—C5B1.8 (8)C1B—N1—C8CA—C7CA72 (4)
C3B—C4B—C5B—C6B1.3 (8)Mn1—N1—C8CA—C7CA168 (2)
C2B—N1B—C6B—C5B3.5 (6)C6CA—C7CA—C8CA—N171 (6)
Mn1—N1B—C6B—C5B168.8 (3)C2CA—C7CA—C8CA—N1114 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3AA···O3Aii0.932.513.106 (5)122
C6A—H6AA···Cl1iii0.932.993.802 (4)146
C6A—H6AA···O1Aiii0.932.573.420 (10)152
C6A—H6AA···O2Aiii0.932.563.309 (12)138
C1B—H1BB···O40.972.493.266 (5)136
C1B—H1BB···O1A0.972.543.356 (11)142
C3B—H3BA···O10.932.473.300 (6)149
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3AA···O3Ai0.932.513.106 (5)122
C6A—H6AA···Cl1ii0.932.993.802 (4)146
C6A—H6AA···O1Aii0.932.573.420 (10)152
C6A—H6AA···O2Aii0.932.563.309 (12)138
C1B—H1BB···O40.972.493.266 (5)136
C1B—H1BB···O1A0.972.543.356 (11)142
C3B—H3BA···O10.932.473.300 (6)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+3/2.
 

Acknowledgements

RJB wishes to acknowledge the National Science Foundation MRI program (CHE0619278) for funds to purchase the diffractometer. TBY wishes to acknowledge the Graduate School of Howard University for the award of a Teaching Assistantship.

References

First citationAri, F., Ulukaya, E., Sarimahmut, M. & Yilmaz, V. T. (2013). Bioorg. Med. Chem. 21, 3016–3021.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBerthet, N., Martel-Franchet, V., Michel, F., Philouze, C., Hamman, S., Ronot, X. & Thomas, F. (2013). Dalton Trans. 42, 8468–8483.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChang, C. J., Nolan, E. M., Jaworski, J., Burdette, S. C., Sheng, M. & Lippard, S. J. (2004). Chem. Biol. 11, 203–210.  CrossRef PubMed CAS Google Scholar
First citationChatterjee, D. (2008). Coord. Chem. Rev. 252, 176–198.  Web of Science CrossRef CAS Google Scholar
First citationDavies, C. J., Sloan, G. A. & Faucett, J. (2004). Polyhedron, 23, 3105–3114.  Web of Science CSD CrossRef CAS Google Scholar
First citationDenmark, S. E. & Jacobsen, E. N. (2000). Acc. Chem. Res. 33, 324–324.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGlerup, J., Goodson, D. K., Hodgson, D. K., Michelson, K., Neilsen, K. M. & Wiehle, H. (1992). Inorg. Chem. 31, 4611–4616.  CSD CrossRef CAS Web of Science Google Scholar
First citationGultneh, Y., Ahvazi, B., Tesema, Y. T., Yisgedu, T. B. & Butcher, R. J. (2006). J. Coord. Chem. 59, 1835–1846.  Web of Science CSD CrossRef CAS Google Scholar
First citationHatcher, L. Q. & Karlin, K. D. (2004). J. Biol. Inorg. Chem. 9, 669–683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarlin, K. D. & Gultneh, Y. (1987). Prog. Inorg. Chem. 35, 219–327.  CrossRef CAS Web of Science Google Scholar
First citationKarlin, K. D., Hayes, J. C., Gultneh, Y., Cruse, R. W., Mckown, J. W., Hutchinson, J. H. & Zubieta, J. (1984). J. Am. Chem. Soc. 106, 2121–2128.  CSD CrossRef CAS Web of Science Google Scholar
First citationKatsuki, T. (2004). Chem. Soc. Rev. 33, 437–442.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, M., Mora, C., Lee, Y. H., Clegg, J. K., Lindoy, L. F., Min, K. S., Thuery, P. & Kim, Y. (2010). Inorg. Chem. Commun. pp. 1148–1151.  Web of Science CSD CrossRef CAS Google Scholar
First citationNielsen, A., Veltze, S., Bond, A. D. & McKenzie, C. J. (2007). Polyhedron, 26, 1649–1657.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaycroft, M. A. R., Maxwell, C. I., Oldham, R. A. A., Andrea, A. S., Neverov, A. A. & Brown, R. S. (2012). Inorg. Chem. 51, 10325–10333.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRomary, J. K., Bund, J. E. & Barger, J. D. (1967). J. Chem. Eng. Data, pp. 1229–1231.  Google Scholar
First citationRoutasalo, T., Helaja, J., Kavakka, J. A. & Koskienen, M. P. (2008). Eur. J. Org. Chem. pp. 3190–3199.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1991). XDISK and XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWalsdorff, C., Park, S., Kim, J., Heo, J., Park, K.-M., Oh, J. & Kim, K. (1999). J. Chem. Soc. Dalton Trans. pp. 923–929.  Web of Science CSD CrossRef Google Scholar
First citationZhou, D.-F., Chen, Q.-Y., Fu, H.-J. & Yan, Q. (2011). Spectrochim. Acta Part A, 81, 604–608.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m100-m101
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds