organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Hexyl­oxyphen­yl)-1,2,4-triazolo[3,4-b]benzo­thia­zole

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 28 January 2014; accepted 29 January 2014; online 5 February 2014)

The title compound, C20H21N3OS, was prepared by Huisgen reaction of 5-(4-hexyl­oxyphen­yl)tetra­zole and chloro­benzo­thia­zole. The essentially planar benzo­thia­zolotriazole framework [maximum deviation from the mean plane of 0.077 (1) Å for the bridgehead N atom] and the phenyl ring form a dihedral angle of 53.34 (5)°. The hex­yloxy chain adopts a gaucheall-anti conformation. The intra­centroid separation of 3.7258 (8) Å between the triazole and benzene rings is the closest contact between individual mol­ecules in the crystal.

Related literature

For related benzo­thia­zolotriazoles, see: Butler et al. (1972[Butler, R. N., O'Sullivan, P. & Scott, L. F. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1519-1523.]); Reynolds & van Allan (1959[Reynolds, G. A. & van Allan, J. A. (1959). J. Org. Chem. 24, 1478-1486.]). For triazolo-annulation via tetra­zoles, see: Christiano et al. (2008[Christiano, R., Gallardo, H., Bortoluzzi, A. J., Bechtold, I. H., Campos, C. E. M. & Longo, L. R. (2008). Chem. Commun. pp. 5134-5136.]). For the Huisgen reaction, see: Huisgen et al. (1960[Huisgen, R., Sturm, H. J. & Markgraf, J. H. (1960). Chem. Ber. 93, 2106-2124.],1961[Huisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555-1562.]). For the structures of related triazolo-annulated heterocycles, see: Preis et al. (2011a[Preis, J., Schollmeyer, D. & Detert, H. (2011a). Acta Cryst. E67, o987.],b[Preis, J., Schollmeyer, D. & Detert, H. (2011b). Acta Cryst. E67, o2551.]); Herget et al. (2013[Herget, K., Schollmeyer, D. & Detert, H. (2013). Acta Cryst. E69, o365-o366.]); Puviarasnan et al. (1999[Puviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Jayanthi, G. & Fun, H.-K. (1999). Acta Cryst. C55, 948-951.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3OS

  • Mr = 351.46

  • Orthorhombic, P b c n

  • a = 10.7369 (4) Å

  • b = 9.1770 (3) Å

  • c = 35.6567 (11) Å

  • V = 3513.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 193 K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 26869 measured reflections

  • 4225 independent reflections

  • 3441 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.04

  • 4225 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The Huisgen reaction of tetrazoles and 2-chloroazines is a versatile method for the synthesis of 1,2,4-triazolo-annulated azines see: Preis et al. (2011a, 2011b), Herget et al. (2013), and Christiano et al. (2008). This method is also applicable to azoles with active chlorine and this structure confirms the corresponding [3,4-b]- annulation. The essentially planar benzothiazolotriazole framework of title compound C20H21N3OS (max. deviation 0.077 Å from mean plane at N(8) and the planar phenyl ring open a dihedral angle of 53.34 (5)°. The structural features of the π-system are very similar to a derivative lacking the hexyloxy group, see Puviarasnan et al. (1999). The O19—C20 bond is nearly coplanar with the mean plane of the phenyl ring (torsion angle: 6.6°) and the hexyl chain shows a gauche-all-anti konformation. A minimal distance of 3.73 Å between neighbouring molecules was found for the centroids of the triazole and the benzo-ring.

Related literature top

For related benzothiazolotriazoles, see: Butler et al. (1972); Reynolds & van Allan (1959). For triazolo-annulation via tetrazoles, see: Christiano et al. (2008). For the Huisgen reaction, see: Huisgen et al. (1960,1961). For the structures of related triazolo-annulated heterocycles, see: Preis et al. (2011a,b); Herget et al. (2013); Puviarasnan et al. (1999).

Experimental top

The title compound was prepared by adding chlorobenzothiazole (0.49 g, 2.75 mmol) to a stirred solution of 5-(4-hexyloxyphenyl)tetrazole (0.67 g, 2.75 mmol) and collidine (0.5 ml) in xylenes (12 ml). The mixture was stirred for 15 h at ambient temperature and heated to 392 K for 24 h. The cooled solution was filtered, washed with water (30 ml), dried (CaCl2) and concentrated. Chromatography on silica gel using toluene / ethyl acetate 3 / 7 (Rf = 0.15) as an eluent yielded 0.66 g of the pure title compound (68%). Recrystallization from methanol / dichloromethane gave off-white crystals with m.p. = 400 K

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
3-(4-Hexyloxyphenyl)-1,2,4-triazolo[3,4-b]benzothiazole top
Crystal data top
C20H21N3OSDx = 1.329 Mg m3
Mr = 351.46Melting point: 400 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 32877 reflections
a = 10.7369 (4) Åθ = 2.2–33.7°
b = 9.1770 (3) ŵ = 0.20 mm1
c = 35.6567 (11) ÅT = 193 K
V = 3513.3 (2) Å3Needle, colourless
Z = 80.50 × 0.20 × 0.20 mm
F(000) = 1488
Data collection top
Stoe IPDS 2T
diffractometer
3441 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.074
Graphite monochromatorθmax = 28.0°, θmin = 2.9°
Detector resolution: 6.67 pixels mm-1h = 1414
rotation method scansk = 812
26869 measured reflectionsl = 4738
4225 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.9425P]
where P = (Fo2 + 2Fc2)/3
4225 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H21N3OSV = 3513.3 (2) Å3
Mr = 351.46Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 10.7369 (4) ŵ = 0.20 mm1
b = 9.1770 (3) ÅT = 193 K
c = 35.6567 (11) Å0.50 × 0.20 × 0.20 mm
Data collection top
Stoe IPDS 2T
diffractometer
3441 reflections with I > 2σ(I)
26869 measured reflectionsRint = 0.074
4225 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
4225 reflectionsΔρmin = 0.23 e Å3
227 parameters
Special details top

Experimental. 1H-NMR (CDCl3): δ = 7.66 (m, 3 H); 7.51 (d, 1 H, J = 7.5 Hz), 7.35 ("t", 1 H), 7.29 ("t", 1H), 7.06 (d, 2 H, J = 8 Hz), 4.05, t, 2 H), 1.83 (qui, 2 H), 1.48 (qui, 2 H), 1.33 (m, 4 H), 0.90 ("t", 3H). 13C-NMR(CDCl3): δ = 156.0, 150.7, 154.3, 127.5, 125.5 (2c), 125.0, 121.2, 121.1, 119.7, 113.5, 109.9, 109.2, 63.2, 26.5, 24.1, 20.6, 17.5, 8.9. FD—MS:351.4 (M+H+). UV-Vis: dichloromethane: λmax = 260 nm (log ε = 4.11), λmax = 298 nm (log ε = 3.85); cyclohexane: λmax = 261 nm, λmax = 298 nm; λmax = 298 nm; ethanol: λmax = 258 nm, λmax = 295 nm; fluorescence: dichloromethane: λmax = 356 nm; cyclohexane: λmax = 333 nm; ethanol: λmax = 358 nm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41618 (4)0.26300 (4)0.696695 (10)0.03581 (13)
C20.40821 (12)0.43744 (15)0.67607 (4)0.0304 (3)
C30.41068 (14)0.57003 (18)0.69481 (4)0.0364 (3)
H30.41240.57370.72140.044*
C40.41053 (13)0.69677 (17)0.67376 (5)0.0374 (3)
H40.41150.78840.68610.045*
C50.40897 (13)0.69200 (16)0.63482 (5)0.0340 (3)
H50.41090.78040.62100.041*
C60.40465 (12)0.55988 (15)0.61587 (4)0.0299 (3)
H60.40300.55640.58920.036*
C70.40282 (11)0.43353 (14)0.63696 (4)0.0260 (3)
N80.40149 (10)0.28738 (12)0.62443 (3)0.0263 (2)
C90.40200 (12)0.20746 (15)0.59169 (4)0.0280 (3)
N100.41399 (11)0.06852 (13)0.60013 (4)0.0348 (3)
N110.42111 (12)0.05377 (13)0.63912 (4)0.0361 (3)
C120.41293 (12)0.18574 (15)0.65223 (4)0.0304 (3)
C130.38612 (12)0.26957 (15)0.55412 (4)0.0280 (3)
C140.46740 (13)0.23437 (15)0.52481 (4)0.0311 (3)
H140.53310.16700.52910.037*
C150.45328 (13)0.29627 (16)0.48985 (4)0.0323 (3)
H150.50890.27100.47020.039*
C160.35734 (12)0.39615 (15)0.48326 (4)0.0289 (3)
C170.27419 (12)0.42904 (15)0.51209 (4)0.0307 (3)
H170.20730.49470.50770.037*
C180.28918 (12)0.36596 (15)0.54696 (4)0.0304 (3)
H180.23210.38890.56640.036*
O190.35160 (9)0.45394 (11)0.44817 (3)0.0345 (2)
C200.25760 (14)0.56334 (16)0.44224 (4)0.0354 (3)
H20A0.26580.64070.46140.043*
H20B0.17390.51910.44480.043*
C210.27167 (14)0.62833 (16)0.40378 (4)0.0367 (3)
H21A0.35650.66980.40160.044*
H21B0.21180.70980.40130.044*
C220.25134 (13)0.52382 (17)0.37123 (4)0.0349 (3)
H22A0.32310.45640.36950.042*
H22B0.17570.46500.37600.042*
C230.23673 (14)0.60407 (17)0.33430 (4)0.0368 (3)
H23A0.16520.67160.33640.044*
H23B0.31230.66350.32990.044*
C240.21655 (17)0.50588 (19)0.30070 (5)0.0451 (4)
H24A0.29270.44720.29650.054*
H24B0.14750.43770.30630.054*
C250.1863 (2)0.5888 (2)0.26520 (5)0.0612 (5)
H25A0.10850.64300.26870.092*
H25B0.17680.52000.24440.092*
H25C0.25400.65700.25960.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0409 (2)0.0353 (2)0.0313 (2)0.00007 (15)0.00034 (14)0.00440 (14)
C20.0281 (6)0.0311 (7)0.0319 (7)0.0002 (5)0.0004 (5)0.0004 (6)
C30.0350 (7)0.0393 (8)0.0350 (8)0.0002 (6)0.0015 (6)0.0103 (6)
C40.0349 (7)0.0303 (7)0.0471 (9)0.0004 (6)0.0036 (6)0.0129 (7)
C50.0333 (7)0.0239 (7)0.0449 (8)0.0005 (5)0.0033 (6)0.0039 (6)
C60.0291 (6)0.0258 (7)0.0348 (7)0.0019 (5)0.0016 (5)0.0013 (6)
C70.0228 (6)0.0231 (6)0.0322 (7)0.0009 (5)0.0001 (5)0.0043 (5)
N80.0271 (5)0.0215 (5)0.0302 (6)0.0011 (4)0.0003 (4)0.0009 (4)
C90.0250 (6)0.0237 (6)0.0353 (7)0.0015 (5)0.0006 (5)0.0060 (5)
N100.0345 (6)0.0243 (6)0.0455 (7)0.0005 (5)0.0050 (5)0.0035 (5)
N110.0385 (6)0.0255 (6)0.0443 (7)0.0007 (5)0.0040 (5)0.0030 (5)
C120.0283 (6)0.0267 (7)0.0360 (7)0.0010 (5)0.0005 (5)0.0041 (6)
C130.0275 (6)0.0249 (6)0.0315 (7)0.0025 (5)0.0028 (5)0.0063 (5)
C140.0270 (6)0.0281 (7)0.0382 (7)0.0043 (5)0.0008 (6)0.0067 (6)
C150.0304 (7)0.0306 (7)0.0358 (7)0.0030 (5)0.0038 (6)0.0060 (6)
C160.0286 (6)0.0257 (6)0.0324 (7)0.0016 (5)0.0025 (5)0.0061 (5)
C170.0267 (6)0.0292 (7)0.0361 (7)0.0037 (5)0.0033 (5)0.0085 (6)
C180.0264 (6)0.0314 (7)0.0334 (7)0.0008 (5)0.0008 (5)0.0077 (6)
O190.0360 (5)0.0331 (5)0.0343 (5)0.0066 (4)0.0009 (4)0.0016 (4)
C200.0336 (7)0.0292 (7)0.0435 (8)0.0034 (5)0.0009 (6)0.0006 (6)
C210.0346 (7)0.0274 (7)0.0482 (8)0.0013 (6)0.0007 (6)0.0057 (6)
C220.0319 (7)0.0290 (7)0.0437 (8)0.0024 (5)0.0040 (6)0.0081 (6)
C230.0369 (7)0.0303 (7)0.0431 (8)0.0024 (6)0.0039 (6)0.0081 (6)
C240.0515 (9)0.0386 (9)0.0452 (9)0.0031 (7)0.0014 (7)0.0053 (7)
C250.0812 (14)0.0626 (12)0.0398 (9)0.0116 (11)0.0092 (9)0.0047 (9)
Geometric parameters (Å, º) top
S1—C121.7370 (15)C16—O191.3605 (17)
S1—C21.7638 (15)C16—C171.395 (2)
C2—C31.388 (2)C17—C181.381 (2)
C2—C71.396 (2)C17—H170.9500
C3—C41.384 (2)C18—H180.9500
C3—H30.9500O19—C201.4392 (17)
C4—C51.389 (2)C20—C211.503 (2)
C4—H40.9500C20—H20A0.9900
C5—C61.389 (2)C20—H20B0.9900
C5—H50.9500C21—C221.521 (2)
C6—C71.382 (2)C21—H21A0.9900
C6—H60.9500C21—H21B0.9900
C7—N81.4137 (17)C22—C231.517 (2)
N8—C121.3667 (18)C22—H22A0.9900
N8—C91.3787 (18)C22—H22B0.9900
C9—N101.3164 (18)C23—C241.515 (2)
C9—C131.466 (2)C23—H23A0.9900
N10—N111.399 (2)C23—H23B0.9900
N11—C121.3012 (19)C24—C251.512 (2)
C13—C181.3897 (19)C24—H24A0.9900
C13—C141.399 (2)C24—H24B0.9900
C14—C151.378 (2)C25—H25A0.9800
C14—H140.9500C25—H25B0.9800
C15—C161.399 (2)C25—H25C0.9800
C15—H150.9500
C12—S1—C289.37 (7)C18—C17—H17120.1
C3—C2—C7120.26 (13)C16—C17—H17120.1
C3—C2—S1126.43 (12)C17—C18—C13121.31 (13)
C7—C2—S1113.28 (11)C17—C18—H18119.3
C4—C3—C2118.38 (14)C13—C18—H18119.3
C4—C3—H3120.8C16—O19—C20116.03 (11)
C2—C3—H3120.8O19—C20—C21109.90 (12)
C3—C4—C5121.03 (14)O19—C20—H20A109.7
C3—C4—H4119.5C21—C20—H20A109.7
C5—C4—H4119.5O19—C20—H20B109.7
C6—C5—C4120.94 (14)C21—C20—H20B109.7
C6—C5—H5119.5H20A—C20—H20B108.2
C4—C5—H5119.5C20—C21—C22115.56 (12)
C7—C6—C5117.91 (14)C20—C21—H21A108.4
C7—C6—H6121.0C22—C21—H21A108.4
C5—C6—H6121.0C20—C21—H21B108.4
C6—C7—C2121.42 (13)C22—C21—H21B108.4
C6—C7—N8128.61 (13)H21A—C21—H21B107.5
C2—C7—N8109.90 (12)C23—C22—C21111.77 (13)
C12—N8—C9104.52 (12)C23—C22—H22A109.3
C12—N8—C7114.67 (12)C21—C22—H22A109.3
C9—N8—C7140.56 (12)C23—C22—H22B109.3
N10—C9—N8108.80 (13)C21—C22—H22B109.3
N10—C9—C13126.64 (13)H22A—C22—H22B107.9
N8—C9—C13124.51 (12)C24—C23—C22114.37 (13)
C9—N10—N11109.03 (12)C24—C23—H23A108.7
C12—N11—N10105.28 (12)C22—C23—H23A108.7
N11—C12—N8112.37 (13)C24—C23—H23B108.7
N11—C12—S1134.96 (12)C22—C23—H23B108.7
N8—C12—S1112.65 (10)H23A—C23—H23B107.6
C18—C13—C14118.47 (13)C25—C24—C23113.19 (15)
C18—C13—C9120.17 (12)C25—C24—H24A108.9
C14—C13—C9121.35 (12)C23—C24—H24A108.9
C15—C14—C13120.78 (13)C25—C24—H24B108.9
C15—C14—H14119.6C23—C24—H24B108.9
C13—C14—H14119.6H24A—C24—H24B107.8
C14—C15—C16120.21 (13)C24—C25—H25A109.5
C14—C15—H15119.9C24—C25—H25B109.5
C16—C15—H15119.9H25A—C25—H25B109.5
O19—C16—C17124.37 (12)C24—C25—H25C109.5
O19—C16—C15116.32 (12)H25A—C25—H25C109.5
C17—C16—C15119.31 (13)H25B—C25—H25C109.5
C18—C17—C16119.89 (12)
C12—S1—C2—C3177.71 (13)C7—N8—C12—N11174.91 (11)
C12—S1—C2—C70.27 (10)C9—N8—C12—S1179.33 (9)
C7—C2—C3—C41.4 (2)C7—N8—C12—S13.92 (14)
S1—C2—C3—C4176.40 (11)C2—S1—C12—N11176.13 (15)
C2—C3—C4—C50.5 (2)C2—S1—C12—N82.34 (10)
C3—C4—C5—C61.5 (2)N10—C9—C13—C18128.50 (15)
C4—C5—C6—C70.4 (2)N8—C9—C13—C1848.64 (19)
C5—C6—C7—C21.54 (19)N10—C9—C13—C1451.7 (2)
C5—C6—C7—N8178.36 (12)N8—C9—C13—C14131.13 (14)
C3—C2—C7—C62.5 (2)C18—C13—C14—C151.4 (2)
S1—C2—C7—C6175.59 (10)C9—C13—C14—C15178.40 (13)
C3—C2—C7—N8179.88 (12)C13—C14—C15—C160.3 (2)
S1—C2—C7—N81.76 (13)C14—C15—C16—O19178.83 (13)
C6—C7—N8—C12173.48 (13)C14—C15—C16—C171.9 (2)
C2—C7—N8—C123.63 (15)O19—C16—C17—C18179.06 (12)
C6—C7—N8—C90.5 (2)C15—C16—C17—C181.7 (2)
C2—C7—N8—C9176.62 (14)C16—C17—C18—C130.0 (2)
C12—N8—C9—N100.47 (14)C14—C13—C18—C171.6 (2)
C7—N8—C9—N10172.96 (14)C9—C13—C18—C17178.22 (12)
C12—N8—C9—C13177.11 (12)C17—C16—O19—C204.47 (19)
C7—N8—C9—C139.5 (2)C15—C16—O19—C20176.25 (12)
N8—C9—N10—N110.29 (15)C16—O19—C20—C21173.79 (12)
C13—C9—N10—N11177.22 (12)O19—C20—C21—C2263.84 (16)
C9—N10—N11—C120.02 (15)C20—C21—C22—C23166.39 (12)
N10—N11—C12—N80.33 (15)C21—C22—C23—C24179.82 (13)
N10—N11—C12—S1178.80 (12)C22—C23—C24—C25172.79 (15)
C9—N8—C12—N110.50 (15)

Experimental details

Crystal data
Chemical formulaC20H21N3OS
Mr351.46
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)193
a, b, c (Å)10.7369 (4), 9.1770 (3), 35.6567 (11)
V3)3513.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26869, 4225, 3441
Rint0.074
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.04
No. of reflections4225
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: X-AREA (Stoe & Cie, 2011), X-RED (Stoe & Cie, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationButler, R. N., O'Sullivan, P. & Scott, L. F. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1519–1523.  CrossRef Web of Science Google Scholar
First citationChristiano, R., Gallardo, H., Bortoluzzi, A. J., Bechtold, I. H., Campos, C. E. M. & Longo, L. R. (2008). Chem. Commun. pp. 5134–5136.  Google Scholar
First citationHerget, K., Schollmeyer, D. & Detert, H. (2013). Acta Cryst. E69, o365–o366.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuisgen, R., Sturm, H. J. & Markgraf, J. H. (1960). Chem. Ber. 93, 2106–2124.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R., Sturm, H. J. & Seidel, M. (1961). Chem. Ber. 94, 1555–1562.  CrossRef CAS Web of Science Google Scholar
First citationPreis, J., Schollmeyer, D. & Detert, H. (2011a). Acta Cryst. E67, o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPreis, J., Schollmeyer, D. & Detert, H. (2011b). Acta Cryst. E67, o2551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPuviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Jayanthi, G. & Fun, H.-K. (1999). Acta Cryst. C55, 948–951.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReynolds, G. A. & van Allan, J. A. (1959). J. Org. Chem. 24, 1478–1486.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds