organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o372-o373

Monosuccinate ester of melampomagnolide B

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pacrooks@uams.edu

(Received 20 December 2013; accepted 6 February 2014; online 28 February 2014)

The title monosuccinate derivative of melampomagnolide B [systematic name: 4-(((1aR,7aS,10aS,10bS,E)-1a-methyl-8-meth­yl­ene-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-deca­hydro­oxireno[2′,3′:9,10]cyclo­deca­[1,2-b]furan-5-yl)meth­oxy)-4-oxo­butan­oic acid], C19H24O7, was obtained from the reaction of melampomagnolide B with succinic anhydride under nucleophilic addition reaction conditions. The mol­ecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings. The inter­nal double bond in the ten-membered ring has the cis geometry (i.e. it is the E isomer). The lactone ring has an envelope-type conformation, with the (chiral) C atom opposite the lactone O atoms as the flap atom. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into chains parallel to the b-axis direction.

Related literature

For the biological activity of similar compounds, see: Nasim et al. (2011[Nasim, S., Pei, S. S., Hagan, F. K., Jordan, C. T. & Crooks, P. A. (2011). Bioorg. Med. Chem. 19, 1515-1519.]). For the isolation of a similar compound, see: El-Feraly (1984[El-Feraly, F. S. (1984). Phytochemistry, 23, 2372-2374.]). For the structures and syntheses of similar compounds, see: Gonzalez et al. (1988[Gonzalez, A. G., Galindo, A., Mar Afonso, M., Mansilla, H. & Lopez, M. (1988). Tetrahedron, 44, 4585-4589.]); Macias et al. (1992[Macias, F. A., Galindo, J. C. G. & Massanet, G. M. (1992). Phytochemistry, 31, 1969-1977.]); Casimir et al. (1995[Casimir, J. R., Turetta, C., Ettouati, L. & Paris, J. (1995). Tetrahedron Lett. 36, 4797-4800.]). Refinement progress was checked using routines in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and by the R-tensor (Parkin, 2000[Parkin, S. (2000). Acta Cryst. A56, 157-162.]) The crystal was placed directly into the cold stream of a liquid nitro­gen based cryostat, according to published methods, see: Hope (1994[Hope, H. (1994). Prog. Inorg. Chem. 41, 1-19.]); Parkin & Hope (1998[Parkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945-953.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24O7

  • Mr = 364.38

  • Orthorhombic, P 21 21 21

  • a = 8.7866 (2) Å

  • b = 9.6082 (2) Å

  • c = 21.0088 (5) Å

  • V = 1773.63 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.87 mm−1

  • T = 90 K

  • 0.21 × 0.20 × 0.18 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.818, Tmax = 0.889

  • 21766 measured reflections

  • 3218 independent reflections

  • 3204 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.062

  • S = 1.03

  • 3218 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack parameter determined using 1346 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O1i 0.88 (2) 1.91 (3) 2.7616 (16) 162 (2)
C6—H6A⋯O6ii 1.00 2.60 3.173 (2) 117
C7—H7A⋯O1iii 1.00 2.40 3.3293 (19) 154
C14—H14A⋯O7iv 0.99 2.51 3.418 (2) 153
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/programs/ciffix .]).

Supporting information


Comment top

Melampomagnolide B (MMB), a melampolide originally isolated from Magnolia grandiflora, (El-Feraly, 1984), has been identified as a new antileukemic sesquiterpene with properties similar to parthenolide (PTL). MMB was synthesized by a method using selenium oxide (Macias et al., 1992) for the oxidation of the C10 methylgroup of PTL, which also results in concomitant conversion of the geometry of the C9—C10 double bond from E to Z (Gonzalez et al. 1988). Recently, Nasim et al. (2011) have reported the biotin-conjugate derivative of melampomagnolide B, to elucidate its anti-leukemic mechanism of action. More importantly, from a drug design point of view, MMB is a more interesting molecule because it contains an OH group, which provides the means for designing pro-drugs with improved water solubility, bioavailability and tissue targeting. In the current study we synthesized a mono succinate derivative of MMB by the reaction of MMB with succinic anhydride (Casimir et al. 1995). The compound obtained was recrystallized from a mixture of 9:1 dichloromethane and methanol. In order to obtain detailed information on the structural conformation of this molecule a single-crystal X-ray structure determination has been carried out. This revealed that in the crystal structure the molecules of the title compound are connected by intermolecular O—H···O hydrogen bonds between the carboxylic acid (donor) and epoxide (acceptor) groups, linking the molecules into chains that propagate parallel to the c-axis.

Related literature top

For the biological activity of similar compounds, see: Nasim et al. (2011). For the isolation of a similar compound, see: El-Feraly (1984). For the structures and syntheses of similar compounds, see: Gonzalez et al. (1988); Macias et al. (1992); Casimir et al. (1995). Refinement progress was checked using routines in PLATON (Spek, 2009) and by the R-tensor (Parkin, 2000) The crystal was placed directly into the cold stream of a liquid nitrogen based cryostat, according to published methods, see: Hope (1994); Parkin & Hope (1998).

Experimental top

To a reaction mixture of MMB (200 mg, 0.76 mmol) and triethylamine (76.7 mg, 0.76 mmol) in dichloromethane (5 mL), succinic anhydride (76 mg, 0.76 mmol) was added at ambient temperature. The resulting reaction mixture was stirred for 48 h and the reaction was monitored by TLC. After completion of the reaction the resulting mixture was concentrated under reduced pressure to afford the crude product, which was purified by column chromatography (silica gel, 3-5% methanol in dichloromethane) to obtain the desired compound 4-(((1aR,7aS,10aS,10bS,E)-1a-methyl-8-methylene-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methoxy)-4-oxobutanoic acid as a white solid (yield: 90 %). The obtained solid was recrystallized from a mixture of dichloromethane and methanol (9:1) as colourless needles. Melting point 398-399°K. 1H NMR (400 MHz, DMSO-d6): δ 12.25 (s, 1H), 6.05 (d, J=2.8 Hz, 1H), 5.64-5.57 (m, 2H), 4.64 (d, J=12.4 Hz, 1H), 4.42 (d, J=12.8 Hz, 1H), 4.12 (t, J= 9.6 Hz, 1H), 2.99 (t, J=3 Hz, 1H), 2.85 (d, J=9.6 Hz, 1H), 2.30-2.04 (m, 10H), 1.66 (t, J=11.6 Hz, 1H), 1.47 (s, 3H), 0.96 (t, J=11.6 Hz, 1H); 13C NMR (100 MHz DMSO-d6): δ 173.8, 172.4,169.8, 140.0, 135.3, 129.5, 119.7, 110.0, 81.0, 66.9, 63.0, 60.3, 42.2, 36.7, 29.1, 25.0, 24.2, 23.6, 17.9 ppm.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed at idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (Csp2H). The OH hydrogen coordinates attached to O7 were freed in the final cycles of refinement. Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: XP in SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b) and CIFFIX (Parkin, 2013).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
4-(((1aR,7aS,10aS,10bS,E)-1a-Methyl-8-methylene-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methoxy)-4-oxobutanoic acid top
Crystal data top
C19H24O7Dx = 1.365 Mg m3
Mr = 364.38Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9822 reflections
a = 8.7866 (2) Åθ = 5.5–68.3°
b = 9.6082 (2) ŵ = 0.87 mm1
c = 21.0088 (5) ÅT = 90 K
V = 1773.63 (7) Å3Wedge, colourless
Z = 40.21 × 0.20 × 0.18 mm
F(000) = 776
Data collection top
Bruker X8 Proteum
diffractometer
3218 independent reflections
Radiation source: fine-focus rotating anode3204 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1Rint = 0.033
φ and ω scansθmax = 68.2°, θmin = 5.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 104
Tmin = 0.818, Tmax = 0.889k = 1111
21766 measured reflectionsl = 2425
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.4142P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.16 e Å3
3218 reflectionsΔρmin = 0.15 e Å3
240 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0033 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack parameter determined using 1346 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (3)
Crystal data top
C19H24O7V = 1773.63 (7) Å3
Mr = 364.38Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.7866 (2) ŵ = 0.87 mm1
b = 9.6082 (2) ÅT = 90 K
c = 21.0088 (5) Å0.21 × 0.20 × 0.18 mm
Data collection top
Bruker X8 Proteum
diffractometer
3218 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3204 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.889Rint = 0.033
21766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.15 e Å3
3218 reflectionsAbsolute structure: Flack parameter determined using 1346 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
240 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, fastened in a copper mounting pin with electrical solder. It was placed directly into the cold stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using routines in Platon (Spek, 2009), by the R-tensor (Parkin, 2000), and with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20411 (13)0.31754 (11)0.44993 (5)0.0191 (3)
O20.23859 (13)0.11877 (11)0.55661 (5)0.0204 (3)
O30.26866 (16)0.07622 (12)0.61342 (6)0.0307 (3)
O40.73762 (12)0.64045 (12)0.64763 (5)0.0201 (3)
O50.95459 (14)0.52306 (14)0.66681 (7)0.0309 (3)
O60.98811 (14)0.66939 (14)0.83142 (6)0.0290 (3)
O71.23791 (13)0.70884 (13)0.82130 (6)0.0229 (3)
H71.238 (3)0.690 (2)0.8623 (12)0.034*
C10.5239 (2)0.60864 (17)0.52307 (8)0.0214 (4)
H1A0.61710.60450.50020.026*
C20.3899 (2)0.66538 (17)0.48663 (8)0.0248 (4)
H2A0.42400.74630.46120.030*
H2B0.31270.69900.51730.030*
C30.3147 (2)0.55854 (17)0.44177 (8)0.0223 (3)
H3A0.24830.60760.41100.027*
H3B0.39440.50870.41750.027*
C40.22202 (19)0.45571 (16)0.47891 (7)0.0184 (3)
C50.30221 (18)0.33451 (16)0.50515 (7)0.0162 (3)
H5A0.41380.33130.49580.019*
C60.25592 (17)0.26798 (16)0.56681 (7)0.0167 (3)
H6A0.15800.30900.58220.020*
C70.38020 (17)0.28350 (17)0.61809 (7)0.0184 (3)
H7A0.48090.28580.59600.022*
C80.3701 (2)0.41277 (18)0.66040 (8)0.0227 (4)
H8A0.44720.40420.69450.027*
H8B0.26880.41340.68110.027*
C90.39325 (18)0.55441 (17)0.62692 (7)0.0199 (3)
H9A0.30060.57570.60190.024*
H9B0.40340.62730.66000.024*
C100.52939 (18)0.56347 (16)0.58308 (8)0.0190 (3)
C110.36737 (18)0.14530 (18)0.65197 (8)0.0217 (4)
C120.28777 (19)0.04748 (17)0.60846 (8)0.0220 (4)
C130.4154 (2)0.1067 (2)0.70887 (9)0.0300 (4)
H13A0.39940.01400.72310.036*
H13B0.46600.17170.73560.036*
C140.68183 (18)0.52273 (17)0.60986 (8)0.0223 (4)
H14A0.67160.43900.63700.027*
H14B0.75390.50150.57500.027*
C150.07576 (19)0.50907 (18)0.50694 (8)0.0231 (4)
H15A0.01560.43070.52300.035*
H15B0.01780.55840.47410.035*
H15C0.09860.57290.54200.035*
C160.87876 (18)0.62669 (18)0.67217 (7)0.0197 (3)
C170.9271 (2)0.75939 (19)0.70422 (8)0.0267 (4)
H17A0.85440.78030.73890.032*
H17B0.92100.83620.67290.032*
C181.0873 (2)0.7560 (2)0.73186 (8)0.0249 (4)
H18A1.15130.69470.70510.030*
H18B1.13090.85090.72970.030*
C191.09495 (19)0.70589 (17)0.79952 (8)0.0189 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (6)0.0180 (5)0.0165 (5)0.0031 (4)0.0027 (4)0.0021 (4)
O20.0256 (6)0.0170 (5)0.0188 (5)0.0029 (5)0.0005 (5)0.0013 (4)
O30.0416 (7)0.0206 (6)0.0299 (6)0.0002 (5)0.0045 (6)0.0061 (5)
O40.0175 (6)0.0213 (6)0.0215 (5)0.0006 (4)0.0039 (4)0.0023 (4)
O50.0225 (6)0.0267 (7)0.0436 (7)0.0041 (5)0.0058 (6)0.0024 (6)
O60.0205 (6)0.0381 (8)0.0284 (6)0.0032 (5)0.0045 (5)0.0074 (6)
O70.0177 (6)0.0311 (6)0.0200 (6)0.0015 (5)0.0027 (4)0.0018 (5)
C10.0225 (8)0.0161 (7)0.0256 (9)0.0040 (7)0.0014 (7)0.0039 (6)
C20.0335 (9)0.0170 (8)0.0239 (8)0.0047 (7)0.0040 (7)0.0013 (7)
C30.0296 (9)0.0193 (8)0.0182 (7)0.0033 (7)0.0028 (7)0.0012 (6)
C40.0214 (8)0.0178 (8)0.0160 (7)0.0010 (7)0.0036 (6)0.0025 (6)
C50.0160 (7)0.0170 (7)0.0156 (7)0.0016 (6)0.0004 (6)0.0025 (6)
C60.0166 (7)0.0164 (7)0.0171 (7)0.0003 (6)0.0005 (6)0.0002 (6)
C70.0151 (7)0.0231 (8)0.0170 (7)0.0003 (6)0.0010 (6)0.0014 (6)
C80.0230 (8)0.0296 (9)0.0155 (7)0.0026 (7)0.0008 (6)0.0023 (6)
C90.0172 (7)0.0240 (8)0.0185 (7)0.0007 (6)0.0021 (6)0.0051 (6)
C100.0166 (7)0.0156 (7)0.0248 (8)0.0011 (6)0.0012 (6)0.0050 (6)
C110.0155 (7)0.0267 (9)0.0227 (8)0.0031 (6)0.0026 (6)0.0035 (7)
C120.0218 (8)0.0225 (9)0.0218 (8)0.0022 (7)0.0052 (7)0.0042 (6)
C130.0246 (9)0.0382 (10)0.0272 (9)0.0007 (8)0.0031 (7)0.0105 (8)
C140.0175 (8)0.0197 (8)0.0297 (8)0.0019 (7)0.0022 (6)0.0050 (7)
C150.0218 (8)0.0232 (8)0.0245 (8)0.0049 (7)0.0040 (7)0.0010 (7)
C160.0170 (7)0.0254 (9)0.0166 (7)0.0004 (7)0.0011 (6)0.0049 (6)
C170.0277 (9)0.0285 (9)0.0238 (8)0.0007 (8)0.0080 (7)0.0025 (7)
C180.0230 (8)0.0338 (9)0.0181 (8)0.0042 (7)0.0020 (6)0.0002 (7)
C190.0171 (7)0.0191 (7)0.0204 (8)0.0013 (6)0.0001 (6)0.0024 (6)
Geometric parameters (Å, º) top
O1—C51.4545 (18)C7—C111.511 (2)
O1—C41.4691 (18)C7—C81.530 (2)
O2—C121.357 (2)C7—H7A1.0000
O2—C61.4575 (19)C8—C91.545 (2)
O3—C121.205 (2)C8—H8A0.9900
O4—C161.3495 (19)C8—H8B0.9900
O4—C141.4660 (19)C9—C101.512 (2)
O5—C161.203 (2)C9—H9A0.9900
O6—C191.206 (2)C9—H9B0.9900
O7—C191.337 (2)C10—C141.505 (2)
O7—H70.88 (2)C11—C131.321 (2)
C1—C101.334 (2)C11—C121.486 (2)
C1—C21.507 (2)C13—H13A0.9500
C1—H1A0.9500C13—H13B0.9500
C2—C31.542 (2)C14—H14A0.9900
C2—H2A0.9900C14—H14B0.9900
C2—H2B0.9900C15—H15A0.9800
C3—C41.499 (2)C15—H15B0.9800
C3—H3A0.9900C15—H15C0.9800
C3—H3B0.9900C16—C171.503 (2)
C4—C51.468 (2)C17—C181.522 (2)
C4—C151.504 (2)C17—H17A0.9900
C5—C61.501 (2)C17—H17B0.9900
C5—H5A1.0000C18—C191.502 (2)
C6—C71.541 (2)C18—H18A0.9900
C6—H6A1.0000C18—H18B0.9900
C5—O1—C460.30 (9)C10—C9—C8115.61 (13)
C12—O2—C6110.19 (12)C10—C9—H9A108.4
C16—O4—C14116.01 (12)C8—C9—H9A108.4
C19—O7—H7109.5 (16)C10—C9—H9B108.4
C10—C1—C2128.74 (16)C8—C9—H9B108.4
C10—C1—H1A115.6H9A—C9—H9B107.4
C2—C1—H1A115.6C1—C10—C14118.03 (15)
C1—C2—C3113.86 (14)C1—C10—C9124.46 (15)
C1—C2—H2A108.8C14—C10—C9117.48 (14)
C3—C2—H2A108.8C13—C11—C12121.97 (16)
C1—C2—H2B108.8C13—C11—C7130.49 (17)
C3—C2—H2B108.8C12—C11—C7107.54 (13)
H2A—C2—H2B107.7O3—C12—O2121.52 (16)
C4—C3—C2110.68 (13)O3—C12—C11129.52 (16)
C4—C3—H3A109.5O2—C12—C11108.92 (13)
C2—C3—H3A109.5C11—C13—H13A120.0
C4—C3—H3B109.5C11—C13—H13B120.0
C2—C3—H3B109.5H13A—C13—H13B120.0
H3A—C3—H3B108.1O4—C14—C10107.42 (12)
C5—C4—O159.36 (9)O4—C14—H14A110.2
C5—C4—C3117.22 (14)C10—C14—H14A110.2
O1—C4—C3115.97 (13)O4—C14—H14B110.2
C5—C4—C15122.24 (14)C10—C14—H14B110.2
O1—C4—C15112.27 (13)H14A—C14—H14B108.5
C3—C4—C15116.31 (14)C4—C15—H15A109.5
O1—C5—C460.34 (9)C4—C15—H15B109.5
O1—C5—C6118.69 (12)H15A—C15—H15B109.5
C4—C5—C6122.12 (13)C4—C15—H15C109.5
O1—C5—H5A114.9H15A—C15—H15C109.5
C4—C5—H5A114.9H15B—C15—H15C109.5
C6—C5—H5A114.9O5—C16—O4123.66 (15)
O2—C6—C5108.69 (12)O5—C16—C17125.95 (15)
O2—C6—C7105.78 (12)O4—C16—C17110.36 (14)
C5—C6—C7111.72 (12)C16—C17—C18114.48 (15)
O2—C6—H6A110.2C16—C17—H17A108.6
C5—C6—H6A110.2C18—C17—H17A108.6
C7—C6—H6A110.2C16—C17—H17B108.6
C11—C7—C8115.82 (13)C18—C17—H17B108.6
C11—C7—C6101.03 (12)H17A—C17—H17B107.6
C8—C7—C6116.32 (13)C19—C18—C17114.15 (15)
C11—C7—H7A107.7C19—C18—H18A108.7
C8—C7—H7A107.7C17—C18—H18A108.7
C6—C7—H7A107.7C19—C18—H18B108.7
C7—C8—C9116.28 (13)C17—C18—H18B108.7
C7—C8—H8A108.2H18A—C18—H18B107.6
C9—C8—H8A108.2O6—C19—O7123.18 (15)
C7—C8—H8B108.2O6—C19—C18125.75 (15)
C9—C8—H8B108.2O7—C19—C18111.05 (14)
H8A—C8—H8B107.4
C10—C1—C2—C3100.0 (2)C7—C8—C9—C1047.66 (19)
C1—C2—C3—C475.03 (19)C2—C1—C10—C14175.00 (15)
C5—O1—C4—C3107.62 (16)C2—C1—C10—C93.1 (3)
C5—O1—C4—C15115.31 (15)C8—C9—C10—C1128.93 (16)
C2—C3—C4—C585.28 (17)C8—C9—C10—C1453.01 (19)
C2—C3—C4—O1152.51 (14)C8—C7—C11—C1334.8 (2)
C2—C3—C4—C1572.17 (18)C6—C7—C11—C13161.43 (18)
C4—O1—C5—C6112.70 (16)C8—C7—C11—C12146.07 (14)
C3—C4—C5—O1105.53 (14)C6—C7—C11—C1219.48 (15)
C15—C4—C5—O198.46 (16)C6—O2—C12—O3171.71 (15)
O1—C4—C5—C6107.15 (15)C6—O2—C12—C1110.25 (17)
C3—C4—C5—C6147.32 (14)C13—C11—C12—O38.2 (3)
C15—C4—C5—C68.7 (2)C7—C11—C12—O3170.97 (17)
C12—O2—C6—C5143.08 (13)C13—C11—C12—O2173.94 (16)
C12—O2—C6—C722.97 (16)C7—C11—C12—O26.87 (17)
O1—C5—C6—O257.76 (17)C16—O4—C14—C10175.73 (13)
C4—C5—C6—O2128.95 (14)C1—C10—C14—O499.00 (17)
O1—C5—C6—C7174.11 (12)C9—C10—C14—O479.19 (17)
C4—C5—C6—C7114.70 (16)C14—O4—C16—O53.4 (2)
O2—C6—C7—C1125.13 (15)C14—O4—C16—C17174.58 (13)
C5—C6—C7—C11143.23 (13)O5—C16—C17—C180.4 (2)
O2—C6—C7—C8151.39 (13)O4—C16—C17—C18178.27 (13)
C5—C6—C7—C890.51 (16)C16—C17—C18—C1989.65 (18)
C11—C7—C8—C9176.24 (14)C17—C18—C19—O60.4 (3)
C6—C7—C8—C965.30 (19)C17—C18—C19—O7178.44 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O1i0.88 (2)1.91 (3)2.7616 (16)162 (2)
C6—H6A···O6ii1.002.603.173 (2)117
C7—H7A···O1iii1.002.403.3293 (19)154
C14—H14A···O7iv0.992.513.418 (2)153
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O1i0.88 (2)1.91 (3)2.7616 (16)162 (2)
C6—H6A···O6ii1.002.603.173 (2)116.6
C7—H7A···O1iii1.002.403.3293 (19)154.3
C14—H14A···O7iv0.992.513.418 (2)152.7
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1; (iv) x+2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by NIH/NCI grant CA158275.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasimir, J. R., Turetta, C., Ettouati, L. & Paris, J. (1995). Tetrahedron Lett. 36, 4797–4800.  CAS Google Scholar
First citationEl-Feraly, F. S. (1984). Phytochemistry, 23, 2372–2374.  CAS Google Scholar
First citationGonzalez, A. G., Galindo, A., Mar Afonso, M., Mansilla, H. & Lopez, M. (1988). Tetrahedron, 44, 4585–4589.  CAS Google Scholar
First citationHope, H. (1994). Prog. Inorg. Chem. 41, 1–19.  CrossRef CAS Web of Science Google Scholar
First citationMacias, F. A., Galindo, J. C. G. & Massanet, G. M. (1992). Phytochemistry, 31, 1969–1977.  CAS Google Scholar
First citationNasim, S., Pei, S. S., Hagan, F. K., Jordan, C. T. & Crooks, P. A. (2011). Bioorg. Med. Chem. 19, 1515–1519.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParkin, S. (2000). Acta Cryst. A56, 157–162.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/programs/ciffixGoogle Scholar
First citationParkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945–953.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o372-o373
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds