metal-organic compounds
mer-Hydridotris(trimethylphosphane-κP)(D-valinato-κ2N,O)iridium hexafluoridophosphate dichloromethane 0.675-solvate
aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu
The title compound, [Ir(C5H10NO2)H(C3H9P)3]PF6·0.675CH2Cl2, an iridium compound with a meridional arrangement of PMe3 groups, O,N-bidentate coordination of D-valine and with a hydride ligand trans to the N atom is compared with the L-valine complex reported previously. As expected, the complexes from the corresponding L and D isomers of valine crystallize in enantiomorphic space groups (P43 and P41, respectively). In the crystal, N—H⋯O and N—H⋯F hydrogen bonding is observed, the N—H to carbonyl oxygen hydrogen bond producing a helical motif that proceeds along the 41 screw of the c axis.
CCDC reference: 984214
Related literature
The structure of the related L-valine complex has been described by Roy et al. (2006). For studies of hydrogen-bonded lattice systems that lose crystallinity on loss of solvent and an analogous one that retains crystallinity, see: Parkin & Behrman (2009, 2011). An analysis of the geometric paramaters for hydrogen bonds is given by Wood et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 984214
10.1107/S1600536814002165/pk2516sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814002165/pk2516Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814002165/pk2516Isup3.mol
For a detailed description of the synthetic procedure for all of the tris-trimethylphosphine iridium amino acid complexes, see (Roy et al., 2006). The title compound was recrystallized by the layering of diethyl ether over a dichloromethane solution. After several days of slow diffusion, suitable single crystals grew at the interface.
The H-atoms on the amine nitrogen were located from the residual
and the positions refined independently. The N—H bonds are 0.92 (6) and 0.83 (6) Å. The displacement parameters were fixed at Uiso(H)=1.2Ueq(N1). The hydride was located in the residual the distance restrained to 1.57 (2) Å, and the displacement parameter fixed at Uiso(H1)=1.5Ueq(Ir1). After locating the iridium hydride salt, additional strong residual electron density peaks were modeled as a partially occupied CH2Cl2 molecule with occupancy that refined to 0.675 (6).Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Ir(C5H10NO2)H(C3H9P)3]PF6·0.675CH2Cl2 | Dx = 1.746 Mg m−3 |
Mr = 739.86 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41 | Cell parameters from 12856 reflections |
a = 14.04454 (17) Å | θ = 3.5–31.4° |
c = 14.2657 (3) Å | µ = 5.15 mm−1 |
V = 2813.89 (9) Å3 | T = 100 K |
Z = 4 | Needle, colourless |
F(000) = 1457 | 0.17 × 0.05 × 0.05 mm |
Oxford Diffraction Xcalibur2 (Eos, Gemini ultra) diffractometer | 9371 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 7266 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
Detector resolution: 16.0122 pixels mm-1 | θmax = 31.5°, θmin = 3.5° |
ω scans | h = −19→20 |
Absorption correction: gaussian (CrysAlis PRO; Oxford Diffraction, 2010) | k = −20→20 |
Tmin = 0.449, Tmax = 0.774 | l = −20→20 |
39354 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0129P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.046 | (Δ/σ)max = 0.001 |
S = 0.81 | Δρmax = 0.70 e Å−3 |
9371 reflections | Δρmin = −0.61 e Å−3 |
301 parameters | Absolute structure: Flack parameter determined using 3004 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.021 (4) |
[Ir(C5H10NO2)H(C3H9P)3]PF6·0.675CH2Cl2 | Z = 4 |
Mr = 739.86 | Mo Kα radiation |
Tetragonal, P41 | µ = 5.15 mm−1 |
a = 14.04454 (17) Å | T = 100 K |
c = 14.2657 (3) Å | 0.17 × 0.05 × 0.05 mm |
V = 2813.89 (9) Å3 |
Oxford Diffraction Xcalibur2 (Eos, Gemini ultra) diffractometer | 9371 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Oxford Diffraction, 2010) | 7266 reflections with I > 2σ(I) |
Tmin = 0.449, Tmax = 0.774 | Rint = 0.069 |
39354 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.046 | Δρmax = 0.70 e Å−3 |
S = 0.81 | Δρmin = −0.61 e Å−3 |
9371 reflections | Absolute structure: Flack parameter determined using 3004 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
301 parameters | Absolute structure parameter: −0.021 (4) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ir1 | 0.35067 (2) | 0.06307 (2) | 0.87490 (2) | 0.01215 (4) | |
H | 0.423 (3) | 0.057 (4) | 0.946 (3) | 0.018* | |
O1 | 0.2567 (3) | 0.1552 (3) | 0.9483 (3) | 0.0147 (9) | |
O2 | 0.1109 (3) | 0.2137 (3) | 0.9557 (3) | 0.0185 (9) | |
N1 | 0.2309 (4) | 0.0780 (4) | 0.7763 (4) | 0.0167 (11) | |
H1A | 0.243 (4) | 0.127 (4) | 0.735 (4) | 0.020* | |
H1B | 0.221 (4) | 0.023 (5) | 0.758 (4) | 0.020* | |
C1 | 0.1714 (4) | 0.1635 (4) | 0.9161 (4) | 0.0139 (12) | |
C2 | 0.1437 (4) | 0.1072 (4) | 0.8295 (4) | 0.0131 (12) | |
H2 | 0.1141 | 0.0469 | 0.8529 | 0.016* | |
C3 | 0.0677 (4) | 0.1561 (4) | 0.7699 (4) | 0.0161 (12) | |
H3 | 0.0145 | 0.1728 | 0.8134 | 0.019* | |
C4 | 0.0260 (5) | 0.0889 (5) | 0.6968 (4) | 0.0288 (16) | |
H4A | 0.0754 | 0.0717 | 0.6512 | 0.043* | |
H4B | −0.0268 | 0.1205 | 0.6643 | 0.043* | |
H4C | 0.0026 | 0.0312 | 0.7277 | 0.043* | |
C5 | 0.1009 (4) | 0.2493 (4) | 0.7263 (4) | 0.0249 (15) | |
H5A | 0.1337 | 0.2876 | 0.7737 | 0.037* | |
H5B | 0.0456 | 0.2845 | 0.7026 | 0.037* | |
H5C | 0.1446 | 0.2358 | 0.6744 | 0.037* | |
P1 | 0.28924 (11) | −0.05993 (12) | 0.96794 (11) | 0.0148 (3) | |
C6 | 0.2254 (5) | −0.0111 (5) | 1.0676 (4) | 0.0281 (17) | |
H6A | 0.2641 | 0.0385 | 1.0973 | 0.042* | |
H6B | 0.2126 | −0.0619 | 1.1130 | 0.042* | |
H6C | 0.1651 | 0.0165 | 1.0463 | 0.042* | |
C7 | 0.2042 (5) | −0.1472 (4) | 0.9273 (4) | 0.0255 (15) | |
H7A | 0.1438 | −0.1156 | 0.9126 | 0.038* | |
H7B | 0.1938 | −0.1949 | 0.9764 | 0.038* | |
H7C | 0.2289 | −0.1785 | 0.8709 | 0.038* | |
C8 | 0.3778 (4) | −0.1308 (5) | 1.0273 (4) | 0.0287 (16) | |
H8A | 0.4116 | −0.1703 | 0.9815 | 0.043* | |
H8B | 0.3467 | −0.1718 | 1.0737 | 0.043* | |
H8C | 0.4233 | −0.0888 | 1.0590 | 0.043* | |
P2 | 0.44500 (11) | −0.02850 (12) | 0.78431 (11) | 0.0161 (3) | |
C9 | 0.4335 (5) | −0.1576 (4) | 0.7880 (4) | 0.0230 (13) | |
H9A | 0.4649 | −0.1853 | 0.7330 | 0.034* | |
H9B | 0.3660 | −0.1749 | 0.7877 | 0.034* | |
H9C | 0.4636 | −0.1819 | 0.8451 | 0.034* | |
C10 | 0.4244 (4) | −0.0090 (4) | 0.6599 (4) | 0.0190 (14) | |
H10A | 0.4285 | 0.0592 | 0.6461 | 0.028* | |
H10B | 0.3609 | −0.0325 | 0.6430 | 0.028* | |
H10C | 0.4726 | −0.0433 | 0.6234 | 0.028* | |
C11 | 0.5723 (4) | −0.0150 (5) | 0.8001 (4) | 0.0252 (15) | |
H11A | 0.6059 | −0.0491 | 0.7502 | 0.038* | |
H11B | 0.5908 | −0.0412 | 0.8611 | 0.038* | |
H11C | 0.5889 | 0.0527 | 0.7976 | 0.038* | |
P3 | 0.42554 (11) | 0.20679 (11) | 0.83341 (11) | 0.0156 (3) | |
C12 | 0.4899 (4) | 0.2255 (5) | 0.7248 (4) | 0.0246 (15) | |
H12A | 0.5181 | 0.2893 | 0.7249 | 0.037* | |
H12B | 0.4460 | 0.2196 | 0.6717 | 0.037* | |
H12C | 0.5405 | 0.1778 | 0.7190 | 0.037* | |
C13 | 0.5114 (5) | 0.2398 (5) | 0.9217 (4) | 0.0294 (17) | |
H13A | 0.5631 | 0.1929 | 0.9228 | 0.044* | |
H13B | 0.4803 | 0.2416 | 0.9832 | 0.044* | |
H13C | 0.5375 | 0.3028 | 0.9071 | 0.044* | |
C14 | 0.3453 (5) | 0.3082 (5) | 0.8334 (6) | 0.037 (2) | |
H14A | 0.3821 | 0.3670 | 0.8259 | 0.056* | |
H14B | 0.3104 | 0.3102 | 0.8928 | 0.056* | |
H14C | 0.3001 | 0.3020 | 0.7814 | 0.056* | |
P4 | 0.29616 (12) | 0.22465 (12) | 0.48790 (11) | 0.0201 (4) | |
F1 | 0.2682 (3) | 0.1526 (3) | 0.5708 (3) | 0.0469 (12) | |
F2 | 0.4001 (3) | 0.1782 (3) | 0.4853 (3) | 0.0322 (9) | |
F3 | 0.3308 (3) | 0.2988 (3) | 0.5639 (3) | 0.0554 (14) | |
F4 | 0.3246 (3) | 0.2950 (3) | 0.4063 (3) | 0.0439 (12) | |
F5 | 0.2601 (3) | 0.1496 (3) | 0.4133 (3) | 0.0426 (11) | |
F6 | 0.1918 (3) | 0.2709 (3) | 0.4920 (3) | 0.0353 (10) | |
C15 | 0.5610 (11) | 0.3894 (9) | 0.4795 (10) | 0.066 (4) | 0.675 (6) |
H15A | 0.5070 | 0.3578 | 0.4475 | 0.080* | 0.675 (6) |
H15B | 0.5730 | 0.3546 | 0.5387 | 0.080* | 0.675 (6) |
Cl1 | 0.6642 (3) | 0.3794 (2) | 0.4068 (3) | 0.0708 (15) | 0.675 (6) |
Cl2 | 0.5294 (4) | 0.4995 (4) | 0.5055 (7) | 0.157 (3) | 0.675 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.01075 (12) | 0.01395 (12) | 0.01177 (7) | −0.00014 (11) | −0.00084 (10) | 0.00094 (10) |
O1 | 0.015 (2) | 0.015 (2) | 0.014 (2) | −0.0025 (18) | −0.0022 (17) | −0.0019 (16) |
O2 | 0.016 (2) | 0.023 (2) | 0.017 (2) | 0.0037 (19) | 0.0020 (17) | −0.0052 (18) |
N1 | 0.020 (3) | 0.013 (3) | 0.017 (3) | 0.001 (2) | 0.004 (2) | −0.002 (2) |
C1 | 0.016 (3) | 0.012 (3) | 0.014 (3) | −0.001 (2) | 0.005 (2) | 0.004 (2) |
C2 | 0.010 (3) | 0.012 (3) | 0.017 (3) | −0.003 (2) | 0.000 (2) | 0.000 (2) |
C3 | 0.010 (3) | 0.024 (3) | 0.015 (3) | 0.003 (2) | −0.003 (2) | −0.001 (3) |
C4 | 0.022 (4) | 0.032 (4) | 0.033 (4) | 0.015 (3) | −0.010 (3) | −0.010 (3) |
C5 | 0.020 (4) | 0.029 (4) | 0.025 (3) | 0.011 (3) | 0.002 (3) | 0.006 (3) |
P1 | 0.0151 (9) | 0.0175 (9) | 0.0118 (7) | −0.0009 (7) | −0.0008 (6) | 0.0031 (6) |
C6 | 0.037 (4) | 0.024 (4) | 0.023 (4) | 0.001 (3) | 0.011 (3) | 0.006 (3) |
C7 | 0.029 (4) | 0.025 (4) | 0.023 (3) | −0.010 (3) | −0.005 (3) | 0.004 (3) |
C8 | 0.020 (4) | 0.038 (4) | 0.029 (4) | −0.004 (3) | −0.003 (3) | 0.013 (3) |
P2 | 0.0127 (8) | 0.0188 (9) | 0.0166 (8) | 0.0015 (7) | −0.0005 (6) | 0.0011 (7) |
C9 | 0.026 (4) | 0.019 (4) | 0.024 (3) | 0.000 (3) | 0.002 (3) | −0.006 (3) |
C10 | 0.018 (3) | 0.021 (3) | 0.017 (3) | 0.006 (3) | 0.005 (2) | 0.001 (2) |
C11 | 0.014 (3) | 0.034 (4) | 0.027 (4) | 0.004 (3) | −0.002 (3) | −0.002 (3) |
P3 | 0.0137 (8) | 0.0155 (8) | 0.0177 (8) | −0.0013 (7) | −0.0004 (6) | 0.0013 (6) |
C12 | 0.028 (4) | 0.026 (4) | 0.019 (3) | −0.011 (3) | 0.003 (3) | 0.006 (3) |
C13 | 0.036 (4) | 0.027 (4) | 0.025 (4) | −0.010 (3) | −0.010 (3) | −0.001 (3) |
C14 | 0.023 (4) | 0.018 (4) | 0.072 (6) | 0.000 (3) | 0.005 (4) | 0.004 (4) |
P4 | 0.0213 (9) | 0.0208 (9) | 0.0180 (8) | 0.0069 (7) | −0.0001 (7) | 0.0002 (7) |
F1 | 0.049 (3) | 0.049 (3) | 0.043 (3) | 0.026 (2) | 0.021 (2) | 0.025 (2) |
F2 | 0.026 (2) | 0.039 (3) | 0.031 (2) | 0.0158 (19) | −0.0018 (17) | 0.0012 (19) |
F3 | 0.061 (3) | 0.048 (3) | 0.058 (3) | 0.019 (2) | −0.034 (3) | −0.028 (2) |
F4 | 0.040 (3) | 0.046 (3) | 0.046 (3) | 0.002 (2) | 0.004 (2) | 0.021 (2) |
F5 | 0.039 (3) | 0.039 (3) | 0.049 (3) | 0.003 (2) | −0.008 (2) | −0.015 (2) |
F6 | 0.032 (2) | 0.042 (3) | 0.031 (2) | 0.017 (2) | 0.0028 (18) | 0.0063 (19) |
C15 | 0.089 (12) | 0.036 (8) | 0.074 (11) | 0.011 (7) | −0.013 (9) | 0.001 (7) |
Cl1 | 0.084 (3) | 0.047 (2) | 0.082 (3) | −0.0090 (19) | 0.017 (2) | −0.0030 (18) |
Cl2 | 0.140 (5) | 0.061 (4) | 0.270 (8) | 0.039 (4) | 0.095 (7) | 0.018 (4) |
Ir1—H | 1.44 (3) | P2—C9 | 1.821 (6) |
Ir1—O1 | 2.124 (4) | P2—C10 | 1.820 (5) |
Ir1—N1 | 2.203 (6) | P2—C11 | 1.811 (6) |
Ir1—P1 | 2.3430 (16) | C9—H9A | 0.9800 |
Ir1—P2 | 2.2537 (16) | C9—H9B | 0.9800 |
Ir1—P3 | 2.3517 (16) | C9—H9C | 0.9800 |
O1—C1 | 1.288 (7) | C10—H10A | 0.9800 |
O2—C1 | 1.240 (6) | C10—H10B | 0.9800 |
N1—H1A | 0.92 (6) | C10—H10C | 0.9800 |
N1—H1B | 0.83 (6) | C11—H11A | 0.9800 |
N1—C2 | 1.499 (7) | C11—H11B | 0.9800 |
C1—C2 | 1.518 (7) | C11—H11C | 0.9800 |
C2—H2 | 1.0000 | P3—C12 | 1.813 (6) |
C2—C3 | 1.528 (7) | P3—C13 | 1.805 (6) |
C3—H3 | 1.0000 | P3—C14 | 1.816 (7) |
C3—C4 | 1.524 (8) | C12—H12A | 0.9800 |
C3—C5 | 1.522 (8) | C12—H12B | 0.9800 |
C4—H4A | 0.9800 | C12—H12C | 0.9800 |
C4—H4B | 0.9800 | C13—H13A | 0.9800 |
C4—H4C | 0.9800 | C13—H13B | 0.9800 |
C5—H5A | 0.9800 | C13—H13C | 0.9800 |
C5—H5B | 0.9800 | C14—H14A | 0.9800 |
C5—H5C | 0.9800 | C14—H14B | 0.9800 |
P1—C6 | 1.815 (6) | C14—H14C | 0.9800 |
P1—C7 | 1.807 (6) | P4—F1 | 1.605 (4) |
P1—C8 | 1.805 (6) | P4—F2 | 1.599 (4) |
C6—H6A | 0.9800 | P4—F3 | 1.580 (4) |
C6—H6B | 0.9800 | P4—F4 | 1.578 (4) |
C6—H6C | 0.9800 | P4—F5 | 1.582 (4) |
C7—H7A | 0.9800 | P4—F6 | 1.604 (4) |
C7—H7B | 0.9800 | C15—H15A | 0.9900 |
C7—H7C | 0.9800 | C15—H15B | 0.9900 |
C8—H8A | 0.9800 | C15—Cl1 | 1.789 (15) |
C8—H8B | 0.9800 | C15—Cl2 | 1.651 (13) |
C8—H8C | 0.9800 | ||
O1—Ir1—H | 97 (2) | H8A—C8—H8C | 109.5 |
O1—Ir1—N1 | 77.43 (17) | H8B—C8—H8C | 109.5 |
O1—Ir1—P1 | 86.61 (11) | C9—P2—Ir1 | 120.0 (2) |
O1—Ir1—P2 | 174.55 (11) | C10—P2—Ir1 | 112.3 (2) |
O1—Ir1—P3 | 83.06 (11) | C10—P2—C9 | 99.4 (3) |
N1—Ir1—H | 174 (2) | C11—P2—Ir1 | 116.7 (2) |
N1—Ir1—P1 | 98.66 (15) | C11—P2—C9 | 100.9 (3) |
N1—Ir1—P2 | 97.88 (14) | C11—P2—C10 | 105.2 (3) |
N1—Ir1—P3 | 95.69 (15) | P2—C9—H9A | 109.5 |
P1—Ir1—H | 80 (2) | P2—C9—H9B | 109.5 |
P1—Ir1—P3 | 160.05 (5) | P2—C9—H9C | 109.5 |
P2—Ir1—H | 88 (2) | H9A—C9—H9B | 109.5 |
P2—Ir1—P1 | 96.93 (5) | H9A—C9—H9C | 109.5 |
P2—Ir1—P3 | 94.74 (6) | H9B—C9—H9C | 109.5 |
P3—Ir1—H | 85 (2) | P2—C10—H10A | 109.5 |
C1—O1—Ir1 | 117.2 (3) | P2—C10—H10B | 109.5 |
Ir1—N1—H1A | 110 (4) | P2—C10—H10C | 109.5 |
Ir1—N1—H1B | 104 (4) | H10A—C10—H10B | 109.5 |
H1A—N1—H1B | 122 (6) | H10A—C10—H10C | 109.5 |
C2—N1—Ir1 | 109.1 (4) | H10B—C10—H10C | 109.5 |
C2—N1—H1A | 106 (4) | P2—C11—H11A | 109.5 |
C2—N1—H1B | 106 (4) | P2—C11—H11B | 109.5 |
O1—C1—C2 | 118.8 (5) | P2—C11—H11C | 109.5 |
O2—C1—O1 | 121.8 (5) | H11A—C11—H11B | 109.5 |
O2—C1—C2 | 119.4 (5) | H11A—C11—H11C | 109.5 |
N1—C2—C1 | 110.2 (5) | H11B—C11—H11C | 109.5 |
N1—C2—H2 | 106.1 | C12—P3—Ir1 | 124.2 (2) |
N1—C2—C3 | 114.3 (5) | C12—P3—C14 | 101.3 (3) |
C1—C2—H2 | 106.1 | C13—P3—Ir1 | 110.1 (2) |
C1—C2—C3 | 113.5 (5) | C13—P3—C12 | 103.1 (3) |
C3—C2—H2 | 106.1 | C13—P3—C14 | 102.3 (3) |
C2—C3—H3 | 106.3 | C14—P3—Ir1 | 113.3 (2) |
C4—C3—C2 | 111.8 (5) | P3—C12—H12A | 109.5 |
C4—C3—H3 | 106.3 | P3—C12—H12B | 109.5 |
C5—C3—C2 | 113.7 (5) | P3—C12—H12C | 109.5 |
C5—C3—H3 | 106.3 | H12A—C12—H12B | 109.5 |
C5—C3—C4 | 111.8 (5) | H12A—C12—H12C | 109.5 |
C3—C4—H4A | 109.5 | H12B—C12—H12C | 109.5 |
C3—C4—H4B | 109.5 | P3—C13—H13A | 109.5 |
C3—C4—H4C | 109.5 | P3—C13—H13B | 109.5 |
H4A—C4—H4B | 109.5 | P3—C13—H13C | 109.5 |
H4A—C4—H4C | 109.5 | H13A—C13—H13B | 109.5 |
H4B—C4—H4C | 109.5 | H13A—C13—H13C | 109.5 |
C3—C5—H5A | 109.5 | H13B—C13—H13C | 109.5 |
C3—C5—H5B | 109.5 | P3—C14—H14A | 109.5 |
C3—C5—H5C | 109.5 | P3—C14—H14B | 109.5 |
H5A—C5—H5B | 109.5 | P3—C14—H14C | 109.5 |
H5A—C5—H5C | 109.5 | H14A—C14—H14B | 109.5 |
H5B—C5—H5C | 109.5 | H14A—C14—H14C | 109.5 |
C6—P1—Ir1 | 110.3 (2) | H14B—C14—H14C | 109.5 |
C7—P1—Ir1 | 124.2 (2) | F2—P4—F1 | 89.1 (2) |
C7—P1—C6 | 100.4 (3) | F2—P4—F6 | 179.2 (2) |
C8—P1—Ir1 | 114.8 (2) | F3—P4—F1 | 89.1 (3) |
C8—P1—C6 | 100.5 (3) | F3—P4—F2 | 90.2 (2) |
C8—P1—C7 | 103.4 (3) | F3—P4—F5 | 178.9 (3) |
P1—C6—H6A | 109.5 | F3—P4—F6 | 89.4 (2) |
P1—C6—H6B | 109.5 | F4—P4—F1 | 179.5 (2) |
P1—C6—H6C | 109.5 | F4—P4—F2 | 90.4 (2) |
H6A—C6—H6B | 109.5 | F4—P4—F3 | 90.9 (3) |
H6A—C6—H6C | 109.5 | F4—P4—F5 | 90.1 (2) |
H6B—C6—H6C | 109.5 | F4—P4—F6 | 90.3 (2) |
P1—C7—H7A | 109.5 | F5—P4—F1 | 89.8 (2) |
P1—C7—H7B | 109.5 | F5—P4—F2 | 90.3 (2) |
P1—C7—H7C | 109.5 | F5—P4—F6 | 90.1 (2) |
H7A—C7—H7B | 109.5 | F6—P4—F1 | 90.3 (2) |
H7A—C7—H7C | 109.5 | H15A—C15—H15B | 107.5 |
H7B—C7—H7C | 109.5 | Cl1—C15—H15A | 108.5 |
P1—C8—H8A | 109.5 | Cl1—C15—H15B | 108.5 |
P1—C8—H8B | 109.5 | Cl2—C15—H15A | 108.5 |
P1—C8—H8C | 109.5 | Cl2—C15—H15B | 108.5 |
H8A—C8—H8B | 109.5 | Cl2—C15—Cl1 | 115.0 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···F1 | 0.92 (6) | 2.39 (6) | 3.157 (7) | 140 (5) |
N1—H1B···O2i | 0.83 (6) | 2.02 (6) | 2.848 (7) | 172 (6) |
Symmetry code: (i) y, −x, z−1/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···F1 | 0.92 (6) | 2.39 (6) | 3.157 (7) | 140 (5) |
N1—H1B···O2i | 0.83 (6) | 2.02 (6) | 2.848 (7) | 172 (6) |
Symmetry code: (i) y, −x, z−1/4. |
Acknowledgements
We thank the National Science Foundation for funds (grant CHE-01311288)) for the purchase of the Oxford Diffraction Xcalibur2 single-crystal diffractometer.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parkin, S. R. & Behrman, E. J. (2009). Acta Cryst. C65, o529–o533. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parkin, S. R. & Behrman, E. J. (2011). Acta Cryst. C67, o324–o328. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Roy, C. P., Huff, L. A., Barker, N. A., Berg, M. A. G. & Merola, J. S. (2006). J. Organomet. Chem. 691, 2270–2276. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Both the D– and L-Valine complexes of the type [HIr(AA)(PMe3)3][PF6] crystallize in primitive tetragonal space groups, with the L–valine complex in P43 and the D-valine complex in the enantiomorphic group P41. The former structure was measured at room temperature on a Siemens P4 diffractometer while the latter was measured on an Oxford Diffraction instrument at 100 K. Accounting for room temperature vs. 100 K, the unit-cell parameters are essentially the same. Figure 1 shows a thermal ellipsoid plot of the asymmetric unit of the title compound. N—H to carbonyl oxygen hydrogen bonding produces a helical motif that proceeds along the 41 screw of the c axis. The helical motif for the H-bonding is shown in figure 2. Hydrogen bonding also occurs between the second N—H atom and a fluorine atom of the PF6- anion. Table 1 lists the hydrogen bonding parameters for the hydrogen bonds N1—H1A···F1 and N1—H1B···O2. With an H···O distance of 2.02 (6) Å and an N—H···O angle of 172 (6)°, the N1—H1B···O bond is a strong hydrogen bond while the N—H···F bond is not as strong based on geometric parameters, but still not a "weak" H-bond (Wood et al., 2009).
In addition to the overall quality improvement of the structure of the D compound reported here at 100 K compared with the L–valine compound at RT, the issue of lattice solvent is an interesting one. In the previous report, the crystals were isolated and handled in air at room temperature for a period of days before mounting them and collecting data at room temperature. The L–valine complex showed very large voids (573 Å3) with negligible residual electron density. The current D–valine complex clearly shows dichloromethane within the structure, but each dichloromethane site is only ~68% occupied. Here, it would appear that dichloromethane of solvation is partially lost.
Often, for molecular compounds, loss of solvent of crystallization results in the collapse of the crystal lattice. The D–valine complex with partial loss and the L-valine with complete solvent loss maintain the crystal lattice structural integrity. Figure 3 shows a view of both the D– and L–valine space filling packing diagrams that show, the CH2Cl2 in the title compound and the empty space in the L–valine structure reported previously. The loss of solvent with preservation of the crystal lattice is the norm for metal-organic framework (MOF) compounds, but those involve strong coordination bonds between metals and linking ligands. Maintaining the crystal lattice solely with hydrogen bonding is not new, but it is somewhat rare. For another example, see Parkin and Behrman (2011).