metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m80-m81

Di­aqua­bis­­[5-(2-pyrazin-2-yl)tetra­zolato]copper(II)–pyrazine-2-carbo­nitrile (1/2)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Université Constantine 1, Algeria, and bCRM2, UMR-CNRS 7036, Jean Barriol Institut, Lorraine University, BP 230, 54506 Vandoeuvre-lés-Nancy Cedex, France
*Correspondence e-mail: bm_abdel@yahoo.fr

(Received 30 November 2013; accepted 30 January 2014; online 5 February 2014)

The title compound, [Cu(C5H3N6)2(H2O)2]·2C5H3N3, is a 1:2 co-crystal between the mononuclear complex di­aqua­bis­[5-(pyrazin-2-yl)tetra­zolato]copper(II) and the reagent pyrazine-2-carbo­nitrile which was used in the synthesis. The CuII atom is located on an inversion centre and has a distorted octa­hedral [4 + 2]-coordination environment formed by four N atoms of two chelating bidentate 5-(pyrazin-2-yl)tetra­zolate ligands at shorter distances and two water O atoms at longer distances. The CuII complex molecules are held together by O—H⋯N hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance 3.6139 (8) Å], forming layers parallel to (100). These layers alternate with layers of pyrazine-2-car­bo­nitrile mol­ecules and both are held together via C—H⋯N hydrogen bonds and further ππ stacking inter­actions.

Related literature

For related CuII complexes, see: Liu et al. (2007[Liu, J.-T., Fan, S.-D. & Ng, S. W. (2007). Acta Cryst. E63, m1651.]); Abu-Youssef et al. (2007[Abu-Youssef, M. A. M., Mautner, F. A., Massoud, A. A. & Ohrstrom, L. (2007). Polyhedron, 26, 1531-1540.]). For hydrogen-bonding networks and IR spectroscopy of related complexes, see: Abu-Youssef et al. (2007[Abu-Youssef, M. A. M., Mautner, F. A., Massoud, A. A. & Ohrstrom, L. (2007). Polyhedron, 26, 1531-1540.]). For the synthesis of the title compound, see: Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H3N6)2(H2O)2]·2C5H3N3

  • Mr = 604.06

  • Monoclinic, P 21 /c

  • a = 13.591 (2) Å

  • b = 12.784 (3) Å

  • c = 7.216 (2) Å

  • β = 104.93 (2)°

  • V = 1211.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 100 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Agilent SuperNova CCD diffractometer

  • 72054 measured reflections

  • 3711 independent reflections

  • 3265 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.08

  • 3711 reflections

  • 195 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N3 1.9853 (9)
Cu1—N2 2.0583 (10)
Cu1—O1 2.3477 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N5i 0.80 (2) 2.07 (2) 2.8577 (13) 170 (2)
O1—H2W⋯N6ii 0.81 (1) 2.05 (1) 2.8543 (14) 173 (2)
C1—H1⋯N9iii 0.95 2.57 3.2993 (17) 134
C3—H3⋯N4 0.95 2.51 3.2825 (15) 138
C11—H11⋯N1iv 0.95 2.51 3.2800 (17) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction, (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of related research (Abu-Youssef et al., 2007; Liu et al., 2007), we set out to investigate a new copper compound with the aim to study its molecular and crystal structure including hydrogen bonding and network topology. The title compound, [Cu(Pyztz)2(H2O)2].(CPy)2 (Fig. 1), crystallizes in the monoclinic space group P21/c, and the asymmetric unit contains an anionic 5-(pyrazin-2-yl)tetra­zolato ligand (Pyztz), one coordinated water molecule, one central Cu2+ ion which is located on an inversion centre, and one pyrazine-2-carbo­nitrile molecule (CPy). In the complex [Cu(Pyztz)2(H2O)2] the copper ion adopts a Jahn-Teller-distorted o­cta­hedral coordination by four N atoms of two chelating bidentate Pyztz ligands and by two water O atoms at distinctly longer distances (Table 1). The two Pyztz ligands of the complex are essentially coplanar and the complex is reinforced by two intra­molecular hydrogen bonds C3—H3···N4 (Table 2). Identical Cu complexes with bond lengths similar to the title compound were reported from [Cu(Pyztz)2(H2O)2] (Abu-Youssef et al., 2007) and from [Cu(Pyztz)2(H2O)2].H2O (Liu et al., 2007; Abu-Youssef et al., 2007).

The [Cu(Pyztz)2(H2O)2] complexes in the title compound are arranged in layers parallel (100) and form two-dimensional infinite networks parallel this plane (Fig. 2). They are held together by O—H···N hydrogen bonds between the water molecules as donors and tetra­zole nitro­gen atoms N5 and N6 as acceptors (Table 2) and by π-π stacking inter­actions between pairs of tetra­zole rings (Fig. 3; Cg3···Cg3). Inserted between the layers of the [Cu(Pyztz)2(H2O)2] complexes are layers of CPy molecules, which are held together by π-π stacking (Fig. 3, Cg5···Cg5) and by weak inter­molecular C—H···N hydrogen bonds to N4 and N9 as acceptors (Fig. 2, Table 2).

From the topological viewpoint the structure of [Cu(Pyztz)2(H2O)2].(CPy)2 may be considered as tetra­gonal plane net, the Cu complex could be regarded as node. Each complex is bound to four other complexes and acting as 4-connected node and each cyano­pyrazine fragment is between two tetra­gonal planes net. In this way the structure could be reduced to an uninodal 4 - c net, of sql topological type, and the Point (Schlafli) symbol for the net is 44 62 (Fig. 2 b).

Experimental top

The compound was prepared under solvothermal conditions, by a mixture of 0.065 g (1 mmol) of sodium azide, 2 ml of pyrazine-2-carbo­nitrile and 0.255 g (1 mmol) of copper fluoborate hydrate according to a literature procedure.(Zhao et al., 2008). The mixture was kept indisturbed for a few days at room temperature and furnished blue crystals suitable for X-ray diffraction.

Refinement top

Carbon bonded H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C). The two H atoms of the water molecule were refined with distance restraints of O—H = 0.82 (1) Å and H–H = 1.40 (2) Å, whereas their Uiso(H) were refined freely.

Related literature top

For related CuII complexes, see: Liu et al. (2007); Abu-Youssef et al. (2007). For hydrogen-bonding network and IR spectroscopy of related complexes, see: Abu-Youssef et al. (2007). For the synthesis of the title compound, see: Zhao et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound [Cu(Pyztz)2(H2O)2].(CPy)2 with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) The crystal structure of [Cu(Pyztz)2(H2O)2].(CPy)2 viewed along [001] showing hydrogen bonds as red lines. (b) The 4-connected sql net topology of the O—H···N hydrogen bonds in [Cu(Pyztz)2(H2O)2].(CPy)2.
[Figure 3] Fig. 3. π-π stacking interactions in [Cu(Pyztz)2(H2O)2].(CPy)2 with Cg···Cg distances in Å.
Diaquabis[5-(2-pyrazin-2-yl)tetrazolato]copper(II)–pyrazine-2-carbonitrile (1/2) top
Crystal data top
[Cu(C5H3N6)2(H2O)2]·2C5H3N3F(000) = 614
Mr = 604.06Dx = 1.656 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 70 reflections
a = 13.591 (2) Åθ = 2.2–30.6°
b = 12.784 (3) ŵ = 0.96 mm1
c = 7.216 (2) ÅT = 100 K
β = 104.93 (2)°Prism, blue
V = 1211.4 (5) Å30.1 × 0.08 × 0.06 mm
Z = 2
Data collection top
Agilent SuperNova CCD
diffractometer
3265 reflections with I > 2σ(I)
Radiation source: micro-sourceRint = 0.036
Multi-layer monochromatorθmax = 30.6°, θmin = 2.2°
φ and ω scansh = 1919
72054 measured reflectionsk = 1618
3711 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.609P]
where P = (Fo2 + 2Fc2)/3
3711 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.62 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Cu(C5H3N6)2(H2O)2]·2C5H3N3V = 1211.4 (5) Å3
Mr = 604.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.591 (2) ŵ = 0.96 mm1
b = 12.784 (3) ÅT = 100 K
c = 7.216 (2) Å0.1 × 0.08 × 0.06 mm
β = 104.93 (2)°
Data collection top
Agilent SuperNova CCD
diffractometer
3265 reflections with I > 2σ(I)
72054 measured reflectionsRint = 0.036
3711 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.62 e Å3
3711 reflectionsΔρmin = 0.24 e Å3
195 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.00001.00000.01027 (6)
O10.89916 (7)0.01043 (7)1.21907 (13)0.01521 (17)
H1W0.9008 (14)0.0452 (12)1.271 (3)0.022 (4)*
H2W0.9197 (14)0.0577 (11)1.294 (2)0.028 (5)*
N10.71720 (8)0.15880 (9)0.54002 (16)0.0195 (2)
N20.87742 (8)0.05530 (7)0.79219 (14)0.01180 (18)
N30.97170 (8)0.15216 (7)0.96694 (14)0.01155 (18)
N40.90083 (8)0.21867 (8)0.86795 (14)0.01393 (19)
N50.93288 (8)0.31435 (8)0.91544 (15)0.01499 (19)
N61.02487 (8)0.31291 (8)1.04561 (15)0.01458 (19)
N70.64661 (9)0.29939 (9)0.97445 (17)0.0217 (2)
N80.51739 (8)0.13314 (9)0.80887 (16)0.0188 (2)
N90.66710 (10)0.07623 (10)0.97158 (19)0.0269 (3)
C10.78740 (9)0.21147 (9)0.67013 (17)0.0155 (2)
H10.78160.28530.67860.019*
C20.86881 (9)0.16041 (8)0.79360 (16)0.0115 (2)
C30.80715 (10)0.00197 (9)0.66417 (17)0.0148 (2)
H30.81080.07220.65970.018*
C40.72809 (10)0.05505 (10)0.53648 (18)0.0186 (2)
H40.68020.01570.44340.022*
C51.04598 (9)0.21169 (8)1.07398 (16)0.0116 (2)
C70.64409 (10)0.01012 (10)0.9505 (2)0.0195 (2)
C80.61209 (9)0.11813 (10)0.91986 (17)0.0165 (2)
C90.67664 (10)0.19991 (10)1.00151 (18)0.0191 (2)
H90.74320.18451.07780.023*
C100.55197 (10)0.31480 (11)0.86613 (19)0.0214 (3)
H100.52740.38450.84440.026*
C110.48782 (10)0.23276 (11)0.78358 (19)0.0210 (2)
H110.42130.24830.70730.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01191 (10)0.00595 (9)0.01099 (10)0.00037 (6)0.00058 (7)0.00041 (6)
O10.0205 (4)0.0105 (4)0.0139 (4)0.0007 (3)0.0032 (3)0.0003 (3)
N10.0178 (5)0.0192 (5)0.0187 (5)0.0033 (4)0.0000 (4)0.0030 (4)
N20.0139 (4)0.0097 (4)0.0116 (4)0.0010 (3)0.0028 (3)0.0009 (3)
N30.0138 (4)0.0090 (4)0.0110 (4)0.0004 (3)0.0016 (3)0.0002 (3)
N40.0170 (5)0.0104 (4)0.0142 (4)0.0030 (3)0.0035 (4)0.0020 (3)
N50.0197 (5)0.0104 (4)0.0155 (5)0.0016 (4)0.0057 (4)0.0009 (3)
N60.0202 (5)0.0089 (4)0.0158 (4)0.0004 (4)0.0068 (4)0.0004 (3)
N70.0188 (5)0.0222 (5)0.0225 (5)0.0026 (4)0.0024 (4)0.0030 (4)
N80.0151 (5)0.0225 (5)0.0176 (5)0.0017 (4)0.0020 (4)0.0032 (4)
N90.0231 (6)0.0247 (6)0.0316 (6)0.0003 (5)0.0044 (5)0.0031 (5)
C10.0168 (5)0.0135 (5)0.0154 (5)0.0044 (4)0.0026 (4)0.0028 (4)
C20.0141 (5)0.0103 (5)0.0107 (5)0.0020 (4)0.0042 (4)0.0015 (4)
C30.0159 (5)0.0133 (5)0.0139 (5)0.0002 (4)0.0014 (4)0.0005 (4)
C40.0171 (6)0.0186 (6)0.0164 (6)0.0002 (4)0.0023 (4)0.0004 (4)
C50.0155 (5)0.0087 (5)0.0117 (5)0.0013 (4)0.0051 (4)0.0004 (4)
C70.0153 (6)0.0248 (6)0.0178 (6)0.0019 (4)0.0032 (4)0.0007 (5)
C80.0154 (5)0.0199 (6)0.0141 (5)0.0015 (4)0.0038 (4)0.0002 (4)
C90.0144 (5)0.0228 (6)0.0184 (6)0.0025 (4)0.0012 (4)0.0009 (5)
C100.0196 (6)0.0209 (6)0.0225 (6)0.0011 (5)0.0033 (5)0.0019 (5)
C110.0153 (6)0.0246 (6)0.0207 (6)0.0010 (5)0.0005 (5)0.0030 (5)
Geometric parameters (Å, º) top
Cu1—N31.9853 (9)N7—C101.3365 (17)
Cu1—N3i1.9853 (9)N8—C111.3338 (17)
Cu1—N22.0583 (10)N8—C81.3431 (16)
Cu1—N2i2.0583 (10)N9—C71.1467 (17)
Cu1—O12.3477 (9)C1—C21.3915 (15)
Cu1—O1i2.3477 (9)C1—H10.9500
O1—H1W0.801 (17)C2—C5i1.4538 (16)
O1—H2W0.810 (13)C3—C41.3978 (17)
N1—C41.3355 (16)C3—H30.9500
N1—C11.3355 (16)C4—H40.9500
N2—C31.3325 (15)C5—C2i1.4538 (16)
N2—C21.3491 (14)C7—C81.4475 (18)
N3—C51.3390 (15)C8—C91.3940 (17)
N3—N41.3441 (13)C9—H90.9500
N4—N51.3139 (14)C10—C111.3955 (19)
N5—N61.3567 (15)C10—H100.9500
N6—C51.3299 (14)C11—H110.9500
N7—C91.3346 (18)
N3—Cu1—N3i180.0C11—N8—C8115.26 (11)
N3—Cu1—N2i81.16 (4)N1—C1—C2121.32 (11)
N3i—Cu1—N2i98.84 (4)N1—C1—H1119.3
N3—Cu1—N298.84 (4)C2—C1—H1119.3
N3i—Cu1—N281.16 (4)N2—C2—C1121.24 (11)
N2i—Cu1—N2180.0N2—C2—C5i113.46 (10)
N3—Cu1—O190.45 (4)C1—C2—C5i125.21 (10)
N3i—Cu1—O189.55 (4)N2—C3—C4120.04 (11)
N2i—Cu1—O191.85 (4)N2—C3—H3120.0
N2—Cu1—O188.15 (4)C4—C3—H3120.0
N3—Cu1—O1i89.55 (4)N1—C4—C3122.66 (11)
N3i—Cu1—O1i90.45 (4)N1—C4—H4118.7
N2i—Cu1—O1i88.15 (4)C3—C4—H4118.7
N2—Cu1—O1i91.85 (4)N6—C5—N3111.32 (10)
O1—Cu1—O1i180.0N6—C5—C2i130.06 (10)
Cu1—O1—H1W108.3 (13)N3—C5—C2i118.51 (10)
Cu1—O1—H2W109.2 (13)N9—C7—C8178.22 (15)
H1W—O1—H2W112.8 (17)N8—C8—C9123.16 (12)
C4—N1—C1116.84 (11)N8—C8—C7115.56 (11)
C3—N2—C2117.82 (10)C9—C8—C7121.28 (11)
C3—N2—Cu1129.08 (8)N7—C9—C8121.16 (12)
C2—N2—Cu1113.08 (8)N7—C9—H9119.4
C5—N3—N4106.12 (9)C8—C9—H9119.4
C5—N3—Cu1113.18 (8)N7—C10—C11122.70 (13)
N4—N3—Cu1140.70 (8)N7—C10—H10118.6
N5—N4—N3107.83 (10)C11—C10—H10118.6
N4—N5—N6110.64 (9)N8—C11—C10121.74 (12)
C5—N6—N5104.10 (9)N8—C11—H11119.1
C9—N7—C10115.97 (12)C10—C11—H11119.1
N3—Cu1—N2—C35.57 (11)C3—N2—C2—C5i174.67 (10)
N3i—Cu1—N2—C3174.43 (11)Cu1—N2—C2—C5i6.64 (12)
O1—Cu1—N2—C395.74 (11)N1—C1—C2—N22.97 (18)
O1i—Cu1—N2—C384.25 (11)N1—C1—C2—C5i173.49 (11)
N3—Cu1—N2—C2172.94 (8)C2—N2—C3—C40.28 (17)
N3i—Cu1—N2—C27.06 (8)Cu1—N2—C3—C4178.73 (9)
O1—Cu1—N2—C282.77 (8)C1—N1—C4—C31.44 (19)
O1i—Cu1—N2—C297.24 (8)N2—C3—C4—N12.2 (2)
N2i—Cu1—N3—C56.01 (8)N5—N6—C5—N30.31 (13)
N2—Cu1—N3—C5173.99 (8)N5—N6—C5—C2i175.83 (11)
O1—Cu1—N3—C597.81 (8)N4—N3—C5—N60.29 (13)
O1i—Cu1—N3—C582.19 (8)Cu1—N3—C5—N6179.06 (7)
N2i—Cu1—N3—N4174.98 (13)N4—N3—C5—C2i176.35 (10)
N2—Cu1—N3—N45.01 (13)Cu1—N3—C5—C2i4.31 (13)
O1—Cu1—N3—N483.19 (12)C11—N8—C8—C91.01 (18)
O1i—Cu1—N3—N496.82 (12)C11—N8—C8—C7179.02 (12)
C5—N3—N4—N50.14 (12)C10—N7—C9—C80.21 (19)
Cu1—N3—N4—N5178.91 (9)N8—C8—C9—N70.7 (2)
N3—N4—N5—N60.05 (13)C7—C8—C9—N7179.38 (12)
N4—N5—N6—C50.22 (13)C9—N7—C10—C110.7 (2)
C4—N1—C1—C21.06 (18)C8—N8—C11—C100.56 (19)
C3—N2—C2—C12.18 (17)N7—C10—C11—N80.3 (2)
Cu1—N2—C2—C1176.51 (9)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N5ii0.80 (2)2.07 (2)2.8577 (13)170 (2)
O1—H2W···N6iii0.81 (1)2.05 (1)2.8543 (14)173 (2)
C1—H1···N9iv0.952.573.2993 (17)134
C3—H3···N40.952.513.2825 (15)138
C11—H11···N1v0.952.513.2800 (17)138
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+2, y1/2, z+5/2; (iv) x, y1/2, z1/2; (v) x+1, y, z+1.
Selected bond lengths (Å) top
Cu1—N31.9853 (9)Cu1—O12.3477 (9)
Cu1—N22.0583 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N5i0.801 (17)2.065 (17)2.8577 (13)169.8 (18)
O1—H2W···N6ii0.810 (13)2.048 (14)2.8543 (14)172.9 (18)
C1—H1···N9iii0.952.573.2993 (17)134.1
C3—H3···N40.952.513.2825 (15)138.1
C11—H11···N1iv0.952.513.2800 (17)138.0
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+5/2; (iii) x, y1/2, z1/2; (iv) x+1, y, z+1.
 

Acknowledgements

Technical support (X-ray measurements) from CRM2 UMR-CNRS 7036 Jean Barriol Institut, Lorraine University, is gratefully acknowledged.

References

First citationAbu-Youssef, M. A. M., Mautner, F. A., Massoud, A. A. & Ohrstrom, L. (2007). Polyhedron, 26, 1531–1540.  CAS Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, J.-T., Fan, S.-D. & Ng, S. W. (2007). Acta Cryst. E63, m1651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction, (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m80-m81
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds