organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o245-o246

4-(2-Meth­­oxy­phen­yl)piperazin-1-ium 6-chloro-5-iso­propyl-2,4-dioxopyrimidin-1-ide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa

(Received 28 January 2014; accepted 30 January 2014; online 5 February 2014)

In the cation of the title salt, C11H17N2O+·C7H8ClN2O2, the piperazine ring adopts a distorted chair conformation and contains a positively charged N atom with quaternary character. Its mean plane makes a dihedral angle of 42.36 (8)° with the phenyl ring of its 2-meth­oxy­phenyl substituent. The 2,4-dioxopyrimidin-1-ide anion is generated by deprotonation of the N atom at the 1-position of the pyrimidine­dione ring. Intra­molecular C—H⋯O hydrogen bonds generate S(6) ring motifs in both the cation and the anion. In the crystal, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds are also observed, resulting in a two-dimensional network parallel to the ab plane. The crystal stability is further consolidated by weak C—H⋯π inter­actions.

Related literature

For the chemotherapeutic activity of pyrimidine-2,4-dione derivatives, see: Ghoshal & Jacob (1997[Ghoshal, K. & Jacob, S. T. (1997). Biochem. Pharmacol. 53, 1569-1575.]); Spacilova et al. (2007[Spacilova, L., Dzubak, P., Hajduch, M., Krupkova, S., Hradila, P. & Hlavac, J. (2007). Bioorg. Med. Chem. Lett. 17, 6647-6650.]); Blokhina et al. (1972[Blokhina, N. G., Vozny, E. K. & Garin, A. M. (1972). Cancer, 30, 390-392.]); Tanaka et al. (1995[Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860-2865.]); El-Emam et al. (2004[El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc, 25, 991-996.]); Al-Turkistani et al. (2011[Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El- Emam, A. A. (2011). Molecules, 16, 4764-4774.]). For the acidity of pyrim­idine-2,4-dione derivatives, see: Kurinovich & Lee (2002[Kurinovich, M. A. & Lee, J. K. (2002). J. Am. Soc. Mass Spectrom. 13, 985-995.]); Jang et al. (2001[Jang, Y. H., Sowers, L. C., Cagin, T. & Goddard, W. A. III (2001). J. Phys. Chem. 105, 274-280.]); Nguyen et al. (1998[Nguyen, M. T., Chandra, A. K. & Zeegers-Huyskens, T. (1998). J. Chem. Soc. Faraday Trans. 94, 1277-1280.]). For the structures of other piperazinium salts, see: Craig et al. (2012[Craig, G. E., Johnson, C. & Kennedy, A. R. (2012). Acta Cryst. E68, o787.]); Dayananda et al. (2012[Dayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, o1180.]); Fun et al. (2010[Fun, H.-K., Yeap, C. S., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o361-o362.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17N2O+·C7H8ClN2O2

  • Mr = 380.87

  • Monoclinic, P 21 /n

  • a = 8.9416 (2) Å

  • b = 10.5152 (3) Å

  • c = 20.5626 (5) Å

  • β = 98.832 (1)°

  • V = 1910.43 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 296 K

  • 0.81 × 0.13 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.296, Tmax = 0.907

  • 11481 measured reflections

  • 3531 independent reflections

  • 3204 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.06

  • 3531 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is centroid of the C1—C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯O2i 0.892 (19) 1.881 (19) 2.7713 (18) 176 (2)
N2—H1N2⋯N4ii 0.92 (2) 1.987 (19) 2.8923 (19) 166.2 (18)
N3—H1N3⋯O2iii 0.87 (2) 2.02 (3) 2.8799 (18) 177 (2)
C8—H8B⋯O1 0.97 2.37 2.968 (2) 119
C9—H9B⋯O3iv 0.97 2.38 3.234 (2) 146
C17—H17C⋯O3 0.96 2.38 3.015 (3) 123
C10—H10BCg2i 0.97 2.65 3.4041 (17) 134
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y+1, z; (iii) -x, -y+1, -z; (iv) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidine-2,4-diones (uracils) and their derivatives have been known from much earlier times for their diverse chemotherapeutic properties including anticancer (Ghoshal & Jacob, 1997; Spacilova et al., 2007; Blokhina et al., 1972), anti-HIV (Tanaka et al., 1995; El-Emam et al., 2004) and antibacterial activities (Al-Turkistani et al., 2011). The title piperazinium salt (I) was isolated as a minor by-product during the reaction of 6-chloro-5-isopropyluracil with 1-(2-methoxyphenyl)piperazine.

The asymmetric unit of (I) consists of a 4-(2-methoxyphenyl)piperazin-1-ium 6-chloro-5-isopropylpyrimidin-1-ide-2,4-dione cation-anion pair (Fig. 1). The 2,4-dioxopyrimidin-1-ide anion is generated by deprotonation of the N4 atom at the 1 position of the pyrimidine-dione ring (Kurinovich & Lee 2002; Jang et al., 2001; Nguyen et al., 1998). The six-membered piperazine ring (N1/C8/C9/N2/C10/C11) in the cation fragement adopts a slightly distorted chair conformation with puckering parameters: Q = 0.5774 (17) Å, θ = 177.86 (17) °, and φ = 129 (4) ° (Cremer & Pople, 1975) and contains a positively charged N atom (N2) with quaternary character. For an ideal chair configuration, θ has a value of 0 or 180°. The dihedral angle between the mean plane of the piperazine ring of the cation and the adjacent phenyl ring is 42.36 (8)°. Bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and are comparable with those reported earlier (Craig et al. 2012; Dayananda et al., (2012); Fun et al., 2010). Intramolecular C17–H17C···O3 and C8–H8B···O1 hydrogen bonds generate S(6) ring motifs in both the cation and anion (Fig 1), while a strong intermolecular N2–H1N2···N4pyrimidine hydrogen bond links the two moieties. In the crystal, adjacent anionic species are interconnected via N2–H2N2···O2 and N3–H1N3···O2 hydrogen bonds (Table 1) with one bifurcated O acceptor atom on the anion resulting in R22(9) and R22(8) ring motifs (Bernstein et al., 1995) respectively. The crystal structure features an intermolecular C9–H9B···O3 hydrogen bond (Fig. 2) which links the entities into a two-dimensional structure. The crystal packing is further stabilized by a weak intermolecular C10–H10B···Cg2i interaction (Table 1) involving the centroid of the C1—C6 benzene ring.

Related literature top

For the chemotherapeutic activity of pyrimidine-2,4-dione derivatives, see: Ghoshal & Jacob (1997); Spacilova et al. (2007); Blokhina et al. (1972); Tanaka et al. (1995); El-Emam et al. (2004); Al-Turkistani et al. (2011). For the acidity of pyrimidine-2,4-dione derivatives, see: Kurinovich & Lee (2002); Jang et al. (2001); Nguyen et al. (1998). For the structures of other piperazinium salts, see: Craig et al. (2012); Dayananda et al. (2012); Fun et al. (2010). For reference bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 6-chloro-5-isopropyluracil (377 mg, 2.0 mmol), 1-(2-methoxyphenyl) piperazine (385 mg, 2.0 mmol) and anhydrous potassium carbonate (276 mg, 2.0 mmol), in ethanol (8 ml), was heated under reflux for 6 h. On cooling, the precipitate, thus formed was separated by filtration to yield 627 mg (91%) of 6-[4-(2-methoxyphenyl)-1-piperazinyl)]-5-isopropyluracil. The filtrate was concentrated by vacuum distillation to 5 ml and allowed to stand at room temperature overnight to yield 46 mg (6%) of the title salt (C18H25ClN4O3) as colourless plate-shaped crystals. M·P.: 517–519 K.

1H NMR (DMSO-d6, 500.13 MHz): δ 1.13 (d, 6H, CH3, J = 7.2 Hz), 2.53–2.56 (m, 1H, CH), 3.22–3.24 (m, 4H, Piperazine-H), 3.77 (s, 3H, OCH3), 3.42–3.45 (m, 4H, Piperazine-H), 6.78–7.02 (m, 4H, Ar—H), 8.02–8.14 (m, 2H, NH2), 10.88 (s, 1H, NH). 13C (DMSO-d6, 125.76 MHz): δ 19.50 (CH3), 26.90 (CH), 46.12, 49.86 (Piperazine-C), 56.80 (OCH3), 113.86, 119.12, 122.02, 122.98, 141.70, 148.28 (Ar—C), 123.90, 158.98, 162.82 (Pyrimidine-C),

Refinement top

The nitrogen-bound H-atoms were located in a difference Fourier map and were refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omited for clarity.
4-(2-Methoxyphenyl)piperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide top
Crystal data top
C11H17N2O+·C7H8ClN2O2F(000) = 808
Mr = 380.87Dx = 1.324 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 3769 reflections
a = 8.9416 (2) Åθ = 4.2–69.6°
b = 10.5152 (3) ŵ = 1.99 mm1
c = 20.5626 (5) ÅT = 296 K
β = 98.832 (1)°Plate, colourless
V = 1910.43 (8) Å30.81 × 0.13 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3531 independent reflections
Radiation source: fine-focus sealed tube3204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 69.8°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.296, Tmax = 0.907k = 129
11481 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.5789P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3531 reflectionsΔρmax = 0.33 e Å3
251 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0081 (5)
Crystal data top
C11H17N2O+·C7H8ClN2O2V = 1910.43 (8) Å3
Mr = 380.87Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.9416 (2) ŵ = 1.99 mm1
b = 10.5152 (3) ÅT = 296 K
c = 20.5626 (5) Å0.81 × 0.13 × 0.05 mm
β = 98.832 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3204 reflections with I > 2σ(I)
Tmin = 0.296, Tmax = 0.907Rint = 0.033
11481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
3531 reflectionsΔρmin = 0.32 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50958 (5)0.52933 (5)0.21770 (2)0.05543 (19)
O20.20219 (13)0.51968 (11)0.00176 (5)0.0368 (3)
N40.34035 (14)0.51859 (13)0.10447 (7)0.0340 (3)
C140.20877 (17)0.51323 (14)0.06313 (7)0.0300 (3)
N30.07667 (15)0.50064 (14)0.08862 (7)0.0347 (3)
C150.0644 (2)0.49113 (17)0.15482 (8)0.0387 (4)
O30.06114 (16)0.47528 (17)0.17059 (7)0.0623 (4)
C120.33057 (18)0.51541 (15)0.16938 (8)0.0347 (3)
C130.2058 (2)0.50286 (16)0.19945 (8)0.0370 (4)
C160.2061 (2)0.49421 (19)0.27315 (9)0.0478 (4)
H16A0.30830.51630.29470.057*
C170.0969 (3)0.5878 (2)0.29765 (10)0.0591 (5)
H17A0.12350.67290.28710.089*
H17B0.10290.57960.34450.089*
H17C0.00440.56970.27680.089*
C180.1753 (4)0.3582 (2)0.29280 (12)0.0783 (8)
H18A0.25740.30450.28490.118*
H18B0.08290.32870.26720.118*
H18C0.16610.35560.33870.118*
O10.73479 (17)0.92628 (13)0.14090 (7)0.0524 (3)
N20.57634 (15)1.36876 (13)0.05996 (7)0.0347 (3)
N10.66629 (14)1.10889 (13)0.04804 (6)0.0343 (3)
C110.59845 (18)1.18107 (15)0.00956 (8)0.0359 (3)
H11A0.54291.12400.04160.043*
H11B0.67741.22160.02970.043*
C50.79466 (19)0.97928 (16)0.02689 (9)0.0393 (4)
H5A0.76901.03880.06020.047*
C100.49247 (17)1.28106 (16)0.01019 (9)0.0384 (4)
H10A0.44841.32910.02830.046*
H10B0.41091.24030.02850.046*
C80.75164 (18)1.19407 (16)0.09704 (8)0.0375 (4)
H8A0.83361.23320.07840.045*
H8B0.79561.14490.13510.045*
C30.9169 (2)0.78466 (17)0.00959 (10)0.0485 (5)
H3A0.97440.71410.00180.058*
C10.78835 (18)0.90656 (16)0.08317 (9)0.0395 (4)
C90.65130 (19)1.29640 (16)0.11833 (8)0.0374 (4)
H9A0.57501.25810.14090.045*
H9B0.71141.35390.14870.045*
C40.87617 (19)0.87161 (18)0.03948 (10)0.0457 (4)
H4A0.90280.85880.08100.055*
C60.75084 (17)0.99994 (15)0.03383 (8)0.0344 (3)
C20.8731 (2)0.80127 (17)0.07064 (10)0.0473 (4)
H2A0.90050.74140.10360.057*
C70.7453 (3)0.8242 (2)0.18654 (11)0.0666 (6)
H7A0.69910.84850.22380.100*
H7B0.84990.80390.20080.100*
H7C0.69420.75110.16580.100*
H2N20.646 (2)1.408 (2)0.0405 (10)0.040 (5)*
H1N20.511 (2)1.428 (2)0.0733 (10)0.043 (5)*
H1N30.006 (3)0.4964 (19)0.0606 (11)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0362 (3)0.0756 (4)0.0511 (3)0.0075 (2)0.00393 (18)0.0107 (2)
O20.0322 (5)0.0468 (7)0.0329 (6)0.0035 (5)0.0101 (4)0.0021 (4)
N40.0269 (6)0.0386 (7)0.0378 (7)0.0026 (5)0.0087 (5)0.0008 (5)
C140.0288 (7)0.0278 (7)0.0351 (8)0.0002 (5)0.0105 (6)0.0000 (5)
N30.0263 (7)0.0453 (8)0.0335 (7)0.0026 (5)0.0077 (6)0.0013 (5)
C150.0376 (8)0.0440 (9)0.0371 (9)0.0034 (7)0.0142 (7)0.0024 (7)
O30.0402 (7)0.1034 (12)0.0476 (8)0.0184 (7)0.0209 (6)0.0075 (7)
C120.0319 (8)0.0338 (8)0.0379 (8)0.0042 (6)0.0038 (6)0.0034 (6)
C130.0396 (9)0.0373 (8)0.0353 (8)0.0021 (6)0.0098 (7)0.0021 (6)
C160.0551 (11)0.0542 (11)0.0350 (9)0.0060 (9)0.0101 (8)0.0027 (7)
C170.0753 (14)0.0635 (13)0.0417 (10)0.0122 (11)0.0194 (9)0.0062 (9)
C180.130 (2)0.0601 (14)0.0516 (12)0.0141 (15)0.0340 (14)0.0112 (10)
O10.0662 (8)0.0449 (7)0.0478 (7)0.0088 (6)0.0147 (6)0.0087 (6)
N20.0304 (6)0.0304 (7)0.0467 (8)0.0003 (5)0.0164 (6)0.0005 (5)
N10.0326 (6)0.0310 (7)0.0383 (7)0.0024 (5)0.0029 (5)0.0018 (5)
C110.0347 (7)0.0346 (8)0.0379 (8)0.0010 (6)0.0037 (6)0.0005 (6)
C50.0348 (8)0.0388 (9)0.0442 (9)0.0001 (6)0.0054 (7)0.0022 (7)
C100.0315 (8)0.0360 (8)0.0472 (9)0.0024 (6)0.0044 (7)0.0029 (7)
C80.0348 (8)0.0355 (8)0.0410 (8)0.0023 (6)0.0019 (6)0.0025 (6)
C30.0374 (8)0.0347 (9)0.0734 (13)0.0048 (7)0.0090 (8)0.0090 (8)
C10.0364 (8)0.0345 (8)0.0464 (9)0.0008 (7)0.0025 (7)0.0001 (7)
C90.0387 (8)0.0359 (8)0.0391 (8)0.0022 (7)0.0107 (7)0.0021 (6)
C40.0378 (8)0.0449 (10)0.0558 (11)0.0000 (7)0.0112 (8)0.0123 (8)
C60.0278 (7)0.0297 (8)0.0449 (9)0.0005 (6)0.0034 (6)0.0025 (6)
C20.0440 (9)0.0333 (9)0.0627 (11)0.0052 (7)0.0020 (8)0.0044 (8)
C70.0879 (16)0.0568 (13)0.0546 (12)0.0033 (12)0.0087 (11)0.0155 (10)
Geometric parameters (Å, º) top
Cl1—C121.7557 (17)N1—C61.427 (2)
O2—C141.2561 (19)N1—C111.458 (2)
N4—C141.343 (2)N1—C81.471 (2)
N4—C121.351 (2)C11—C101.512 (2)
C14—N31.3702 (19)C11—H11A0.9700
N3—C151.386 (2)C11—H11B0.9700
N3—H1N30.86 (3)C5—C61.382 (2)
C15—O31.226 (2)C5—C41.392 (2)
C15—C131.449 (3)C5—H5A0.9300
C12—C131.362 (2)C10—H10A0.9700
C13—C161.518 (2)C10—H10B0.9700
C16—C181.523 (3)C8—C91.508 (2)
C16—C171.526 (3)C8—H8A0.9700
C16—H16A0.9800C8—H8B0.9700
C17—H17A0.9600C3—C41.369 (3)
C17—H17B0.9600C3—C21.383 (3)
C17—H17C0.9600C3—H3A0.9300
C18—H18A0.9600C1—C21.388 (2)
C18—H18B0.9600C1—C61.415 (2)
C18—H18C0.9600C9—H9A0.9700
O1—C11.362 (2)C9—H9B0.9700
O1—C71.419 (2)C4—H4A0.9300
N2—C91.491 (2)C2—H2A0.9300
N2—C101.491 (2)C7—H7A0.9600
N2—H2N20.89 (2)C7—H7B0.9600
N2—H1N20.93 (2)C7—H7C0.9600
C14—N4—C12116.17 (13)C10—C11—H11A109.6
O2—C14—N4122.35 (13)N1—C11—H11B109.6
O2—C14—N3118.64 (14)C10—C11—H11B109.6
N4—C14—N3119.00 (14)H11A—C11—H11B108.2
C14—N3—C15125.85 (15)C6—C5—C4121.67 (17)
C14—N3—H1N3116.7 (14)C6—C5—H5A119.2
C15—N3—H1N3117.5 (14)C4—C5—H5A119.2
O3—C15—N3118.90 (17)N2—C10—C11110.14 (13)
O3—C15—C13126.11 (16)N2—C10—H10A109.6
N3—C15—C13114.99 (14)C11—C10—H10A109.6
N4—C12—C13129.23 (16)N2—C10—H10B109.6
N4—C12—Cl1111.43 (12)C11—C10—H10B109.6
C13—C12—Cl1119.34 (13)H10A—C10—H10B108.1
C12—C13—C15114.63 (15)N1—C8—C9111.34 (13)
C12—C13—C16125.66 (17)N1—C8—H8A109.4
C15—C13—C16119.64 (15)C9—C8—H8A109.4
C13—C16—C18110.40 (16)N1—C8—H8B109.4
C13—C16—C17112.83 (16)C9—C8—H8B109.4
C18—C16—C17111.53 (18)H8A—C8—H8B108.0
C13—C16—H16A107.3C4—C3—C2120.27 (16)
C18—C16—H16A107.3C4—C3—H3A119.9
C17—C16—H16A107.3C2—C3—H3A119.9
C16—C17—H17A109.5O1—C1—C2123.92 (16)
C16—C17—H17B109.5O1—C1—C6116.29 (15)
H17A—C17—H17B109.5C2—C1—C6119.78 (16)
C16—C17—H17C109.5N2—C9—C8110.15 (13)
H17A—C17—H17C109.5N2—C9—H9A109.6
H17B—C17—H17C109.5C8—C9—H9A109.6
C16—C18—H18A109.5N2—C9—H9B109.6
C16—C18—H18B109.5C8—C9—H9B109.6
H18A—C18—H18B109.5H9A—C9—H9B108.1
C16—C18—H18C109.5C3—C4—C5119.60 (17)
H18A—C18—H18C109.5C3—C4—H4A120.2
H18B—C18—H18C109.5C5—C4—H4A120.2
C1—O1—C7117.67 (16)C5—C6—C1118.03 (15)
C9—N2—C10110.69 (13)C5—C6—N1122.93 (15)
C9—N2—H2N2109.9 (13)C1—C6—N1119.01 (15)
C10—N2—H2N2106.8 (13)C3—C2—C1120.56 (18)
C9—N2—H1N2109.4 (13)C3—C2—H2A119.7
C10—N2—H1N2110.2 (13)C1—C2—H2A119.7
H2N2—N2—H1N2109.8 (18)O1—C7—H7A109.5
C6—N1—C11114.77 (13)O1—C7—H7B109.5
C6—N1—C8113.17 (12)H7A—C7—H7B109.5
C11—N1—C8110.29 (13)O1—C7—H7C109.5
N1—C11—C10110.09 (13)H7A—C7—H7C109.5
N1—C11—H11A109.6H7B—C7—H7C109.5
C12—N4—C14—O2177.57 (14)N1—C11—C10—N258.83 (17)
C12—N4—C14—N32.2 (2)C6—N1—C8—C9171.18 (13)
O2—C14—N3—C15179.40 (15)C11—N1—C8—C958.72 (17)
N4—C14—N3—C150.8 (2)C7—O1—C1—C210.5 (3)
C14—N3—C15—O3177.21 (17)C7—O1—C1—C6168.37 (18)
C14—N3—C15—C133.5 (2)C10—N2—C9—C855.06 (16)
C14—N4—C12—C132.6 (2)N1—C8—C9—N256.08 (18)
C14—N4—C12—Cl1177.68 (11)C2—C3—C4—C52.2 (3)
N4—C12—C13—C150.1 (3)C6—C5—C4—C31.3 (3)
Cl1—C12—C13—C15179.54 (12)C4—C5—C6—C11.4 (2)
N4—C12—C13—C16177.04 (17)C4—C5—C6—N1179.53 (15)
Cl1—C12—C13—C162.6 (2)O1—C1—C6—C5175.88 (15)
O3—C15—C13—C12177.77 (18)C2—C1—C6—C53.0 (2)
N3—C15—C13—C123.0 (2)O1—C1—C6—N12.4 (2)
O3—C15—C13—C160.7 (3)C2—C1—C6—N1178.73 (15)
N3—C15—C13—C16179.89 (15)C11—N1—C6—C514.0 (2)
C12—C13—C16—C18105.4 (2)C8—N1—C6—C5113.80 (17)
C15—C13—C16—C1871.4 (2)C11—N1—C6—C1164.14 (14)
C12—C13—C16—C17129.0 (2)C8—N1—C6—C168.06 (18)
C15—C13—C16—C1754.2 (2)C4—C3—C2—C10.5 (3)
C6—N1—C11—C10171.16 (13)O1—C1—C2—C3176.69 (17)
C8—N1—C11—C1059.59 (16)C6—C1—C2—C32.1 (3)
C9—N2—C10—C1156.62 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 is centroid of the C1—C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O2i0.892 (19)1.881 (19)2.7713 (18)176 (2)
N2—H1N2···N4ii0.92 (2)1.987 (19)2.8923 (19)166.2 (18)
N3—H1N3···O2iii0.87 (2)2.02 (3)2.8799 (18)177 (2)
C8—H8B···O10.972.372.968 (2)119
C9—H9B···O3iv0.972.383.234 (2)146
C17—H17C···O30.962.383.015 (3)123
C10—H10B···Cg2i0.972.653.4041 (17)134
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is centroid of the C1—C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O2i0.892 (19)1.881 (19)2.7713 (18)176 (2)
N2—H1N2···N4ii0.92 (2)1.987 (19)2.8923 (19)166.2 (18)
N3—H1N3···O2iii0.87 (2)2.02 (3)2.8799 (18)177 (2)
C8—H8B···O10.97002.37002.968 (2)119.00
C9—H9B···O3iv0.97002.38003.234 (2)146.00
C17—H17C···O30.96002.38003.015 (3)123.00
C10—H10B···Cg2i0.97002.65003.4041 (17)134.00
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

§Thomson Reuters ResearcherID: C-3194-2011.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAl-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El- Emam, A. A. (2011). Molecules, 16, 4764–4774.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlokhina, N. G., Vozny, E. K. & Garin, A. M. (1972). Cancer, 30, 390–392.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCraig, G. E., Johnson, C. & Kennedy, A. R. (2012). Acta Cryst. E68, o787.  CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDayananda, A. S., Yathirajan, H. S. & Flörke, U. (2012). Acta Cryst. E68, o1180.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc, 25, 991–996.  CAS Google Scholar
First citationFun, H.-K., Yeap, C. S., Chidan Kumar, C. S., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o361–o362.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhoshal, K. & Jacob, S. T. (1997). Biochem. Pharmacol. 53, 1569–1575.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJang, Y. H., Sowers, L. C., Cagin, T. & Goddard, W. A. III (2001). J. Phys. Chem. 105, 274–280.  Web of Science CrossRef CAS Google Scholar
First citationKurinovich, M. A. & Lee, J. K. (2002). J. Am. Soc. Mass Spectrom. 13, 985–995.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNguyen, M. T., Chandra, A. K. & Zeegers-Huyskens, T. (1998). J. Chem. Soc. Faraday Trans. 94, 1277–1280.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpacilova, L., Dzubak, P., Hajduch, M., Krupkova, S., Hradila, P. & Hlavac, J. (2007). Bioorg. Med. Chem. Lett. 17, 6647–6650.  Web of Science PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860–2865.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o245-o246
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds