organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o340-o341

4-Thio­carbamoylpyridin-1-ium iodide

aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
*Correspondence e-mail: boere@uleth.ca

(Received 29 January 2014; accepted 17 February 2014; online 22 February 2014)

The title salt, C6H7N2S+·I, crystallizes with two independent cations and two anions in the asymmetric unit. In one of the cations, the dihedral angle between the pyridinium ring and the thioamide group is 28.9 (2)°; in the other it is 33.5 (2)°. In the crystal, N—H⋯S and C—H⋯S hydrogen bonds link the independent cations into pairs. These pairs form a three-dimensional network through additional N—H⋯I and C—H⋯I hydrogen bonds to the anions.

Related literature

For details of the synthesis, see: Liebscher & Hartmann (1977[Liebscher, J. & Hartmann, H. (1977). Liebigs Ann. pp. 1005-1012.]). For related structures, see: Alléaume et al. (1973[Alléaume, M., Leroy, F., Gadret, M. & Goursolle, M. (1973). Acta Cryst. B29, 1994-2000.]); Cardoso et al. (2008[Cardoso, S. H., de Almeida, M. V., de Assis, J. V., Diniz, R., Speziali, N. L. & de Souza, M. V. N. (2008). J. Sulfur Chem. 29, 145-149.]); Colleter & Gadret (1967[Colleter, J.-C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. pp. 3463-3469.], 1968a[Colleter, J. C. & Gadret, M. (1968a). Acta Cryst. B24, 513-519.],b[Colleter, J. C. & Gadret, M. (1968b). Acta Cryst. B24, 519-525.]); Colleter et al. (1970[Colleter, J. C., Gadret, M. & Coursolle, M. (1970). Acta Cryst. B26, 1510-1518.], 1973[Colleter, J. C., Gadret, M., Goursolle, M. & Leroy, F. (1973). Acta Cryst. B29, 2337-2344.]); Gadret & Goursolle (1969[Gadret, M. & Goursolle, M. (1969). Bull. Soc. Pharm. Bord. 108, 38-44.]); Gel'mbol'dt, et al. (2010[Gel'mbol'dt, V. O., Ganin, E. V., Minacheva, L. Kh., Koroeva, L. V. & Sergienko, V. S. (2010). Russ. J. Inorg. Chem. 55, 1209-1215.]); Kavitha et al. (2008[Kavitha, T., Revathi, C., Hemalatha, M., Dayalan, A. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o114.]); Revathi et al. (2009[Revathi, C., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m795-m796.]). For drug action, see: Vannelli et al. (2002[Vannelli, T. A., Dykman, A. & Ortiz de Montellano, P. R. (2002). J. Biol. Chem. 277, 12824-12829.]). For a DFT computational study of the parent thio­amide and for vibrational spectroscopy data, see: Wysokińsky et al. (2006[Wysokiński, R., Michalska, D., Bieńko, D. C., Ilakiamani, S., Sundaraganesan, N. & Ramalingam, K. (2006). J. Mol. Struct. 791, 70-76.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2S+·I

  • Mr = 266.10

  • Monoclinic, C 2/c

  • a = 18.7580 (11) Å

  • b = 7.7476 (4) Å

  • c = 24.1784 (14) Å

  • β = 101.165 (1)°

  • V = 3447.3 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 3.89 mm−1

  • T = 173 K

  • 0.31 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.541, Tmax = 0.746

  • 19180 measured reflections

  • 3923 independent reflections

  • 3684 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.034

  • S = 1.08

  • 3923 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I2i 0.83 (2) 2.79 (2) 3.5996 (18) 164 (2)
N1—H1B⋯I1ii 0.86 (2) 2.78 (3) 3.6232 (17) 167 (2)
N2—H2⋯I2 0.84 (2) 3.06 (2) 3.6622 (16) 131.0 (18)
N2—H2⋯S2 0.84 (2) 2.71 (2) 3.3410 (16) 133.2 (18)
N3—H3A⋯I1iii 0.81 (2) 2.86 (2) 3.6188 (17) 157 (2)
N3—H3B⋯I2 0.86 (2) 2.73 (3) 3.5854 (18) 173 (2)
N4—H4A⋯I1 0.86 (2) 2.69 (2) 3.4804 (17) 152.9 (19)
C4—H4⋯I2iv 0.95 3.03 3.8684 (19) 149
C4—H4⋯S2 0.95 2.87 3.4275 (19) 119
Symmetry codes: (i) [-x+1, y+1, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Crystal structures of pyridine rings carrying a thioamide functional group (specifically, 4-thiocarbamoylpyridines) have been investigated primarily because of their use as anti-tuberculosis medications. Thus Colleter and Gadret determined the structure of neutral 4-thiocarbamoylpyridine (Colleter & Gadret, 1967). Ethionamide (2-ethyl-4-thiocaraboylpyridine) is a second line drug used in regimens to treat multi-drug-resistant tuberculosis; its in vivo activation has been investigated (Vannelli et al., 2002). The crystal structure of both the HCl and HBr salts of ethionamide have been reported (Colleter & Gadret, 1968a, 1968b) as has the hexafluorsilicate (Gel'mbol'dt et al., 2010); clinically, ethionamide is administered as the hydrochloride. In order to investigate solubility issues related to drug delivery and the search for similar therapeutic agents, the structures of neutral ethionamide (Alléaume et al., 1973) and the closely related 2-methyl derivative have also been determined (Gadret & Goursolle, 1969). Similarly the 2-propyl (Colleter et al., 1970) and 2-butyl analogues (Colleter et al., 1973) have also been determined as neutral compounds. More recently, the structure of a secondary amine derivative of ethionamide has been determined (Cardoso, et al., 2008). The vibrational spectra of the parent compound have been measured and compared to DFT calculated results (Wysokiński et al., 2006). There is also one reported structure wherein a (substituted) neutral 4-pyridylthioamide coordinates to a copper(II) glyoximato complex (Revathi et al., 2009); this same group earlier undertook the structure determination of the free ligand which is also a secondary amine derivative (Kavitha et al., 2008).

The structure of (I) determined from the X-ray diffraction analysis contains two independent cations and anions (Figure 1). Compared to the parent compound, the average S—C, N2—C and C1—C2 bond distances are shortened in (I); all the other bonds are longer than in the neutral species. There is an extensive network of H-bonds linking the cations and anions in the lattice. One of the independent I- ions interacts with one pyridinium NH donor and two thioamide NH2 donors (one from each cation). The second I- interacts strongly with two NH2 donors and one of the aromatic ring CH, and only very weakly with a pyridinium NH. In addition, one thioamide S atom is H-bonded to both a pyridinium NH and the ortho CH. The strongest N—H···I interaction (donor-acceptor 3.48 (2) Å), which corresponds to 0.49 Å less than the sum of the v.d·W. radii of N and H, is between one of the two I- ions and one of the pyridinium N atoms. In close second place at 0.45 Å less than the sum of the v.d·W. radii is the contact between an NH2 nitrogen and the other I- ion, which involves the same thioamide ring. This ring also forms an H-bond with the S atom as acceptor towards the pyridinium NH of the second thioamide in the cluster. In all, there are nine H-bonds which exceed 0.1 Å less than the sums of the corresponding v.d·W. radii.

The H-bonding is comparable in strength (shortest contact 0.49 Å < sum v.d·W. radii) to that reported by Colleter & Gadret (1968a, 1968b) for the HCl and HBr adducts of ethionamide (shortest contacts 0.34; 0.31 Å < sum of v.d.W. radii). However, compared to these isostructural salts, in (I) the pattern is quite unusual (Figure 2) wherein pyridinium nitrogen N4—H4 are H-bonded to I1, but I2 is linked to the N3 amino rather than to a pyridinium group; the H-bond that forms from this second pyridinium unit involves an S···HN link. There is in fact an extensive network of H-bonds present in this lattice, involving the large iodide anions (Figure 1, Table 1) interacting with N—H and C—H donors. A unit cell packing diagram is provided in Figure 2.

Related literature top

For details of the synthesis, see: Liebscher & Hartmann (1977). For related structures, see: Alléaume et al. (1973); Cardoso et al. (2008); Colleter & Gadret (1967, 1968a,b); Colleter et al. (1970, 1973); Gadret & Goursolle (1969); Gel'mbol'dt, et al. (2010); Kavitha et al. (2008); Revathi et al. (2009). For drug action, see: Vannelli et al. (2002). For a DFT computational study of the parent thioamide and for vibrational spectroscopy data, see: Wysokińsky et al. (2006).

Experimental top

Following a method designed for the oxidation of the thioamide (Liebscher & Hartmann, 1977), 4-pyridine thioamide (1.00 g, 10 mmol) and iodine (2.00 g, 10 mmol) in 7.00 ml glacial acetic acid were heated for about 10 minutes to the boil. The brownish colour of iodine in acetic acid changed to dark red on adding 4-pyridine thioamide. Initially, there were undissolved solids in the mixture, but these dissolved during heating. A dark precipitate was formed upon cooling which was collected on a Buchner funnel and rinsed. After drying on the pump to get rid of acetic acid, the solid was recrystallized from acetonitrile, affording 2.17 g (84%) of dark-brown X-ray quality needles, mp. 426.6–426.8 K. 1H NMR, (δ,DMSO): 9.07 p.p.m. (d, 1H, 6.3 Hz), 9.00 p.p.m. (d, 1H, 6.3 Hz), 8.67 p.p.m. (d, 1H, 6.3 Hz), 8.36 p.p.m. (s, 1H, 6.3 Hz), 5.28 p.p.m. (br, 3H + HOD). IR (diamond ATR) (ν, cm-1): 3037 w, 1633 m, 1568 w, 1473 s, 1441 m, 1328 w, 1301 m, 1273 m, 1244 m, 1207 m, 1178 m, 1153 m, 1037 m, 844 s, 800 m, 710 s, 627 m, 525 s, 501 s.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were located on a difference Fourier map, but for purposes of refinement those bonded to C atoms are treated as riding with C—H(aromatic) = 0.95 Å and Uiso(H) = 1.2UeqC. H atoms bonded to N atoms in the cations were refined independently but with isotropic displacement parameters set to 1.2Ueq of the attached N atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoids plot (50% probability) of (I) showing the two independent cations and anions in the asymmetric unit and including additional iodide ions linked by hydrogen bonds; the latter are shown as dashed tubes. [Symmetry codes: (i) -x + 1, y + 1, -z + 3/2; (ii) x - 1/2, -y + 3/2, z + 1/2; (iii) -x + 3/2, -y + 1/2, -z + 1; (iv) x, y + 1, z.]
[Figure 2] Fig. 2. A unit-cell packing diagram viewed down the b axis. The H-bond network is indicated by dashed tubes from H-bond donors to H-bond acceptors.
4-Thiocarbamoylpyridine hydroiodide top
Crystal data top
C6H7N2S+·IF(000) = 2016
Mr = 266.10Dx = 2.051 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.7580 (11) ÅCell parameters from 9990 reflections
b = 7.7476 (4) Åθ = 2.5–27.4°
c = 24.1784 (14) ŵ = 3.89 mm1
β = 101.165 (1)°T = 173 K
V = 3447.3 (3) Å3Block, orange
Z = 160.31 × 0.23 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3923 independent reflections
Radiation source: fine-focus sealed tube, Bruker D83684 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 66.06 pixels mm-1θmax = 27.4°, θmin = 1.7°
φ and ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1010
Tmin = 0.541, Tmax = 0.746l = 3131
19180 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: difference Fourier map
wR(F2) = 0.034H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.014P)2 + 2.9155P]
where P = (Fo2 + 2Fc2)/3
3923 reflections(Δ/σ)max = 0.003
199 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H7N2S+·IV = 3447.3 (3) Å3
Mr = 266.10Z = 16
Monoclinic, C2/cMo Kα radiation
a = 18.7580 (11) ŵ = 3.89 mm1
b = 7.7476 (4) ÅT = 173 K
c = 24.1784 (14) Å0.31 × 0.23 × 0.18 mm
β = 101.165 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3923 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3684 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 0.746Rint = 0.020
19180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0140 restraints
wR(F2) = 0.034H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.30 e Å3
3923 reflectionsΔρmin = 0.36 e Å3
199 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Amine and pyridinium NH atoms freely refined in order to get H-bond s.u. data. The isotropic displacements were set to 1.2* values of attached N.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.73295 (2)0.78676 (2)0.40917 (2)0.02306 (4)
I20.50416 (2)0.34932 (2)0.65408 (2)0.02433 (4)
S10.23724 (3)0.15493 (7)0.82498 (2)0.03064 (11)
N10.32690 (10)0.4190 (2)0.83135 (8)0.0322 (4)
H1A0.3653 (13)0.467 (3)0.8274 (10)0.039*
H1B0.3022 (13)0.473 (3)0.8524 (10)0.039*
N20.42894 (8)0.0542 (2)0.69703 (6)0.0237 (3)
H20.4497 (11)0.014 (3)0.6721 (9)0.028*
C10.30728 (10)0.2657 (2)0.81067 (7)0.0221 (4)
C20.35203 (9)0.1918 (2)0.77127 (7)0.0201 (3)
C30.38691 (10)0.2986 (2)0.73855 (8)0.0226 (4)
H30.38490.42040.74240.027*
C40.42429 (10)0.2264 (2)0.70060 (8)0.0238 (4)
H40.44670.29830.67710.029*
C50.39722 (10)0.0526 (2)0.72831 (8)0.0258 (4)
H50.40180.17400.72470.031*
C60.35787 (10)0.0139 (2)0.76581 (8)0.0253 (4)
H60.33480.06130.78790.030*
S20.48535 (3)0.15223 (6)0.57798 (2)0.02810 (10)
N30.59993 (10)0.0467 (2)0.58319 (8)0.0304 (4)
H3A0.6393 (13)0.078 (3)0.5779 (10)0.036*
H3B0.5804 (13)0.120 (3)0.6025 (10)0.036*
N40.66095 (9)0.4143 (2)0.45727 (7)0.0294 (4)
H4A0.6785 (12)0.483 (3)0.4351 (9)0.035*
C70.56575 (10)0.0956 (2)0.56424 (7)0.0209 (4)
C80.60102 (9)0.2080 (2)0.52709 (7)0.0203 (4)
C90.64262 (10)0.1370 (2)0.49061 (8)0.0244 (4)
H90.65110.01610.49040.029*
C100.67111 (11)0.2439 (3)0.45512 (8)0.0287 (4)
H100.69790.19690.42910.034*
C110.62265 (11)0.4872 (3)0.49209 (8)0.0299 (4)
H110.61730.60910.49260.036*
C120.59099 (10)0.3860 (2)0.52727 (8)0.0259 (4)
H120.56260.43690.55140.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02298 (6)0.02070 (6)0.02617 (6)0.00052 (4)0.00639 (5)0.00397 (4)
I20.02670 (7)0.01916 (6)0.02859 (7)0.00127 (5)0.00896 (5)0.00029 (5)
S10.0295 (3)0.0312 (3)0.0355 (3)0.0050 (2)0.0170 (2)0.0023 (2)
N10.0314 (9)0.0302 (10)0.0400 (10)0.0058 (8)0.0195 (8)0.0138 (8)
N20.0205 (8)0.0296 (9)0.0216 (8)0.0028 (6)0.0058 (6)0.0056 (6)
C10.0227 (9)0.0233 (9)0.0211 (8)0.0025 (7)0.0060 (7)0.0004 (7)
C20.0185 (8)0.0228 (9)0.0186 (8)0.0012 (7)0.0029 (7)0.0017 (7)
C30.0246 (9)0.0197 (9)0.0235 (9)0.0001 (7)0.0048 (7)0.0003 (7)
C40.0246 (9)0.0248 (9)0.0226 (9)0.0017 (7)0.0056 (7)0.0002 (7)
C50.0270 (10)0.0198 (9)0.0304 (10)0.0022 (7)0.0052 (8)0.0026 (7)
C60.0280 (10)0.0206 (9)0.0287 (9)0.0006 (8)0.0086 (8)0.0014 (7)
S20.0268 (2)0.0295 (3)0.0317 (2)0.00596 (19)0.0148 (2)0.0049 (2)
N30.0259 (9)0.0295 (9)0.0392 (10)0.0061 (7)0.0150 (8)0.0130 (8)
N40.0259 (8)0.0325 (9)0.0284 (8)0.0097 (7)0.0017 (7)0.0105 (7)
C70.0219 (9)0.0219 (9)0.0194 (8)0.0004 (7)0.0053 (7)0.0006 (7)
C80.0185 (8)0.0213 (9)0.0204 (8)0.0016 (7)0.0018 (7)0.0005 (7)
C90.0229 (9)0.0250 (10)0.0263 (9)0.0019 (7)0.0073 (7)0.0004 (7)
C100.0260 (10)0.0353 (11)0.0261 (9)0.0044 (8)0.0082 (8)0.0019 (8)
C110.0295 (10)0.0212 (9)0.0358 (11)0.0043 (8)0.0020 (8)0.0061 (8)
C120.0278 (10)0.0225 (9)0.0267 (9)0.0002 (8)0.0036 (8)0.0004 (7)
Geometric parameters (Å, º) top
S1—C11.6608 (19)S2—C71.6648 (18)
N1—C11.313 (3)N3—C71.312 (2)
N1—H1A0.83 (2)N3—H3A0.81 (2)
N1—H1B0.86 (2)N3—H3B0.86 (2)
N2—C51.336 (2)N4—C111.334 (3)
N2—C41.341 (2)N4—C101.336 (3)
N2—H20.84 (2)N4—H4A0.86 (2)
C1—C21.500 (2)C7—C81.494 (2)
C2—C61.391 (2)C8—C121.392 (3)
C2—C31.392 (2)C8—C91.399 (2)
C3—C41.377 (3)C9—C101.373 (3)
C3—H30.9500C9—H90.9500
C4—H40.9500C10—H100.9500
C5—C61.376 (3)C11—C121.374 (3)
C5—H50.9500C11—H110.9500
C6—H60.9500C12—H120.9500
C1—N1—H1A123.0 (17)C7—N3—H3A126.7 (17)
C1—N1—H1B121.3 (16)C7—N3—H3B120.9 (16)
H1A—N1—H1B115 (2)H3A—N3—H3B112 (2)
C5—N2—C4122.57 (16)C11—N4—C10122.80 (17)
C5—N2—H2120.0 (15)C11—N4—H4A116.7 (15)
C4—N2—H2117.2 (15)C10—N4—H4A120.5 (15)
N1—C1—C2115.93 (16)N3—C7—C8117.14 (16)
N1—C1—S1124.24 (14)N3—C7—S2123.51 (15)
C2—C1—S1119.83 (14)C8—C7—S2119.32 (13)
C6—C2—C3118.73 (16)C12—C8—C9118.95 (17)
C6—C2—C1120.18 (16)C12—C8—C7119.98 (16)
C3—C2—C1121.07 (16)C9—C8—C7121.04 (16)
C4—C3—C2119.58 (17)C10—C9—C8119.26 (18)
C4—C3—H3120.2C10—C9—H9120.4
C2—C3—H3120.2C8—C9—H9120.4
N2—C4—C3119.64 (17)N4—C10—C9119.73 (18)
N2—C4—H4120.2N4—C10—H10120.1
C3—C4—H4120.2C9—C10—H10120.1
N2—C5—C6119.70 (17)N4—C11—C12119.95 (18)
N2—C5—H5120.1N4—C11—H11120.0
C6—C5—H5120.1C12—C11—H11120.0
C5—C6—C2119.74 (17)C11—C12—C8119.26 (18)
C5—C6—H6120.1C11—C12—H12120.4
C2—C6—H6120.1C8—C12—H12120.4
N1—C1—C2—C6152.73 (19)N3—C7—C8—C12148.94 (18)
S1—C1—C2—C628.0 (2)S2—C7—C8—C1232.8 (2)
N1—C1—C2—C328.9 (3)N3—C7—C8—C932.9 (3)
S1—C1—C2—C3150.45 (15)S2—C7—C8—C9145.37 (15)
C6—C2—C3—C41.9 (3)C12—C8—C9—C101.4 (3)
C1—C2—C3—C4176.50 (17)C7—C8—C9—C10176.76 (17)
C5—N2—C4—C31.4 (3)C11—N4—C10—C91.3 (3)
C2—C3—C4—N22.4 (3)C8—C9—C10—N42.3 (3)
C4—N2—C5—C60.2 (3)C10—N4—C11—C120.8 (3)
N2—C5—C6—C20.6 (3)N4—C11—C12—C81.7 (3)
C3—C2—C6—C50.4 (3)C9—C8—C12—C110.6 (3)
C1—C2—C6—C5178.03 (17)C7—C8—C12—C11178.77 (17)
Hydrogen-bond geometry (Å, º) top
H-bonds link iodide I1 threefold to pyridinium N4 and thioamide NH2 groups N1 and N3. Similarly, I2 is linked to pyridinium N2 and thioamide NH2 groups N1 and N3 (the latter forming an I–N–I–N ring in the lattice) but also involves a (possibly involuntary) short contact to aromatic C4-H. Finally, there are two short contacts lining thioamide S2 with pyridinium N2-H and aromatic C4-H (the latter may also be involuntary.)
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2i0.83 (2)2.79 (2)3.5996 (18)164 (2)
N1—H1B···I1ii0.86 (2)2.78 (3)3.6232 (17)167 (2)
N2—H2···I20.84 (2)3.06 (2)3.6622 (16)131.0 (18)
N2—H2···S20.84 (2)2.71 (2)3.3410 (16)133.2 (18)
N3—H3A···I1iii0.81 (2)2.86 (2)3.6188 (17)157 (2)
N3—H3B···I20.86 (2)2.73 (3)3.5854 (18)173 (2)
N4—H4A···I10.86 (2)2.69 (2)3.4804 (17)152.9 (19)
C4—H4···I2iv0.953.033.8684 (19)149
C4—H4···S20.952.873.4275 (19)119
Symmetry codes: (i) x+1, y+1, z+3/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y+1/2, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
H-bonds link iodide I1 threefold to pyridinium N4 and thioamide NH2 groups N1 and N3. Similarly, I2 is linked to pyridinium N2 and thioamide NH2 groups N1 and N3 (the latter forming an I–N–I–N ring in the lattice) but also involves a (possibly involuntary) short contact to aromatic C4-H. Finally, there are two short contacts lining thioamide S2 with pyridinium N2-H and aromatic C4-H (the latter may also be involuntary.)
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2i0.83 (2)2.79 (2)3.5996 (18)164 (2)
N1—H1B···I1ii0.86 (2)2.78 (3)3.6232 (17)167 (2)
N2—H2···I20.84 (2)3.06 (2)3.6622 (16)131.0 (18)
N2—H2···S20.84 (2)2.71 (2)3.3410 (16)133.2 (18)
N3—H3A···I1iii0.81 (2)2.86 (2)3.6188 (17)157 (2)
N3—H3B···I20.86 (2)2.73 (3)3.5854 (18)173 (2)
N4—H4A···I10.86 (2)2.69 (2)3.4804 (17)152.9 (19)
C4—H4···I2iv0.953.033.8684 (19)148.6
C4—H4···S20.952.873.4275 (19)118.8
Symmetry codes: (i) x+1, y+1, z+3/2; (ii) x1/2, y+3/2, z+1/2; (iii) x+3/2, y+1/2, z+1; (iv) x, y+1, z.
 

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

References

First citationAlléaume, M., Leroy, F., Gadret, M. & Goursolle, M. (1973). Acta Cryst. B29, 1994–2000.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardoso, S. H., de Almeida, M. V., de Assis, J. V., Diniz, R., Speziali, N. L. & de Souza, M. V. N. (2008). J. Sulfur Chem. 29, 145–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationColleter, J.-C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. pp. 3463–3469.  Google Scholar
First citationColleter, J. C. & Gadret, M. (1968a). Acta Cryst. B24, 513–519.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationColleter, J. C. & Gadret, M. (1968b). Acta Cryst. B24, 519–525.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationColleter, J. C., Gadret, M. & Coursolle, M. (1970). Acta Cryst. B26, 1510–1518.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationColleter, J. C., Gadret, M., Goursolle, M. & Leroy, F. (1973). Acta Cryst. B29, 2337–2344.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGadret, M. & Goursolle, M. (1969). Bull. Soc. Pharm. Bord. 108, 38–44.  CAS Google Scholar
First citationGel'mbol'dt, V. O., Ganin, E. V., Minacheva, L. Kh., Koroeva, L. V. & Sergienko, V. S. (2010). Russ. J. Inorg. Chem. 55, 1209–1215.  CAS Google Scholar
First citationKavitha, T., Revathi, C., Hemalatha, M., Dayalan, A. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiebscher, J. & Hartmann, H. (1977). Liebigs Ann. pp. 1005–1012.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRevathi, C., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m795–m796.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVannelli, T. A., Dykman, A. & Ortiz de Montellano, P. R. (2002). J. Biol. Chem. 277, 12824–12829.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWysokiński, R., Michalska, D., Bieńko, D. C., Ilakiamani, S., Sundaraganesan, N. & Ramalingam, K. (2006). J. Mol. Struct. 791, 70–76.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o340-o341
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds