organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o328-o329

2-((1E)-1-{2-[(2Z)-4-(4-Bromo­phen­yl)-3-phenyl-2,3-di­hydro-1,3-thia­zol-2-yl­­idene]hydrazin-1-yl­­idene}eth­yl)pyridin-1-ium bromide monohydrate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 13 February 2014; accepted 17 February 2014; online 22 February 2014)

In the title hydrated molecular salt, C22H18BrN4S+·Br·H2O, the aromatic rings make dihedral angles of 14.20 (12), 34.29 (10) and 68.75 (11)° with the thia­zole ring. In the crystal, mol­ecules are linked into chains running parallel to the a axis by association of the bromide ions and the water mol­ecules of crystallization with the cations via N—H⋯O, O—H⋯Br, C—H⋯N and C—H⋯Br hydrogen-bonding inter­actions. C—H⋯π and C—Br⋯π [3.7426 (11) Å, 161.73 (7)°] inter­actions are also observed, forming infinite chains extending along the b-axis direction.

Related literature

For general background to thia­zole compounds, see: Siddiqui et al. (2009[Siddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). IJPSDR, 1, 136-143.]); Quiroga et al. (2002[Quiroga, J., Hernandez, P., Insuasty, B., Abonia, R., Cobo, J., Sanchez, A., Nogueras, M. & Low, J. N. (2002). J. Chem. Soc. Perkin Trans. 1, 4, 555-559.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744-747.]). For the biological activity of thia­zoles, see: Sharma et al. (2009[Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890-897.]); Ergenc et al. (1999[Ergenc, N., Capan, G., Gunay, N. S., Ozkirimli, S., Gungor, M., Ozbey, S. & Kendi, E. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 343-347.]); Bell et al. (1995[Bell, F. W., Cantrell, A. S., Hogberg, M., Jaskunas, S. R., Johansson, N. G., Jordon, C. L., Kinnick, M. D., Lind, P., Morin, J. M., Noreen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, P., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X. X. (1995). J. Med. Chem. 38, 4929-4936.]); Patt et al. (1992[Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. J., Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem. 35, 2562-2572.]); Jaen et al. (1990[Jaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzner, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311-317.]); Badorc et al. (1997[Badorc, A., Bordes, M. F., De Cointet, P., Savi, P., Bernat, A., Lale, A., Petitou, M., Maffrand, J. P. & Herbert, J. M. (1997). J. Med. Chem. 40, 3393-3401.]); Rudolph et al. (2001[Rudolph, J., Theis, H., Hanke, R., Endermann, R., Johannsen, L. & Geschke, F. U. (2001). J. Med. Chem. 44, 619-626.]). For structures with C—Br⋯π inter­actions, see: Jasinski et al. (2010[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.]); Zukerman-Schpector et al. (2011[Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1099-o1100.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18BrN4S+·Br·H2O

  • Mr = 548.30

  • Triclinic, [P \overline 1]

  • a = 5.5768 (6) Å

  • b = 9.2288 (9) Å

  • c = 22.574 (2) Å

  • α = 85.974 (1)°

  • β = 84.438 (1)°

  • γ = 79.000 (1)°

  • V = 1133.51 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.69 mm−1

  • T = 150 K

  • 0.27 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.390, Tmax = 0.760

  • 20898 measured reflections

  • 5870 independent reflections

  • 4807 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.09

  • 5870 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Br2 0.85 2.49 3.332 (2) 170
O1—H1B⋯Br2i 0.85 2.61 3.271 (2) 135
N4—H4⋯O1 0.88 1.95 2.715 (3) 144
C15—H15⋯N2ii 0.95 2.62 3.571 (3) 177
C17—H17B⋯Br2iii 0.98 2.88 3.798 (3) 156
C20—H20⋯Br2iv 0.95 2.85 3.798 (3) 175
C21—H21⋯Br2v 0.95 2.92 3.579 (3) 127
C11—H11⋯Cg3i 0.95 2.93 3.789 (3) 152
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, y+1, z; (iv) -x+2, -y+1, -z; (v) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazoles have shown a broad range of biological applications and activities (Siddiqui et al., 2009; Quiroga et al., 2002; Hutchinson, et al., 2002) including uses for the treatment of inflammation (Sharma et al., 2009), HIV infections (Bell et al., 1995), hypertension (Patt et al., 1992), schizophrenia (Jaen et al., 1990), as hypnotics (Ergenc et al., 1999), as fibrinogen receptor antagonists with antithrombotic activity (Badorc et al., 1997) and as new inhibitors of bacterial DNA gyrase B (Rudolph et al., 2001). In this context we report the synthesis and crystal structure of the title compound.

The N4/C18—C22, C1–C6 and C10–C15 aromatic rings make dihedral angles of 14.20 (12), 34.29 (10) and 68.75 (11)°, respectively, with the (S1/N1/C7–C9) thiazole ring (Fig. 1). The C9–N2–N3–C16, N2–N3–C16–C17, N2–N3–C16–C18 torsion angles are 174.0 (2), -4.0 (4) and 175.0 (5)°, respectively.

The three-dimensional structure of the title compound consists of chains running parallel to the a axis which are formed by association of the bromide ions and the lattice water molecules with the cations via O—H···N, O—H···Br, C—H···N and C—H···Br hydrogen bonding interactions (Table 1 and Figs. 2 & 3). In addition, a C—H···p interaction (Table 1) and a C4—Br1···Cg4 (-1 - x, 1 - y, 1 - z) interaction [Br1···Cg4 = 3.7426 (11) Å and C4—Br1···Cg4 = 161.73 (7)°] (Jasinski et al., 2010; Zukerman-Schpector, et al., 2011) also contribute to the stabilization of the molecular packing.

Related literature top

For general background to thiazole compounds, see: Siddiqui et al. (2009); Quiroga et al. (2002); Hutchinson et al. (2002). For the biological activity of thiazoles, see: Sharma et al. (2009); Ergenc et al. (1999); Bell et al. (1995); Patt et al. (1992); Jaen et al. (1990); Badorc et al. (1997); Rudolph et al. (2001). For structures with C—Br···π interactions, see: Jasinski et al. (2010); Zukerman-Schpector et al. (2011).

Experimental top

A mixture of 270 mg (1 mmol) (2E)-N-phenyl-2-[1-(pyridin-2-yl)ethylidene]hydrazinecarbothioamide and 278 mg (1 mmol) 2-bromo-1-phenylethanone in absolute ethanol (30 ml) was refluxed for 8 h then cooled to room temperature. A yellow solid precipitated, it was filtered and washed with a small amount of cold ethanol and recrystallized from ethanol to afford good quality orange crystals (M.p. 521–523 K).

1H-NMR (CDCl3): δH= 1.63 (br, 1H, OH of H2O), 2.46 (s,3H, CH3), 6.41 (s, 1H, thiazole-CH), 6.97–7.02 (m, 2H, Ar—H), 7.21–7.23 (m, 2H, Ar—H), 7.54–7.61 (m, 1H, pyridine-CH), 7.72–7.79 (m, 1H, pyridine-CH), 8.22–8.25 (m, 2H, pyridine-CH), 9.10 (br, 1H, pyridinium-NH).

13C-NMR (CDCl3): δC= 14.02 (CH3), 104.27 (thiazole-CH), 127.89, 128.12, 128.36, 129.00, 129.92, 130.48, 131.77 (Ar—CH and pyridine-CH), 123.48, 131.98 (Ar—C), 142.04 (pridine-C), 153.27 (thiazole-C4), 156.38 (thiazole-C2).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.85 Å, N—H = 0.88 Å, C—H = 0.95 Å and 0.98 Å, with Uiso(H) = 1.5 Uiso(C) for methyl H atoms and Uiso(H) = 1.2 Uiso(C,N,O) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the a axis showing the cation- anion-water chains with hydrogen bonds indicated by dotted lines.
[Figure 3] Fig. 3. Packing viewed down the b axis giving a side view of the chains.
2-((1E)-1-{2-[(2Z)-4-(4-Bromophenyl)-3-phenyl-2,3-dihydro-1,3-thiazol-2-ylidene]hydrazin-1-ylidene}ethyl)pyridin-1-ium bromide monohydrate top
Crystal data top
C22H18BrN4S+·Br·H2OZ = 2
Mr = 548.30F(000) = 548
Triclinic, P1Dx = 1.598 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5768 (6) ÅCell parameters from 9919 reflections
b = 9.2288 (9) Åθ = 2.4–29.1°
c = 22.574 (2) ŵ = 3.69 mm1
α = 85.974 (1)°T = 150 K
β = 84.438 (1)°Column, orange
γ = 79.000 (1)°0.27 × 0.11 × 0.08 mm
V = 1133.51 (19) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5870 independent reflections
Radiation source: fine-focus sealed tube4807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 29.3°, θmin = 1.8°
Absorption correction: numerical
(SADABS; Bruker, 2013)
h = 77
Tmin = 0.390, Tmax = 0.760k = 1212
20898 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.095 W = 1/[Σ2(FO2) + (0.0532P)2 + 0.0059P] WHERE P = (FO2 + 2FC2)/3
S = 1.09(Δ/σ)max < 0.001
5870 reflectionsΔρmax = 0.94 e Å3
272 parametersΔρmin = 0.49 e Å3
0 restraints
Crystal data top
C22H18BrN4S+·Br·H2Oγ = 79.000 (1)°
Mr = 548.30V = 1133.51 (19) Å3
Triclinic, P1Z = 2
a = 5.5768 (6) ÅMo Kα radiation
b = 9.2288 (9) ŵ = 3.69 mm1
c = 22.574 (2) ÅT = 150 K
α = 85.974 (1)°0.27 × 0.11 × 0.08 mm
β = 84.438 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5870 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2013)
4807 reflections with I > 2σ(I)
Tmin = 0.390, Tmax = 0.760Rint = 0.038
20898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.09Δρmax = 0.94 e Å3
5870 reflectionsΔρmin = 0.49 e Å3
272 parameters
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = -30.00 and 210.00°. The scan time was 8 sec/frame.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.67572 (4)0.25013 (3)0.47615 (2)0.0304 (1)
S10.27834 (11)0.54280 (7)0.18810 (2)0.0295 (2)
N10.0981 (3)0.6483 (2)0.28912 (8)0.0239 (5)
N20.3783 (4)0.7847 (2)0.23756 (8)0.0277 (6)
N30.5417 (4)0.7723 (2)0.18707 (8)0.0287 (6)
N40.8686 (4)0.7361 (2)0.09224 (8)0.0289 (6)
C10.1818 (4)0.4718 (2)0.33067 (10)0.0244 (6)
C20.1555 (4)0.4784 (2)0.39151 (10)0.0246 (6)
C30.3043 (4)0.4146 (2)0.43439 (10)0.0254 (6)
C40.4804 (4)0.3437 (2)0.41671 (10)0.0245 (6)
C50.5136 (4)0.3367 (2)0.35703 (10)0.0276 (7)
C60.3638 (4)0.4001 (2)0.31457 (10)0.0266 (6)
C70.0640 (4)0.4595 (3)0.23186 (10)0.0289 (7)
C80.0151 (4)0.5258 (2)0.28337 (10)0.0247 (6)
C90.2610 (4)0.6731 (2)0.24143 (9)0.0253 (7)
C100.0341 (4)0.7538 (2)0.33465 (9)0.0223 (6)
C110.2053 (4)0.7667 (3)0.37362 (10)0.0265 (7)
C120.1458 (4)0.8746 (3)0.41508 (10)0.0303 (7)
C130.0796 (4)0.9677 (3)0.41774 (10)0.0308 (7)
C140.2523 (4)0.9507 (3)0.37950 (11)0.0302 (7)
C150.1951 (4)0.8427 (2)0.33767 (10)0.0259 (6)
C160.6559 (5)0.8811 (3)0.17393 (10)0.0288 (7)
C170.6171 (6)1.0229 (3)0.20592 (12)0.0415 (9)
C180.8431 (5)0.8590 (3)0.12317 (10)0.0287 (7)
C191.0414 (5)0.7011 (3)0.04748 (11)0.0357 (8)
C201.2093 (5)0.7923 (3)0.03072 (11)0.0395 (8)
C211.1876 (6)0.9201 (3)0.06046 (12)0.0430 (9)
C221.0058 (5)0.9543 (3)0.10605 (11)0.0374 (8)
Br20.27139 (5)0.28139 (3)0.09148 (2)0.0383 (1)
O10.7203 (4)0.4762 (2)0.08156 (10)0.0527 (8)
H20.034300.527200.403500.0300*
H30.285300.419600.475500.0310*
H40.770200.671700.099200.0350*
H50.637300.289200.345500.0330*
H60.384900.395000.273600.0320*
H70.007800.375300.220600.0350*
H110.360700.702800.371900.0320*
H120.261800.884600.442000.0360*
H130.116801.043100.445600.0370*
H140.409401.012900.381900.0360*
H150.312500.830400.311500.0310*
H17A0.487601.021600.238500.0620*
H17B0.568601.107000.177900.0620*
H17C0.769701.032200.222200.0620*
H191.048800.613400.027200.0430*
H201.335400.767600.000300.0470*
H211.299000.985500.049500.0520*
H220.991801.043500.125800.0450*
H1A0.592800.437500.084700.0630*
H1B0.816400.420500.104200.0630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0262 (1)0.0324 (1)0.0331 (1)0.0090 (1)0.0018 (1)0.0010 (1)
S10.0374 (3)0.0343 (3)0.0186 (3)0.0109 (2)0.0009 (2)0.0075 (2)
N10.0252 (10)0.0272 (9)0.0205 (9)0.0067 (8)0.0009 (7)0.0059 (7)
N20.0317 (11)0.0306 (10)0.0216 (9)0.0085 (8)0.0009 (8)0.0043 (7)
N30.0340 (11)0.0329 (10)0.0211 (9)0.0106 (8)0.0008 (8)0.0049 (8)
N40.0347 (11)0.0322 (10)0.0237 (9)0.0165 (9)0.0011 (8)0.0027 (8)
C10.0233 (11)0.0221 (10)0.0274 (11)0.0021 (8)0.0021 (9)0.0042 (8)
C20.0233 (11)0.0263 (11)0.0252 (11)0.0055 (9)0.0013 (9)0.0069 (8)
C30.0253 (11)0.0281 (11)0.0225 (10)0.0032 (9)0.0011 (9)0.0048 (8)
C40.0207 (10)0.0230 (10)0.0283 (11)0.0018 (8)0.0015 (9)0.0021 (8)
C50.0251 (11)0.0251 (11)0.0345 (12)0.0064 (9)0.0066 (9)0.0041 (9)
C60.0253 (11)0.0288 (11)0.0258 (11)0.0029 (9)0.0035 (9)0.0055 (9)
C70.0359 (13)0.0313 (12)0.0227 (11)0.0132 (10)0.0028 (9)0.0051 (9)
C80.0260 (11)0.0271 (11)0.0227 (10)0.0060 (9)0.0056 (8)0.0047 (8)
C90.0269 (12)0.0301 (12)0.0194 (10)0.0044 (9)0.0038 (8)0.0039 (8)
C100.0243 (11)0.0236 (10)0.0194 (10)0.0058 (8)0.0012 (8)0.0043 (8)
C110.0208 (11)0.0348 (12)0.0247 (11)0.0053 (9)0.0023 (9)0.0054 (9)
C120.0295 (12)0.0401 (13)0.0243 (11)0.0118 (10)0.0020 (9)0.0087 (10)
C130.0337 (13)0.0337 (12)0.0275 (12)0.0120 (10)0.0034 (10)0.0112 (9)
C140.0260 (12)0.0258 (12)0.0378 (13)0.0025 (9)0.0009 (10)0.0059 (9)
C150.0253 (11)0.0282 (11)0.0260 (11)0.0075 (9)0.0045 (9)0.0029 (9)
C160.0384 (13)0.0280 (11)0.0214 (10)0.0098 (10)0.0034 (9)0.0000 (9)
C170.0620 (19)0.0294 (13)0.0329 (13)0.0115 (12)0.0041 (12)0.0037 (10)
C180.0389 (13)0.0281 (11)0.0216 (10)0.0115 (10)0.0057 (9)0.0004 (9)
C190.0446 (15)0.0396 (14)0.0264 (12)0.0169 (12)0.0025 (11)0.0094 (10)
C200.0468 (16)0.0459 (15)0.0293 (13)0.0221 (13)0.0086 (11)0.0063 (11)
C210.0525 (17)0.0473 (16)0.0358 (14)0.0298 (13)0.0055 (12)0.0051 (12)
C220.0535 (17)0.0340 (13)0.0296 (13)0.0224 (12)0.0020 (11)0.0033 (10)
Br20.0409 (2)0.0393 (2)0.0399 (2)0.0198 (1)0.0017 (1)0.0117 (1)
O10.0430 (12)0.0436 (12)0.0761 (15)0.0216 (9)0.0117 (10)0.0213 (10)
Geometric parameters (Å, º) top
Br1—C41.909 (2)C13—C141.391 (3)
S1—C71.735 (2)C14—C151.393 (3)
S1—C91.744 (2)C16—C181.471 (4)
O1—H1A0.8500C16—C171.508 (4)
O1—H1B0.8500C18—C221.391 (4)
N1—C101.438 (3)C19—C201.384 (4)
N1—C91.375 (3)C20—C211.378 (4)
N1—C81.415 (3)C21—C221.381 (4)
N2—C91.315 (3)C2—H20.9500
N2—N31.386 (3)C3—H30.9500
N3—C161.291 (3)C5—H50.9500
N4—C191.339 (3)C6—H60.9500
N4—C181.351 (3)C7—H70.9500
N4—H40.8800C11—H110.9500
C1—C21.402 (3)C12—H120.9500
C1—C81.471 (3)C13—H130.9500
C1—C61.401 (3)C14—H140.9500
C2—C31.387 (3)C15—H150.9500
C3—C41.382 (3)C17—H17C0.9800
C4—C51.385 (3)C17—H17A0.9800
C5—C61.383 (3)C17—H17B0.9800
C7—C81.349 (3)C19—H190.9500
C10—C111.386 (3)C20—H200.9500
C10—C151.379 (3)C21—H210.9500
C11—C121.386 (4)C22—H220.9500
C12—C131.379 (3)
C7—S1—C990.19 (11)N4—C18—C22116.9 (2)
H1A—O1—H1B104.00N4—C19—C20120.2 (2)
C8—N1—C10126.06 (18)C19—C20—C21117.8 (3)
C9—N1—C10119.83 (17)C20—C21—C22120.7 (3)
C8—N1—C9113.57 (17)C18—C22—C21120.4 (2)
N3—N2—C9108.59 (17)C3—C2—H2120.00
N2—N3—C16116.19 (19)C1—C2—H2120.00
C18—N4—C19123.9 (2)C2—C3—H3120.00
C19—N4—H4113.00C4—C3—H3120.00
C18—N4—H4123.00C6—C5—H5121.00
C2—C1—C6118.1 (2)C4—C5—H5121.00
C6—C1—C8118.7 (2)C5—C6—H6119.00
C2—C1—C8123.0 (2)C1—C6—H6119.00
C1—C2—C3120.8 (2)S1—C7—H7123.00
C2—C3—C4119.4 (2)C8—C7—H7123.00
C3—C4—C5121.4 (2)C10—C11—H11121.00
Br1—C4—C5119.76 (16)C12—C11—H11121.00
Br1—C4—C3118.87 (17)C13—C12—H12120.00
C4—C5—C6118.9 (2)C11—C12—H12120.00
C1—C6—C5121.5 (2)C12—C13—H13120.00
S1—C7—C8113.51 (19)C14—C13—H13120.00
N1—C8—C7111.7 (2)C15—C14—H14120.00
N1—C8—C1123.17 (18)C13—C14—H14120.00
C1—C8—C7124.91 (19)C10—C15—H15120.00
N1—C9—N2122.65 (18)C14—C15—H15120.00
S1—C9—N2126.31 (16)C16—C17—H17B110.00
S1—C9—N1111.01 (15)C16—C17—H17C109.00
C11—C10—C15121.3 (2)H17A—C17—H17B109.00
N1—C10—C11119.52 (19)H17A—C17—H17C109.00
N1—C10—C15119.14 (19)H17B—C17—H17C109.00
C10—C11—C12118.8 (2)C16—C17—H17A109.00
C11—C12—C13120.8 (2)N4—C19—H19120.00
C12—C13—C14119.7 (2)C20—C19—H19120.00
C13—C14—C15120.1 (2)C21—C20—H20121.00
C10—C15—C14119.2 (2)C19—C20—H20121.00
C17—C16—C18118.8 (2)C20—C21—H21120.00
N3—C16—C18114.8 (2)C22—C21—H21120.00
N3—C16—C17126.3 (2)C18—C22—H22120.00
N4—C18—C16119.0 (2)C21—C22—H22120.00
C16—C18—C22124.0 (2)
C9—S1—C7—C80.05 (19)C2—C1—C8—C7141.2 (2)
C7—S1—C9—N10.22 (17)C6—C1—C8—N1151.9 (2)
C7—S1—C9—N2177.7 (2)C6—C1—C8—C733.7 (3)
C9—N1—C8—C1175.39 (19)C1—C2—C3—C40.0 (3)
C9—N1—C8—C70.3 (3)C2—C3—C4—Br1177.72 (15)
C10—N1—C8—C113.1 (3)C2—C3—C4—C50.9 (3)
C10—N1—C8—C7171.8 (2)Br1—C4—C5—C6177.46 (15)
C8—N1—C9—S10.3 (2)C3—C4—C5—C61.1 (3)
C8—N1—C9—N2177.7 (2)C4—C5—C6—C10.5 (3)
C10—N1—C9—S1172.41 (15)S1—C7—C8—N10.1 (2)
C10—N1—C9—N25.6 (3)S1—C7—C8—C1175.12 (18)
C8—N1—C10—C11117.6 (2)N1—C10—C11—C12176.4 (2)
C8—N1—C10—C1563.9 (3)C15—C10—C11—C122.0 (3)
C9—N1—C10—C1171.4 (3)N1—C10—C15—C14176.3 (2)
C9—N1—C10—C15107.1 (2)C11—C10—C15—C142.1 (3)
C9—N2—N3—C16174.0 (2)C10—C11—C12—C130.1 (4)
N3—N2—C9—S17.0 (3)C11—C12—C13—C141.8 (4)
N3—N2—C9—N1175.30 (19)C12—C13—C14—C151.7 (4)
N2—N3—C16—C174.0 (4)C13—C14—C15—C100.2 (3)
N2—N3—C16—C18175.0 (2)N3—C16—C18—N44.8 (4)
C19—N4—C18—C16176.2 (2)N3—C16—C18—C22172.3 (2)
C19—N4—C18—C221.1 (4)C17—C16—C18—N4176.2 (2)
C18—N4—C19—C200.6 (4)C17—C16—C18—C226.8 (4)
C6—C1—C2—C30.5 (3)N4—C18—C22—C211.7 (4)
C8—C1—C2—C3174.40 (18)C16—C18—C22—C21175.4 (3)
C2—C1—C6—C50.3 (3)N4—C19—C20—C211.6 (4)
C8—C1—C6—C5174.87 (18)C19—C20—C21—C220.9 (4)
C2—C1—C8—N133.2 (3)C20—C21—C22—C180.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br20.852.493.332 (2)170
O1—H1B···Br2i0.852.613.271 (2)135
N4—H4···O10.881.952.715 (3)144
C15—H15···N2ii0.952.623.571 (3)177
C17—H17A···N20.982.382.798 (4)105
C17—H17B···Br2iii0.982.883.798 (3)156
C19—H19···O10.952.593.006 (3)107
C20—H20···Br2iv0.952.853.798 (3)175
C21—H21···Br2v0.952.923.579 (3)127
C11—H11···Cg3i0.952.933.789 (3)152
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+2, y+1, z; (v) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···Br20.852.493.332 (2)170
O1—H1B···Br2i0.852.613.271 (2)135
N4—H4···O10.881.952.715 (3)144
C15—H15···N2ii0.952.623.571 (3)177
C17—H17B···Br2iii0.982.883.798 (3)156
C20—H20···Br2iv0.952.853.798 (3)175
C21—H21···Br2v0.952.923.579 (3)127
C11—H11···Cg3i0.952.933.789 (3)152
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+2, y+1, z; (v) x+1, y+1, z.
 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.

References

First citationBadorc, A., Bordes, M. F., De Cointet, P., Savi, P., Bernat, A., Lale, A., Petitou, M., Maffrand, J. P. & Herbert, J. M. (1997). J. Med. Chem. 40, 3393–3401.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBell, F. W., Cantrell, A. S., Hogberg, M., Jaskunas, S. R., Johansson, N. G., Jordon, C. L., Kinnick, M. D., Lind, P., Morin, J. M., Noreen, R., Oberg, B., Palkowitz, J. A., Parrish, C. A., Pranc, P., Sahlberg, C., Ternansky, R. J., Vasileff, R. T., Vrang, L., West, S. J., Zhang, H. & Zhou, X. X. (1995). J. Med. Chem. 38, 4929–4936.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErgenc, N., Capan, G., Gunay, N. S., Ozkirimli, S., Gungor, M., Ozbey, S. & Kendi, E. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 343–347.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzner, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311–317.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. J., Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I., Steinbaugh, B. A., Batley, B. L., Painchaud, C. A., Rapundalo, S. T., Michniewicz, B. M. & Olson, S. C. J. (1992). J. Med. Chem. 35, 2562–2572.  CrossRef PubMed CAS Web of Science Google Scholar
First citationQuiroga, J., Hernandez, P., Insuasty, B., Abonia, R., Cobo, J., Sanchez, A., Nogueras, M. & Low, J. N. (2002). J. Chem. Soc. Perkin Trans. 1, 4, 555–559.  Web of Science CSD CrossRef Google Scholar
First citationRudolph, J., Theis, H., Hanke, R., Endermann, R., Johannsen, L. & Geschke, F. U. (2001). J. Med. Chem. 44, 619–626.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). IJPSDR, 1, 136–143.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1099–o1100.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o328-o329
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds