organic compounds
Bis(dicyclohexylammonium) sulfate dihydrate
aLaboratoire de Chimie Minerale et Analytique (LACHIMIA), Departement de Chimie, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Dakar, Senegal
*Correspondence e-mail: ndoyedeve@yahoo.fr
In the title dihydrate salt, 2C12H24N+·SO42−·2H2O, the cation possesses twofold rotational symmetry, with the N atom situated on the twofold axis. The sulfate anion has fourfold roto-inversion symmetry, with the S atom located on the -4 axis. In the crystal, the components are linked via ammonium–sulfate N—H⋯O and water–sulfate O—H⋯O hydrogen bonds, forming a three-dimensional network.
CCDC reference: 981528
Related literature
For the structure of triammonium hydrogen disulfate, see: Suzuki & Makita (1978). For various sulfate complexes, see: Hathaway (1973); Diassé-Sarr et al. (1997); Diallo et al. (2010); Diop et al. (2012).
Experimental
Crystal data
|
|
Data collection: locally modified CAD-4 Software (Enraf–Nonius, 1989); cell SET4 (de Boer & Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
CCDC reference: 981528
10.1107/S1600536814000968/pk2513sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814000968/pk2513Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814000968/pk2513Isup3.cml
The title compound was obtained by reacting aminoiminomethanesulfonic acid with dicyclohexylamine in a 1:1 molar ratio in water. The solution was heated for 2 h, stirred for ca 8 h and then filtered. The filtrate was allowed to evaporation in a drying cupboard at 333 K, and yielded colourless block-like crystals of the title salt suitable for an X-ray diffraction analysis.
The NH2 and water H atoms were located in a difference Fourier map. The NH2 H atom (the N atom is located on a two-fold axis) was freely refined while the water H atom (the O atom is located on the two-fold axis) was refined with Uiso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).
Data collection: locally modified CAD-4 Software (Enraf–Nonius, 1989); cell
SET4 (de Boer & Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).2C12H24N+·SO42−·2H2O | Dx = 1.234 Mg m−3 |
Mr = 496.74 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I42d | Cell parameters from 5803 reflections |
Hall symbol: I -4 2bw | θ = 3.3–25.0° |
a = 12.437 (3) Å | µ = 0.16 mm−1 |
c = 17.290 (4) Å | T = 293 K |
V = 2674.4 (11) Å3 | Prism, colourless |
Z = 4 | 0.48 × 0.44 × 0.37 mm |
F(000) = 1096 |
Bruker APEXII CCD area-detector diffractometer | 1131 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.019 |
Graphite monochromator | θmax = 25.0°, θmin = 2.0° |
ω scans | h = −14→14 |
9860 measured reflections | k = −14→14 |
1191 independent reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | w = 1/[σ2(Fo2) + (0.0427P)2 + 0.6142P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max = 0.001 |
1191 reflections | Δρmax = 0.16 e Å−3 |
84 parameters | Δρmin = −0.12 e Å−3 |
0 restraints | Absolute structure: Flack (1983); 514 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (10) |
2C12H24N+·SO42−·2H2O | Z = 4 |
Mr = 496.74 | Mo Kα radiation |
Tetragonal, I42d | µ = 0.16 mm−1 |
a = 12.437 (3) Å | T = 293 K |
c = 17.290 (4) Å | 0.48 × 0.44 × 0.37 mm |
V = 2674.4 (11) Å3 |
Bruker APEXII CCD area-detector diffractometer | 1131 reflections with I > 2σ(I) |
9860 measured reflections | Rint = 0.019 |
1191 independent reflections |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.075 | Δρmax = 0.16 e Å−3 |
S = 1.16 | Δρmin = −0.12 e Å−3 |
1191 reflections | Absolute structure: Flack (1983); 514 Friedel pairs |
84 parameters | Absolute structure parameter: 0.04 (10) |
0 restraints |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.10093 (14) | 0.25000 | 0.12500 | 0.0327 (5) | |
C1 | 0.08284 (13) | 0.36633 (14) | 0.01210 (9) | 0.0436 (5) | |
C2 | 0.14068 (15) | 0.43411 (15) | −0.04852 (10) | 0.0503 (6) | |
C3 | 0.21449 (14) | 0.51624 (14) | −0.01157 (10) | 0.0492 (5) | |
C4 | 0.29313 (14) | 0.46346 (14) | 0.04327 (11) | 0.0493 (5) | |
C5 | 0.23596 (13) | 0.39552 (13) | 0.10417 (9) | 0.0414 (5) | |
C6 | 0.16348 (12) | 0.31304 (12) | 0.06577 (8) | 0.0330 (4) | |
S1 | 0.00000 | 0.00000 | 0.00000 | 0.0307 (1) | |
O1 | −0.02822 (9) | 0.09357 (10) | 0.04872 (7) | 0.0507 (4) | |
O1W | −0.1807 (2) | 0.25000 | 0.12500 | 0.1049 (13) | |
H1A | 0.03480 | 0.41170 | 0.04200 | 0.0520* | |
H1N | 0.0568 (15) | 0.2011 (15) | 0.0997 (10) | 0.045 (5)* | |
H2A | 0.18250 | 0.38740 | −0.08190 | 0.0600* | |
H2B | 0.08790 | 0.47090 | −0.08030 | 0.0600* | |
H3A | 0.25390 | 0.55400 | −0.05160 | 0.0590* | |
H3B | 0.17180 | 0.56860 | 0.01650 | 0.0590* | |
H4A | 0.33540 | 0.51850 | 0.06880 | 0.0590* | |
H4B | 0.34190 | 0.41820 | 0.01400 | 0.0590* | |
H5A | 0.28880 | 0.35910 | 0.13600 | 0.0500* | |
H5B | 0.19330 | 0.44170 | 0.13740 | 0.0500* | |
H6 | 0.20800 | 0.26330 | 0.03570 | 0.0400* | |
H21B | 0.03990 | 0.31170 | −0.01340 | 0.0520* | |
H1W | −0.143 (3) | 0.203 (3) | 0.093 (2) | 0.1570* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0290 (9) | 0.0315 (9) | 0.0377 (9) | 0.0000 | 0.0000 | −0.0034 (8) |
C1 | 0.0397 (8) | 0.0456 (9) | 0.0454 (9) | −0.0032 (7) | −0.0098 (7) | 0.0033 (7) |
C2 | 0.0534 (11) | 0.0556 (11) | 0.0419 (8) | −0.0025 (8) | −0.0062 (8) | 0.0093 (8) |
C3 | 0.0541 (10) | 0.0414 (9) | 0.0520 (9) | −0.0032 (7) | 0.0021 (8) | 0.0081 (8) |
C4 | 0.0415 (9) | 0.0496 (10) | 0.0567 (9) | −0.0107 (7) | −0.0021 (8) | 0.0092 (8) |
C5 | 0.0369 (8) | 0.0453 (9) | 0.0419 (8) | −0.0076 (7) | −0.0062 (7) | 0.0042 (7) |
C6 | 0.0322 (7) | 0.0320 (7) | 0.0348 (7) | 0.0015 (6) | 0.0011 (6) | −0.0006 (6) |
S1 | 0.0294 (2) | 0.0294 (2) | 0.0332 (3) | 0.0000 | 0.0000 | 0.0000 |
O1 | 0.0526 (8) | 0.0448 (7) | 0.0546 (6) | −0.0044 (5) | 0.0049 (5) | −0.0205 (6) |
O1W | 0.0498 (14) | 0.109 (2) | 0.156 (3) | 0.0000 | 0.0000 | −0.003 (2) |
S1—O1i | 1.4789 (13) | C4—C5 | 1.526 (2) |
S1—O1ii | 1.4789 (13) | C5—C6 | 1.518 (2) |
S1—O1iii | 1.4789 (13) | C1—H21B | 0.9700 |
S1—O1 | 1.4789 (13) | C1—H1A | 0.9700 |
O1W—H1Wiv | 0.93 (4) | C2—H2B | 0.9700 |
O1W—H1W | 0.93 (4) | C2—H2A | 0.9700 |
N1—C6iv | 1.5062 (17) | C3—H3A | 0.9700 |
N1—C6 | 1.5062 (17) | C3—H3B | 0.9700 |
N1—H1N | 0.929 (18) | C4—H4A | 0.9700 |
N1—H1Niv | 0.929 (18) | C4—H4B | 0.9700 |
C1—C6 | 1.519 (2) | C5—H5B | 0.9700 |
C1—C2 | 1.525 (2) | C5—H5A | 0.9700 |
C2—C3 | 1.515 (3) | C6—H6 | 0.9800 |
C3—C4 | 1.512 (3) | ||
O1i—S1—O1iii | 110.56 (7) | C6—C1—H1A | 110.00 |
O1ii—S1—O1iii | 108.93 (6) | C1—C2—H2A | 109.00 |
O1—S1—O1ii | 110.56 (7) | C1—C2—H2B | 109.00 |
O1—S1—O1iii | 108.93 (6) | C3—C2—H2A | 109.00 |
O1—S1—O1i | 108.93 (6) | C3—C2—H2B | 109.00 |
O1i—S1—O1ii | 108.93 (6) | H2A—C2—H2B | 108.00 |
H1W—O1W—H1Wiv | 120 (3) | C2—C3—H3A | 109.00 |
C6—N1—C6iv | 117.81 (14) | C2—C3—H3B | 109.00 |
C6—N1—H1Niv | 106.5 (11) | C4—C3—H3A | 109.00 |
C6—N1—H1N | 109.0 (11) | C4—C3—H3B | 109.00 |
C6iv—N1—H1N | 106.5 (11) | H3A—C3—H3B | 108.00 |
H1N—N1—H1Niv | 107.6 (16) | H4A—C4—H4B | 108.00 |
C6iv—N1—H1Niv | 109.0 (11) | C3—C4—H4A | 109.00 |
C2—C1—C6 | 110.46 (13) | C3—C4—H4B | 109.00 |
C1—C2—C3 | 111.64 (14) | C5—C4—H4A | 109.00 |
C2—C3—C4 | 111.33 (15) | C5—C4—H4B | 109.00 |
C3—C4—C5 | 111.82 (14) | C4—C5—H5A | 110.00 |
C4—C5—C6 | 110.43 (13) | C4—C5—H5B | 110.00 |
N1—C6—C5 | 111.16 (11) | C6—C5—H5A | 110.00 |
C1—C6—C5 | 111.37 (13) | C6—C5—H5B | 110.00 |
N1—C6—C1 | 107.55 (12) | H5A—C5—H5B | 108.00 |
H1A—C1—H21B | 108.00 | N1—C6—H6 | 109.00 |
C6—C1—H21B | 110.00 | C1—C6—H6 | 109.00 |
C2—C1—H1A | 110.00 | C5—C6—H6 | 109.00 |
C2—C1—H21B | 110.00 | ||
C6iv—N1—C6—C1 | 178.50 (10) | C1—C2—C3—C4 | 54.74 (19) |
C6iv—N1—C6—C5 | −59.34 (14) | C2—C3—C4—C5 | −54.68 (19) |
C6—C1—C2—C3 | −55.56 (19) | C3—C4—C5—C6 | 55.35 (18) |
C2—C1—C6—N1 | 178.63 (12) | C4—C5—C6—N1 | −176.33 (12) |
C2—C1—C6—C5 | 56.60 (17) | C4—C5—C6—C1 | −56.41 (17) |
Symmetry codes: (i) y, −x, −z; (ii) −x, −y, z; (iii) −y, x, −z; (iv) x, −y+1/2, −z+1/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.929 (18) | 1.919 (19) | 2.8468 (17) | 176.6 (16) |
O1W—H1W···O1 | 0.93 (4) | 2.12 (4) | 3.020 (2) | 163 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.929 (18) | 1.919 (19) | 2.8468 (17) | 176.6 (16) |
O1W—H1W···O1 | 0.93 (4) | 2.12 (4) | 3.020 (2) | 163 (3) |
Acknowledgements
We are grateful to Professor H. Stoeckli-Evans, University of Neuchâtel, for useful discussions while preparing this submission and to Professor Y. F. Diop, Laboratorio de Quimica Organica (QO2), Departamento de Quimica Organica, Facultad de Quimica, Universidad de Vigo, for performing the X-ray diffraction analysis.
References
Boer, J. L. & Duisenberg, A. J. M. (1984). Acta Cryst. A40, C410. CrossRef IUCr Journals Google Scholar
Diallo, W., Okio, K. Y. A., Diop, L., Russo, U. & Wattiaux, A. (2010). Sci. Study Res. 11, 219–226. CAS Google Scholar
Diassé-Sarr, A., Diop, L., Mahon, M. & Molloy, K. C. (1997). Main Group Met. Chem. 20, 223–229. Google Scholar
Diop, T., Diop, L. & Lee, A. van der (2012). Acta Cryst. E68, m1380–m1381. CSD CrossRef CAS IUCr Journals Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49–67. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suzuki, S. & Makita, Y. (1978). Acta Cryst. B34, 732–735. CrossRef CAS IUCr Journals Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A number of sulfato complexes have been synthesized and characterized in order to study the behaviour of the sulfate anion as a ligand (Hathaway, 1973). The triammonium hydrogen disulfate salt has been prepared by the reaction of ammonia with sulfuric acid (Suzuki & Makita, 1978). In our laboratory, previous work on the behaviour of the sulfate ion has been studied especially in relation to tin(IV) complexes (Diassé-Sarr et al., 1997; Diallo et al., 2010; Diop et al., 2012). In the present work, we prepared the title salt by the reaction of aminoiminomethanesulfonic acid and dicyclohexylamine, and we describe herein its crystal structure.
The molecular structure of the title salt is illustrated in Fig. 1. The dicyclohexylammonium cation possesses two-fold rotational symmetry, with atom N1 situated on the two-fold axis. The sulfate cation has fourfold rotary inversion symmetry with atom S1 located on the 4.
In the crystal, the various units are linked via N—H···O(sulfate) and O—H(water)···O(sulfate) hydrogen bonds forming a three-dimensional network (Table 1 and Fig. 2).