Related literature
For the isotypic ZnII compound, see: Cavalca et al. (1967). For a definition of tetrahedral distortion, see: Robinson et al. (1971).
Experimental
Crystal data
[Co(C2H3O2)2(CH4N2S)2] Mr = 329.26 Monoclinic, P 21 /c a = 7.15257 (16) Å b = 17.2864 (4) Å c = 11.7372 (3) Å β = 112.275 (1)° V = 1342.92 (5) Å3 Z = 4 Mo Kα radiation μ = 1.60 mm−1 T = 150 K 0.26 × 0.15 × 0.10 mm
|
Data collection
Bruker Kappa APEXII diffractometer Absorption correction: numerical (SADABS; Sheldrick, 2012) Tmin = 0.730, Tmax = 0.871 27333 measured reflections 3087 independent reflections 2898 reflections with I > 2σ(I) Rint = 0.018
|
Co1—O3 | 1.9462 (8) | Co1—O1 | 1.9847 (8) | Co1—S1 | 2.3291 (3) | Co1—S2 | 2.3299 (3) | | O3—Co1—O1 | 101.57 (3) | O3—Co1—S1 | 112.22 (3) | O1—Co1—S1 | 95.07 (2) | O3—Co1—S2 | 117.69 (3) | O1—Co1—S2 | 117.47 (3) | S1—Co1—S2 | 110.445 (11) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1⋯O4i | 0.830 (18) | 1.959 (18) | 2.7717 (14) | 165.8 (16) | N1—H2⋯O2ii | 0.877 (16) | 1.959 (17) | 2.8324 (14) | 173.6 (14) | N2—H3⋯S1iii | 0.881 (19) | 2.859 (19) | 3.7200 (12) | 165.7 (15) | N2—H4⋯S2i | 0.825 (16) | 2.810 (16) | 3.5080 (11) | 143.5 (14) | N2—H4⋯O4i | 0.825 (16) | 2.613 (17) | 3.2479 (15) | 134.8 (14) | N3—H5⋯O1iv | 0.810 (16) | 2.482 (16) | 3.1759 (13) | 144.5 (14) | N3—H6⋯O2 | 0.810 (17) | 2.038 (17) | 2.8388 (14) | 169.6 (16) | N4—H7⋯O1iv | 0.848 (16) | 2.108 (17) | 2.8994 (14) | 155.3 (14) | N4—H8⋯O3v | 0.808 (17) | 2.176 (16) | 2.8452 (13) | 140.3 (14) | Symmetry codes: (i) -x+1, -y, -z; (ii) ; (iii) -x, -y, -z; (iv) ; (v) x+1, y, z. | |
Data collection: APEX2 (Bruker, 2007); cell refinement: Peakref (Schreurs, 2013); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2012); program(s) used to solve structure: initial coordinates from the literature (Cavalca et al., 1967); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013.
Supporting information
0.23 g Cobalt(II) acetate tetrahydrate (0.92 mmol) and 0.14 g thiourea (1.84 mmol) were dissolved in deionized water and slowly evaporated at room temperature. Colourless needle-shaped crystals of thiourea and blue block-shaped crystals of the title compound were obtained.
The methyl groups were refined with a model of perfect disorder using the SHELXL instruction AFIX 127. The occupancies of the disorder components were refined and the sum of the occupancies was constrained to 1. The H atoms of the thiourea ligands were refined freely with isotropic displacement parameters.
Data collection: APEX2 (Bruker, 2007); cell refinement: Peakref (Schreurs, 2013); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2012); program(s) used to solve structure: initial coordinates from the literature (Cavalca et al., 1967); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).
Bis(acetato-
κO)bis(thiourea-
κS)cobalt(II)
top Crystal data top [Co(C2H3O2)2(CH4N2S)2] | F(000) = 676 |
Mr = 329.26 | Dx = 1.629 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.15257 (16) Å | Cell parameters from 23812 reflections |
b = 17.2864 (4) Å | θ = 1.9–27.5° |
c = 11.7372 (3) Å | µ = 1.60 mm−1 |
β = 112.275 (1)° | T = 150 K |
V = 1342.92 (5) Å3 | Block, blue |
Z = 4 | 0.26 × 0.15 × 0.10 mm |
Data collection top Bruker Kappa APEXII diffractometer | 2898 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.018 |
φ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: numerical (SADABS; Sheldrick, 2012) | h = −9→9 |
Tmin = 0.730, Tmax = 0.871 | k = −22→22 |
27333 measured reflections | l = −15→15 |
3087 independent reflections | |
Refinement top Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0204P)2 + 0.4848P] where P = (Fo2 + 2Fc2)/3 |
3087 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Crystal data top [Co(C2H3O2)2(CH4N2S)2] | V = 1342.92 (5) Å3 |
Mr = 329.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.15257 (16) Å | µ = 1.60 mm−1 |
b = 17.2864 (4) Å | T = 150 K |
c = 11.7372 (3) Å | 0.26 × 0.15 × 0.10 mm |
β = 112.275 (1)° | |
Data collection top Bruker Kappa APEXII diffractometer | 3087 independent reflections |
Absorption correction: numerical (SADABS; Sheldrick, 2012) | 2898 reflections with I > 2σ(I) |
Tmin = 0.730, Tmax = 0.871 | Rint = 0.018 |
27333 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.016 | 0 restraints |
wR(F2) = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.35 e Å−3 |
3087 reflections | Δρmin = −0.19 e Å−3 |
190 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Co1 | 0.17413 (2) | 0.17567 (2) | 0.01182 (2) | 0.01481 (5) | |
S1 | −0.00290 (4) | 0.08869 (2) | −0.14310 (3) | 0.01872 (7) | |
S2 | 0.48512 (4) | 0.20539 (2) | 0.00160 (2) | 0.01697 (6) | |
O1 | −0.03808 (12) | 0.25675 (5) | −0.04056 (7) | 0.01876 (16) | |
O2 | 0.16498 (12) | 0.33000 (5) | 0.11096 (8) | 0.02399 (18) | |
O3 | 0.17158 (12) | 0.14576 (5) | 0.17108 (8) | 0.02089 (17) | |
O4 | 0.42393 (13) | 0.06561 (5) | 0.19563 (9) | 0.02632 (19) | |
N1 | 0.26745 (16) | 0.03991 (6) | −0.23051 (10) | 0.0241 (2) | |
H1 | 0.362 (3) | 0.0120 (10) | −0.2305 (15) | 0.037 (4)* | |
H2 | 0.226 (2) | 0.0787 (9) | −0.2822 (15) | 0.029 (4)* | |
N2 | 0.25861 (17) | −0.02779 (6) | −0.06544 (10) | 0.0235 (2) | |
H3 | 0.207 (3) | −0.0340 (10) | −0.0085 (16) | 0.042 (5)* | |
H4 | 0.351 (2) | −0.0564 (9) | −0.0652 (14) | 0.030 (4)* | |
N3 | 0.55520 (16) | 0.26384 (6) | 0.22516 (10) | 0.0212 (2) | |
H5 | 0.626 (2) | 0.2701 (9) | 0.2971 (15) | 0.026 (4)* | |
H6 | 0.439 (3) | 0.2784 (9) | 0.1970 (15) | 0.030 (4)* | |
N4 | 0.82560 (15) | 0.21118 (7) | 0.19799 (10) | 0.0224 (2) | |
H7 | 0.898 (2) | 0.2240 (9) | 0.2711 (15) | 0.027 (4)* | |
H8 | 0.877 (2) | 0.1869 (9) | 0.1586 (15) | 0.027 (4)* | |
C1 | 0.19179 (16) | 0.02918 (6) | −0.14601 (10) | 0.0174 (2) | |
C2 | 0.63192 (16) | 0.22861 (6) | 0.15317 (10) | 0.0155 (2) | |
C3 | 0.2882 (2) | 0.07120 (8) | 0.35350 (11) | 0.0268 (3) | |
H3A | 0.3761 | 0.0265 | 0.3871 | 0.040* | 0.881 (17) |
H3B | 0.1487 | 0.0576 | 0.3409 | 0.040* | 0.881 (17) |
H3C | 0.3328 | 0.1146 | 0.4113 | 0.040* | 0.881 (17) |
H3D | 0.1956 | 0.1060 | 0.3724 | 0.040* | 0.119 (17) |
H3E | 0.4231 | 0.0748 | 0.4187 | 0.040* | 0.119 (17) |
H3F | 0.2390 | 0.0179 | 0.3483 | 0.040* | 0.119 (17) |
C4 | 0.29873 (16) | 0.09407 (6) | 0.23235 (10) | 0.0169 (2) | |
C5 | −0.16131 (19) | 0.37960 (8) | −0.01005 (12) | 0.0276 (3) | |
H5A | −0.2394 | 0.3777 | −0.0990 | 0.041* | 0.626 (17) |
H5B | −0.1001 | 0.4309 | 0.0125 | 0.041* | 0.626 (17) |
H5C | −0.2509 | 0.3695 | 0.0340 | 0.041* | 0.626 (17) |
H5D | −0.1542 | 0.4077 | 0.0640 | 0.041* | 0.374 (17) |
H5E | −0.2935 | 0.3545 | −0.0475 | 0.041* | 0.374 (17) |
H5F | −0.1427 | 0.4159 | −0.0690 | 0.041* | 0.374 (17) |
C6 | 0.00216 (17) | 0.31923 (6) | 0.02420 (10) | 0.0172 (2) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Co1 | 0.01240 (8) | 0.01554 (8) | 0.01686 (8) | 0.00185 (5) | 0.00595 (6) | −0.00089 (5) |
S1 | 0.01406 (12) | 0.01684 (13) | 0.02354 (14) | 0.00173 (10) | 0.00521 (10) | −0.00399 (10) |
S2 | 0.01458 (12) | 0.02337 (14) | 0.01401 (12) | −0.00060 (10) | 0.00661 (10) | −0.00146 (10) |
O1 | 0.0178 (4) | 0.0179 (4) | 0.0189 (4) | 0.0044 (3) | 0.0050 (3) | −0.0015 (3) |
O2 | 0.0168 (4) | 0.0255 (4) | 0.0263 (4) | 0.0029 (3) | 0.0044 (3) | −0.0068 (3) |
O3 | 0.0172 (4) | 0.0251 (4) | 0.0222 (4) | 0.0067 (3) | 0.0094 (3) | 0.0051 (3) |
O4 | 0.0249 (4) | 0.0251 (4) | 0.0342 (5) | 0.0095 (4) | 0.0171 (4) | 0.0058 (4) |
N1 | 0.0229 (5) | 0.0224 (5) | 0.0298 (6) | 0.0090 (4) | 0.0131 (4) | 0.0048 (4) |
N2 | 0.0241 (5) | 0.0192 (5) | 0.0259 (5) | 0.0065 (4) | 0.0079 (4) | 0.0020 (4) |
N3 | 0.0149 (5) | 0.0302 (5) | 0.0172 (5) | 0.0031 (4) | 0.0047 (4) | −0.0068 (4) |
N4 | 0.0148 (5) | 0.0321 (6) | 0.0200 (5) | 0.0034 (4) | 0.0063 (4) | −0.0052 (4) |
C1 | 0.0146 (5) | 0.0130 (5) | 0.0211 (5) | −0.0013 (4) | 0.0028 (4) | −0.0049 (4) |
C2 | 0.0148 (5) | 0.0162 (5) | 0.0164 (5) | −0.0005 (4) | 0.0068 (4) | 0.0004 (4) |
C3 | 0.0283 (6) | 0.0313 (7) | 0.0209 (6) | −0.0026 (5) | 0.0094 (5) | 0.0038 (5) |
C4 | 0.0142 (5) | 0.0171 (5) | 0.0184 (5) | −0.0018 (4) | 0.0049 (4) | −0.0009 (4) |
C5 | 0.0242 (6) | 0.0221 (6) | 0.0324 (7) | 0.0096 (5) | 0.0060 (5) | −0.0012 (5) |
C6 | 0.0171 (5) | 0.0174 (5) | 0.0192 (5) | 0.0027 (4) | 0.0091 (4) | 0.0009 (4) |
Geometric parameters (Å, º) top Co1—O3 | 1.9462 (8) | N3—H6 | 0.810 (17) |
Co1—O1 | 1.9847 (8) | N4—C2 | 1.3169 (14) |
Co1—S1 | 2.3291 (3) | N4—H7 | 0.848 (16) |
Co1—S2 | 2.3299 (3) | N4—H8 | 0.808 (17) |
S1—C1 | 1.7420 (11) | C3—C4 | 1.5051 (16) |
S2—C2 | 1.7356 (11) | C3—H3A | 0.9800 |
O1—C6 | 1.2889 (14) | C3—H3B | 0.9800 |
O2—C6 | 1.2365 (14) | C3—H3C | 0.9800 |
O3—C4 | 1.2833 (14) | C3—H3D | 0.9800 |
O4—C4 | 1.2338 (14) | C3—H3E | 0.9800 |
N1—C1 | 1.3107 (16) | C3—H3F | 0.9800 |
N1—H1 | 0.830 (18) | C5—C6 | 1.5039 (15) |
N1—H2 | 0.877 (16) | C5—H5A | 0.9800 |
N2—C1 | 1.3227 (15) | C5—H5B | 0.9800 |
N2—H3 | 0.881 (19) | C5—H5C | 0.9800 |
N2—H4 | 0.825 (16) | C5—H5D | 0.9800 |
N3—C2 | 1.3181 (14) | C5—H5E | 0.9800 |
N3—H5 | 0.810 (16) | C5—H5F | 0.9800 |
| | | |
O3—Co1—O1 | 101.57 (3) | C4—C3—H3E | 109.5 |
O3—Co1—S1 | 112.22 (3) | H3A—C3—H3E | 56.3 |
O1—Co1—S1 | 95.07 (2) | H3B—C3—H3E | 141.1 |
O3—Co1—S2 | 117.69 (3) | H3C—C3—H3E | 56.3 |
O1—Co1—S2 | 117.47 (3) | H3D—C3—H3E | 109.5 |
S1—Co1—S2 | 110.445 (11) | C4—C3—H3F | 109.5 |
C1—S1—Co1 | 101.21 (4) | H3A—C3—H3F | 56.3 |
C2—S2—Co1 | 102.52 (4) | H3B—C3—H3F | 56.3 |
C6—O1—Co1 | 115.82 (7) | H3C—C3—H3F | 141.1 |
C4—O3—Co1 | 117.42 (7) | H3D—C3—H3F | 109.5 |
C1—N1—H1 | 119.2 (12) | H3E—C3—H3F | 109.5 |
C1—N1—H2 | 120.3 (10) | O4—C4—O3 | 122.41 (11) |
H1—N1—H2 | 120.2 (15) | O4—C4—C3 | 121.89 (11) |
C1—N2—H3 | 119.4 (11) | O3—C4—C3 | 115.70 (10) |
C1—N2—H4 | 121.4 (11) | C6—C5—H5A | 109.5 |
H3—N2—H4 | 119.2 (16) | C6—C5—H5B | 109.5 |
C2—N3—H5 | 119.0 (11) | H5A—C5—H5B | 109.5 |
C2—N3—H6 | 119.7 (11) | C6—C5—H5C | 109.5 |
H5—N3—H6 | 121.3 (15) | H5A—C5—H5C | 109.5 |
C2—N4—H7 | 119.6 (10) | H5B—C5—H5C | 109.5 |
C2—N4—H8 | 121.8 (11) | C6—C5—H5D | 109.5 |
H7—N4—H8 | 118.5 (15) | H5A—C5—H5D | 141.1 |
N1—C1—N2 | 120.36 (11) | H5B—C5—H5D | 56.3 |
N1—C1—S1 | 119.58 (9) | H5C—C5—H5D | 56.3 |
N2—C1—S1 | 120.03 (9) | C6—C5—H5E | 109.5 |
N4—C2—N3 | 118.69 (11) | H5A—C5—H5E | 56.3 |
N4—C2—S2 | 119.51 (9) | H5B—C5—H5E | 141.1 |
N3—C2—S2 | 121.79 (9) | H5C—C5—H5E | 56.3 |
C4—C3—H3A | 109.5 | H5D—C5—H5E | 109.5 |
C4—C3—H3B | 109.5 | C6—C5—H5F | 109.5 |
H3A—C3—H3B | 109.5 | H5A—C5—H5F | 56.3 |
C4—C3—H3C | 109.5 | H5B—C5—H5F | 56.3 |
H3A—C3—H3C | 109.5 | H5C—C5—H5F | 141.1 |
H3B—C3—H3C | 109.5 | H5D—C5—H5F | 109.5 |
C4—C3—H3D | 109.5 | H5E—C5—H5F | 109.5 |
H3A—C3—H3D | 141.1 | O2—C6—O1 | 122.82 (10) |
H3B—C3—H3D | 56.3 | O2—C6—C5 | 120.65 (10) |
H3C—C3—H3D | 56.3 | O1—C6—C5 | 116.53 (10) |
| | | |
Co1—S1—C1—N1 | −99.80 (9) | Co1—O3—C4—O4 | 2.53 (15) |
Co1—S1—C1—N2 | 82.07 (9) | Co1—O3—C4—C3 | −178.52 (8) |
Co1—S2—C2—N4 | 145.78 (9) | Co1—O1—C6—O2 | 2.57 (14) |
Co1—S2—C2—N3 | −34.62 (10) | Co1—O1—C6—C5 | −176.89 (8) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.830 (18) | 1.959 (18) | 2.7717 (14) | 165.8 (16) |
N1—H2···O2ii | 0.877 (16) | 1.959 (17) | 2.8324 (14) | 173.6 (14) |
N2—H3···S1iii | 0.881 (19) | 2.859 (19) | 3.7200 (12) | 165.7 (15) |
N2—H4···S2i | 0.825 (16) | 2.810 (16) | 3.5080 (11) | 143.5 (14) |
N2—H4···O4i | 0.825 (16) | 2.613 (17) | 3.2479 (15) | 134.8 (14) |
N3—H5···O1iv | 0.810 (16) | 2.482 (16) | 3.1759 (13) | 144.5 (14) |
N3—H6···O2 | 0.810 (17) | 2.038 (17) | 2.8388 (14) | 169.6 (16) |
N4—H7···O1iv | 0.848 (16) | 2.108 (17) | 2.8994 (14) | 155.3 (14) |
N4—H8···O3v | 0.808 (17) | 2.176 (16) | 2.8452 (13) | 140.3 (14) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y+1/2, z−1/2; (iii) −x, −y, −z; (iv) x+1, −y+1/2, z+1/2; (v) x+1, y, z. |
Selected geometric parameters (Å, º) topCo1—O3 | 1.9462 (8) | Co1—S1 | 2.3291 (3) |
Co1—O1 | 1.9847 (8) | Co1—S2 | 2.3299 (3) |
| | | |
O3—Co1—O1 | 101.57 (3) | O3—Co1—S2 | 117.69 (3) |
O3—Co1—S1 | 112.22 (3) | O1—Co1—S2 | 117.47 (3) |
O1—Co1—S1 | 95.07 (2) | S1—Co1—S2 | 110.445 (11) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4i | 0.830 (18) | 1.959 (18) | 2.7717 (14) | 165.8 (16) |
N1—H2···O2ii | 0.877 (16) | 1.959 (17) | 2.8324 (14) | 173.6 (14) |
N2—H3···S1iii | 0.881 (19) | 2.859 (19) | 3.7200 (12) | 165.7 (15) |
N2—H4···S2i | 0.825 (16) | 2.810 (16) | 3.5080 (11) | 143.5 (14) |
N2—H4···O4i | 0.825 (16) | 2.613 (17) | 3.2479 (15) | 134.8 (14) |
N3—H5···O1iv | 0.810 (16) | 2.482 (16) | 3.1759 (13) | 144.5 (14) |
N3—H6···O2 | 0.810 (17) | 2.038 (17) | 2.8388 (14) | 169.6 (16) |
N4—H7···O1iv | 0.848 (16) | 2.108 (17) | 2.8994 (14) | 155.3 (14) |
N4—H8···O3v | 0.808 (17) | 2.176 (16) | 2.8452 (13) | 140.3 (14) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, −y+1/2, z−1/2; (iii) −x, −y, −z; (iv) x+1, −y+1/2, z+1/2; (v) x+1, y, z. |
Comparison of the coordination environment of the Co complex of the present study with the isotypic Zn complex from the literature (Cavalca et al., 1967). top | M=Co | M=Zn | Δ [Å] |
M-S1 | 2.3291 (3) | 2.326 (2) | 0.003 (2) |
M-S2 | 2.3299 (3) | 2.261 (4) | 0.069 (4) |
M-O1 | 1.9847 (8) | 1.973 (6) | 0.012 (6) |
M-O3 | 1.9462 (8) | 1.954 (8) | -0.008 (8) |
Acknowledgements
The X-ray diffractometer has been financed by the Netherlands Organization for Scientific Research (NWO).
References
Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavalca, L., Gasparri, G. F., Andreetti, D. & Domiano, P. (1967). Acta Cryst. 22, 90–98. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Schreurs, A. M. M. (2013). Peakref. Utrecht University, The Netherlands. Google Scholar
Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
The crystal structure of bisthiourea-zinc acetate has been described in the literature in the centrosymmetric space group P21/c (Cavalca et al., 1967). The corresponding cobalt compound was mentioned to be isotypic but no coordinates or further structural information were given. We therefore set out to crystallize the title compound and to determine its crystal structure.
It could indeed be confirmed that the title compound is isotypic with the zinc complex from the literature. The coordinates of the Zn compound were used as starting model for the least-squares refinement of the present Co structure. The metal center is in a distorted tetrahedral environment with two S atoms from two thiourea ligands and two O atoms from two acetate molecules as coordinating atoms (Figure 1). Coordination angles between 95.07 (2) and 117.69 (3) ° lead to an angle variance (Robinson et al., 1971) of 81.93 °2. The two Co—S distances are equal within standard uncertainties and are, as expected, longer than the Co—O distances. With a difference of 0.0385 (11) Å, the Co1—O1 distance is significantly longer than the Co1—O3 distance. A possible explanation for this difference are the hydrogen bonding interactions (Table 2). O1 the is acceptor of two hydrogen bonds, while O3 is the acceptor of only one.
A comparison of the Co environment of the present study with the Zn environment from the literature (Cavalca et al., 1967) remains inconclusive because of the large standard uncertainties of the Zn structure, which had been obtained at room temperature from film data. The difference in the two metal-S distances described for the Zn complex could not be detected in the Co complex (see Table).
The quality of the present low-temperature study allowed a detailed analysis of the H atoms. In the difference-Fourier maps, the two methyl groups of the acetate ligands appeared to be orientationally disordered. In the refinement, an idealized disorder model was used with a 60 ° rotation between the disorder forms. This disorder model was allowed to rotate about the C—C bond, and the H atom occupancies were refined. In the case of C3, the major disorder form has an occupancy of 0.881 (17) and is eclipsed with respect to the carboxylate [H3A—C3—C4—O4 - 9 °]. The major component at C5 has an occupancy of 0.626 (17)% and is in gauche conformation to the carboxylate [H5A—C5—C6—O1 - 32 °]. In the crystal packing, the methyl groups are surrounded only by other methyl groups.
All H atoms of the thiourea ligands are donors of hydrogen bonds (Table 2). O1 and O4 are bifurcated acceptors of hydrogen bonds, and H4 is a bifurcated hydrogen bond donor (Figure 2). The angle sum at H4 is 358 (2) °. The intermolecular hydrogen bonds involving H5 and H7 as donors and O1 as acceptor result in a one-dimensional chain in the [201] direction. Together with the hydrogen bonds of H2 in the [001] and H8 in the [100] direction, a two-dimensional hydrogen bonded network is formed in the a,c plane. These two-dimensional sheets are linked in the b direction via centrosymmetric ring-type hydrogen bonds involving H1 and H4 (graph set R22(16), symmetry code 1 - x, -y, -z), and H3 (graph set R22(8), symmetry code -x, -y, -z). H6 is involved in an intramolecular hydrogen bond with O2 as acceptor. Overall this is a hydrogen bonded three-dimensional network.