organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o262-o263

3-Amino-5,5-di­phenyl­imidazolidine-2,4-dione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and dDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
*Correspondence e-mail: joelt@tulane.edu

(Received 31 January 2014; accepted 3 February 2014; online 8 February 2014)

The title compound, C15H13N3O2, crystallizes with two independent mol­ecules in the asymmetric unit, which differ considerably in the dihedral angles made between the phenyl groups and the five-membered rings [47.19 (8) and 61.16 (9)° in one mol­ecule and 55.04 (10) and 55.00 (8)° in the other]. In the crystal, N—H⋯O hydrogen bonds generate columnar units having approximate fourfold rotational symmetry about axes parallel to b.

Related literature

For the biological properties of hydantoins, see: El-Deeb et al. (2010[El-Deeb, I. M., Bayoumi, S. M., El-Sherbeny, M. A. & Abdel-Aziz, A. A.-M. (2010). Eur. J. Med. Chem. 45, 2516-2530.]); Rajic et al. (2006[Rajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837-848.]); Carmi et al. (2006[Carmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P. V., Alfieri, R. R., Petronini, P. G. & Mor, M. (2006). Bioorg. Med. Chem. Lett. 16, 4021-4025.]); Sergent et al. (2008[Sergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332-4335.]). For the preparation of the title compound, see: Kiec-Kononowicz et al. (1984[Kiec-Kononowicz, K., Zejc, A. & Byrtus, H. (1984). Pol. J. Chem. 58, 585-591.]). For related crystal structures, see: Delgado et al. (2007[Delgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448-o450.]); Roszak & Weaver (1998[Roszak, A. W. & Weaver, D. F. (1998). Acta Cryst. C54, 1168-1170.]); Kashif et al. (2008[Kashif, M. K., Hussain, A., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008). Acta Cryst. E64, o444.]); Coquerel et al. (1993[Coquerel, G., Petit, M. N. & Robert, F. (1993). Acta Cryst. C49, 824-825.]); SethuSankar et al. (2002[SethuSankar, K., Thennarasu, S., Velmurugan, D. & Kim, M. J. (2002). Acta Cryst. C58, o715-o717.]); Eknoian et al. (1999[Eknoian, M. W., Webb, T. R., Worley, S. D., Braswell, A. & Hadley, J. (1999). Acta Cryst. C55, 405-407.]); Ciechanowicz-Rutkowska et al. (1994[Ciechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86-96.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O2

  • Mr = 267.28

  • Monoclinic, P 21 /n

  • a = 20.1565 (7) Å

  • b = 6.1651 (2) Å

  • c = 20.3250 (7) Å

  • β = 97.781 (2)°

  • V = 2502.47 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.22 × 0.07 × 0.05 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.84, Tmax = 0.96

  • 32772 measured reflections

  • 4560 independent reflections

  • 3185 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.111

  • S = 1.08

  • 4560 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 1.92 2.828 (3) 177
N3—H3A⋯O3 0.91 2.11 2.957 (3) 154
N4—H4⋯O4ii 0.91 1.91 2.820 (3) 176
N6—H6A⋯O3i 0.91 2.58 3.320 (3) 139
N6—H6B⋯O2iii 0.91 2.46 3.070 (3) 124
N6—H6B⋯N3iii 0.91 2.52 3.363 (3) 154
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Hydantoins are an important class of compounds which have long attracted attention, owing to their remarkable biological and pharmacological properties. These include antitumor and antiviral activity, insulinotropic properties and use as EGFR inhibitors. (El-Deeb et al., 2010; Rajic et al., 2006; Carmi et al., 2006; Sergent et al., 2008). Of several structure determinations of hydantoins (Delgado et al., 2007; Kashif et al., 2008; Coquerel et al., 1993; SethuSankar et al., 2002; Ciechanowicz-Rutkowska et al., 1994; Roszak & Weaver, 1998; Eknoian et al., 1999), those in the last two reports bear the greatest similarity to the title compound. The title compound crystallizes with two independent molecules (A and B) in the asymmetric unit. The 5-membered ring in A is planar to within 0.032 Å while that in B is planar to within 0.016 Å. Molecules A and B differ most notably in the dihedral angles which the pendant phenyl rings make with the 5-membered ring. For molecule A the angles for C4/C5/C6/C7/C8/C9 and for C10/C11/C12/C13/C14/C15 are, respectively, 47.19 (8) and 61.16 (9)°. In molecule B the angles for C19/C20/C21/C22/C23/C24 and for C25/C26/C27/C28/C29/C30 are identical at 55.04 (10) and 55.00 (8)°, respectively. Both the imino and amino groups participate in intermolecular N—H···O hydrogen bonding which forms columns having approximate 4-fold rotational symmetry about axes parallel to b (Table 1 and Fig. 2).

Related literature top

For the biological properties of hydantoins, see: El-Deeb et al. (2010); Rajic et al. (2006); Carmi et al. (2006); Sergent et al. (2008). For the preparation of the title compound, see: Kiec-Kononowicz et al. (1984). For related crystal structures, see: Delgado et al. (2007); Roszak & Weaver (1998); Kashif et al. (2008); Coquerel et al. (1993); SethuSankar et al. (2002); Eknoian et al. (1999); Ciechanowicz-Rutkowska et al. (1994).

Experimental top

The title compound, 3-amino-5,5-diphenylimidazolidine-2,4-dione, was successfully obtained by the reaction of 5,5-diphenylhydantoin and hydrazine hydrate following the published route (Kiec-Kononowicz et al., 1984).

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit showing the N—H···O hydrogen bond between molecules A and B as a dashed line. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed perpendicular to (-1,6,-4) along with intermolecular N—H···O interactions shown as dotted lines.
3-Amino-5,5-diphenylimidazolidine-2,4-dione top
Crystal data top
C15H13N3O2F(000) = 1120
Mr = 267.28Dx = 1.419 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 20.1565 (7) ÅCell parameters from 9869 reflections
b = 6.1651 (2) Åθ = 2.9–68.2°
c = 20.3250 (7) ŵ = 0.79 mm1
β = 97.781 (2)°T = 100 K
V = 2502.47 (15) Å3Needle, clear colourless
Z = 80.22 × 0.07 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4560 independent reflections
Radiation source: INCOATEC IµS micro–focus source3185 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.105
Detector resolution: 10.4167 pixels mm-1θmax = 68.4°, θmin = 2.9°
ω scansh = 2324
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 77
Tmin = 0.84, Tmax = 0.96l = 2424
32772 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.111H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.021P)2 + 2.7033P]
where P = (Fo2 + 2Fc2)/3
4560 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H13N3O2V = 2502.47 (15) Å3
Mr = 267.28Z = 8
Monoclinic, P21/nCu Kα radiation
a = 20.1565 (7) ŵ = 0.79 mm1
b = 6.1651 (2) ÅT = 100 K
c = 20.3250 (7) Å0.22 × 0.07 × 0.05 mm
β = 97.781 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4560 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3185 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.96Rint = 0.105
32772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
4560 reflectionsΔρmin = 0.24 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78438 (9)0.0796 (3)0.48058 (9)0.0231 (4)
O20.90255 (9)0.6421 (3)0.40602 (9)0.0254 (4)
N10.80979 (10)0.6347 (3)0.46106 (10)0.0201 (5)
H10.80130.77850.46550.024*
N20.85417 (10)0.3212 (3)0.43843 (10)0.0198 (5)
N30.90346 (11)0.1794 (4)0.42044 (11)0.0255 (5)
H3A0.92470.12050.45860.031*
H3B0.88340.07670.39230.031*
C10.77157 (13)0.4751 (4)0.49361 (12)0.0189 (6)
C20.80275 (13)0.2652 (4)0.47094 (12)0.0194 (6)
C30.86045 (13)0.5491 (4)0.43294 (12)0.0205 (6)
C40.69599 (13)0.4923 (4)0.47123 (12)0.0191 (6)
C50.65335 (13)0.3213 (5)0.48164 (13)0.0255 (6)
H50.67140.19040.50120.031*
C60.58517 (14)0.3413 (5)0.46371 (14)0.0303 (7)
H6C0.55660.22340.47080.036*
C70.55780 (15)0.5314 (5)0.43552 (14)0.0316 (7)
H70.51080.54420.42310.038*
C80.59973 (14)0.7018 (5)0.42579 (14)0.0299 (7)
H80.58140.83360.40710.036*
C90.66835 (14)0.6820 (4)0.44302 (13)0.0246 (6)
H90.69680.79980.43540.030*
C100.78600 (12)0.4917 (4)0.56998 (13)0.0201 (6)
C110.80444 (13)0.6912 (4)0.59968 (13)0.0255 (6)
H110.80900.81480.57270.031*
C120.81613 (14)0.7099 (5)0.66814 (14)0.0309 (7)
H120.82840.84660.68770.037*
C130.81028 (14)0.5327 (5)0.70839 (14)0.0294 (7)
H130.81900.54620.75530.035*
C140.79153 (14)0.3359 (5)0.67955 (14)0.0291 (7)
H140.78720.21310.70690.035*
C150.77886 (14)0.3151 (5)0.61077 (13)0.0259 (6)
H150.76520.17890.59160.031*
O30.93849 (10)0.0679 (3)0.56241 (9)0.0279 (5)
O40.99521 (9)0.6386 (3)0.70282 (9)0.0235 (4)
N40.97628 (11)0.0837 (3)0.67430 (10)0.0218 (5)
H40.98320.06060.68160.026*
N50.96189 (10)0.3934 (3)0.62039 (10)0.0195 (5)
N60.95376 (11)0.5316 (3)0.56462 (10)0.0240 (5)
H6A0.93160.65290.57500.029*
H6B0.99600.57390.55950.029*
C160.99947 (13)0.2460 (4)0.72474 (12)0.0200 (6)
C170.98609 (12)0.4523 (4)0.68303 (12)0.0181 (6)
C180.95735 (13)0.1661 (4)0.61355 (13)0.0206 (6)
C191.07440 (13)0.2216 (4)0.75053 (12)0.0195 (6)
C201.10590 (14)0.0225 (4)0.74733 (14)0.0264 (6)
H201.08150.09730.72700.032*
C211.17274 (14)0.0036 (5)0.77354 (15)0.0303 (7)
H211.19350.14110.77100.036*
C221.20901 (14)0.1669 (5)0.80305 (13)0.0283 (7)
H221.25470.14840.82090.034*
C231.17813 (14)0.3665 (5)0.80648 (14)0.0307 (7)
H231.20290.48580.82660.037*
C241.11154 (14)0.3936 (4)0.78078 (13)0.0264 (6)
H241.09090.53110.78380.032*
C250.95806 (13)0.2439 (4)0.78283 (12)0.0216 (6)
C260.95771 (14)0.4223 (5)0.82471 (13)0.0264 (6)
H260.98320.54730.81730.032*
C270.92022 (14)0.4189 (5)0.87740 (14)0.0322 (7)
H270.92040.54150.90570.039*
C280.88276 (14)0.2383 (5)0.88873 (14)0.0355 (8)
H280.85670.23730.92430.043*
C290.88340 (15)0.0586 (5)0.84782 (15)0.0347 (7)
H290.85790.06630.85550.042*
C300.92130 (13)0.0610 (5)0.79549 (13)0.0267 (6)
H300.92210.06350.76810.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0258 (10)0.0146 (10)0.0292 (10)0.0005 (8)0.0052 (8)0.0005 (8)
O20.0259 (10)0.0235 (10)0.0284 (10)0.0002 (8)0.0102 (9)0.0043 (8)
N10.0208 (12)0.0124 (11)0.0292 (12)0.0016 (9)0.0107 (10)0.0000 (9)
N20.0195 (12)0.0135 (11)0.0270 (12)0.0036 (9)0.0055 (10)0.0002 (9)
N30.0281 (13)0.0198 (12)0.0298 (13)0.0066 (10)0.0081 (11)0.0010 (10)
C10.0213 (14)0.0136 (13)0.0226 (13)0.0012 (11)0.0060 (11)0.0004 (10)
C20.0205 (14)0.0168 (14)0.0201 (13)0.0014 (11)0.0007 (11)0.0001 (11)
C30.0241 (15)0.0180 (14)0.0198 (13)0.0009 (12)0.0045 (12)0.0005 (11)
C40.0206 (14)0.0190 (14)0.0183 (13)0.0000 (11)0.0052 (11)0.0046 (11)
C50.0236 (15)0.0216 (15)0.0328 (16)0.0013 (12)0.0088 (13)0.0022 (12)
C60.0254 (16)0.0313 (17)0.0346 (17)0.0070 (13)0.0057 (13)0.0034 (13)
C70.0234 (16)0.0431 (19)0.0278 (16)0.0010 (14)0.0014 (13)0.0044 (14)
C80.0256 (16)0.0341 (17)0.0287 (15)0.0066 (13)0.0006 (13)0.0045 (13)
C90.0257 (15)0.0241 (15)0.0239 (14)0.0011 (12)0.0026 (12)0.0022 (11)
C100.0153 (13)0.0207 (14)0.0247 (14)0.0014 (11)0.0040 (11)0.0021 (11)
C110.0267 (15)0.0204 (15)0.0281 (15)0.0003 (12)0.0006 (13)0.0005 (12)
C120.0323 (17)0.0249 (16)0.0331 (16)0.0027 (13)0.0041 (14)0.0077 (13)
C130.0242 (16)0.0375 (18)0.0254 (15)0.0082 (13)0.0001 (12)0.0067 (13)
C140.0291 (16)0.0319 (17)0.0282 (15)0.0054 (13)0.0101 (13)0.0050 (13)
C150.0283 (16)0.0215 (15)0.0292 (15)0.0014 (12)0.0088 (13)0.0004 (12)
O30.0360 (12)0.0214 (10)0.0247 (10)0.0002 (9)0.0018 (9)0.0042 (8)
O40.0294 (11)0.0136 (10)0.0275 (10)0.0019 (8)0.0035 (8)0.0010 (8)
N40.0302 (13)0.0122 (11)0.0214 (12)0.0008 (10)0.0024 (10)0.0014 (9)
N50.0217 (12)0.0153 (11)0.0219 (11)0.0006 (9)0.0040 (10)0.0016 (9)
N60.0259 (13)0.0206 (12)0.0254 (12)0.0031 (10)0.0040 (10)0.0070 (10)
C160.0246 (15)0.0122 (13)0.0226 (13)0.0020 (11)0.0017 (11)0.0024 (11)
C170.0150 (13)0.0187 (14)0.0208 (13)0.0000 (11)0.0036 (11)0.0008 (11)
C180.0194 (14)0.0177 (14)0.0244 (14)0.0005 (11)0.0014 (12)0.0004 (11)
C190.0224 (14)0.0196 (14)0.0171 (13)0.0010 (11)0.0045 (11)0.0010 (11)
C200.0256 (16)0.0180 (15)0.0361 (16)0.0013 (12)0.0060 (13)0.0017 (12)
C210.0273 (16)0.0201 (15)0.0444 (18)0.0040 (12)0.0074 (14)0.0044 (13)
C220.0234 (15)0.0331 (17)0.0277 (15)0.0026 (13)0.0009 (13)0.0051 (12)
C230.0282 (16)0.0295 (17)0.0331 (16)0.0020 (13)0.0006 (13)0.0063 (13)
C240.0259 (16)0.0214 (15)0.0306 (15)0.0015 (12)0.0010 (13)0.0049 (12)
C250.0196 (14)0.0218 (14)0.0223 (13)0.0008 (11)0.0005 (11)0.0048 (11)
C260.0273 (16)0.0259 (15)0.0259 (15)0.0023 (13)0.0025 (12)0.0013 (12)
C270.0294 (17)0.0413 (19)0.0266 (15)0.0058 (14)0.0064 (13)0.0005 (13)
C280.0249 (16)0.055 (2)0.0269 (16)0.0029 (15)0.0056 (13)0.0110 (15)
C290.0253 (16)0.0420 (19)0.0357 (17)0.0092 (14)0.0004 (14)0.0117 (15)
C300.0225 (15)0.0284 (16)0.0284 (15)0.0046 (12)0.0001 (12)0.0059 (12)
Geometric parameters (Å, º) top
O1—C21.226 (3)O3—C181.218 (3)
O2—C31.214 (3)O4—C171.222 (3)
N1—C31.344 (3)N4—C181.342 (3)
N1—C11.462 (3)N4—C161.463 (3)
N1—H10.9100N4—H40.9100
N2—C21.347 (3)N5—C171.350 (3)
N2—N31.408 (3)N5—N61.410 (3)
N2—C31.417 (3)N5—C181.410 (3)
N3—H3A0.9100N6—H6A0.9101
N3—H3B0.9100N6—H6B0.9099
C1—C41.533 (4)C16—C171.532 (3)
C1—C21.536 (3)C16—C251.536 (3)
C1—C101.543 (3)C16—C191.537 (4)
C4—C91.386 (4)C19—C201.388 (4)
C4—C51.394 (4)C19—C241.392 (4)
C5—C61.379 (4)C20—C211.389 (4)
C5—H50.9500C20—H200.9500
C6—C71.386 (4)C21—C221.371 (4)
C6—H6C0.9500C21—H210.9500
C7—C81.379 (4)C22—C231.385 (4)
C7—H70.9500C22—H220.9500
C8—C91.385 (4)C23—C241.383 (4)
C8—H80.9500C23—H230.9500
C9—H90.9500C24—H240.9500
C10—C151.388 (4)C25—C261.392 (4)
C10—C111.398 (4)C25—C301.392 (4)
C11—C121.384 (4)C26—C271.392 (4)
C11—H110.9500C26—H260.9500
C12—C131.379 (4)C27—C281.382 (4)
C12—H120.9500C27—H270.9500
C13—C141.378 (4)C28—C291.386 (4)
C13—H130.9500C28—H280.9500
C14—C151.392 (4)C29—C301.391 (4)
C14—H140.9500C29—H290.9500
C15—H150.9500C30—H300.9500
C3—N1—C1113.9 (2)C18—N4—C16114.2 (2)
C3—N1—H1126.1C18—N4—H4122.6
C1—N1—H1119.5C16—N4—H4121.8
C2—N2—N3125.8 (2)C17—N5—N6125.7 (2)
C2—N2—C3112.1 (2)C17—N5—C18111.8 (2)
N3—N2—C3121.4 (2)N6—N5—C18121.5 (2)
N2—N3—H3A107.0N5—N6—H6A108.6
N2—N3—H3B109.0N5—N6—H6B104.8
H3A—N3—H3B112.1H6A—N6—H6B106.7
N1—C1—C4112.5 (2)N4—C16—C1799.47 (19)
N1—C1—C299.74 (19)N4—C16—C25112.2 (2)
C4—C1—C2113.6 (2)C17—C16—C25111.1 (2)
N1—C1—C10111.8 (2)N4—C16—C19112.2 (2)
C4—C1—C10109.8 (2)C17—C16—C19111.2 (2)
C2—C1—C10109.2 (2)C25—C16—C19110.4 (2)
O1—C2—N2125.9 (2)O4—C17—N5125.6 (2)
O1—C2—C1126.4 (2)O4—C17—C16126.2 (2)
N2—C2—C1107.7 (2)N5—C17—C16108.2 (2)
O2—C3—N1128.6 (2)O3—C18—N4127.9 (2)
O2—C3—N2125.4 (2)O3—C18—N5125.9 (2)
N1—C3—N2105.9 (2)N4—C18—N5106.2 (2)
C9—C4—C5118.6 (3)C20—C19—C24118.2 (2)
C9—C4—C1120.6 (2)C20—C19—C16120.3 (2)
C5—C4—C1120.7 (2)C24—C19—C16121.4 (2)
C6—C5—C4120.3 (3)C19—C20—C21120.7 (3)
C6—C5—H5119.8C19—C20—H20119.6
C4—C5—H5119.8C21—C20—H20119.6
C5—C6—C7120.8 (3)C22—C21—C20120.7 (3)
C5—C6—H6C119.6C22—C21—H21119.6
C7—C6—H6C119.6C20—C21—H21119.6
C8—C7—C6119.1 (3)C21—C22—C23119.1 (3)
C8—C7—H7120.5C21—C22—H22120.4
C6—C7—H7120.5C23—C22—H22120.4
C7—C8—C9120.5 (3)C24—C23—C22120.5 (3)
C7—C8—H8119.8C24—C23—H23119.7
C9—C8—H8119.8C22—C23—H23119.7
C8—C9—C4120.7 (3)C23—C24—C19120.8 (3)
C8—C9—H9119.7C23—C24—H24119.6
C4—C9—H9119.7C19—C24—H24119.6
C15—C10—C11118.4 (2)C26—C25—C30118.7 (3)
C15—C10—C1121.9 (2)C26—C25—C16120.8 (2)
C11—C10—C1119.7 (2)C30—C25—C16120.5 (2)
C12—C11—C10120.4 (3)C25—C26—C27120.5 (3)
C12—C11—H11119.8C25—C26—H26119.8
C10—C11—H11119.8C27—C26—H26119.8
C13—C12—C11120.9 (3)C28—C27—C26120.4 (3)
C13—C12—H12119.5C28—C27—H27119.8
C11—C12—H12119.5C26—C27—H27119.8
C14—C13—C12119.0 (3)C27—C28—C29119.6 (3)
C14—C13—H13120.5C27—C28—H28120.2
C12—C13—H13120.5C29—C28—H28120.2
C13—C14—C15120.7 (3)C28—C29—C30120.0 (3)
C13—C14—H14119.6C28—C29—H29120.0
C15—C14—H14119.6C30—C29—H29120.0
C10—C15—C14120.5 (3)C29—C30—C25120.7 (3)
C10—C15—H15119.7C29—C30—H30119.6
C14—C15—H15119.7C25—C30—H30119.6
C3—N1—C1—C4128.7 (2)C18—N4—C16—C173.9 (3)
C3—N1—C1—C28.0 (3)C18—N4—C16—C25121.4 (2)
C3—N1—C1—C10107.3 (2)C18—N4—C16—C19113.7 (2)
N3—N2—C2—O112.5 (4)N6—N5—C17—O411.6 (4)
C3—N2—C2—O1177.1 (2)C18—N5—C17—O4180.0 (2)
N3—N2—C2—C1167.5 (2)N6—N5—C17—C16168.9 (2)
C3—N2—C2—C12.9 (3)C18—N5—C17—C160.5 (3)
N1—C1—C2—O1173.8 (2)N4—C16—C17—O4177.7 (3)
C4—C1—C2—O153.9 (3)C25—C16—C17—O459.4 (3)
C10—C1—C2—O168.9 (3)C19—C16—C17—O463.9 (3)
N1—C1—C2—N26.2 (2)N4—C16—C17—N51.9 (3)
C4—C1—C2—N2126.1 (2)C25—C16—C17—N5120.2 (2)
C10—C1—C2—N2111.1 (2)C19—C16—C17—N5116.5 (2)
C1—N1—C3—O2175.5 (3)C16—N4—C18—O3177.1 (3)
C1—N1—C3—N26.7 (3)C16—N4—C18—N54.4 (3)
C2—N2—C3—O2180.0 (3)C17—N5—C18—O3178.5 (3)
N3—N2—C3—O29.1 (4)N6—N5—C18—O39.5 (4)
C2—N2—C3—N12.1 (3)C17—N5—C18—N42.9 (3)
N3—N2—C3—N1173.0 (2)N6—N5—C18—N4171.9 (2)
N1—C1—C4—C921.0 (3)N4—C16—C19—C2025.0 (3)
C2—C1—C4—C9133.3 (2)C17—C16—C19—C20135.4 (2)
C10—C1—C4—C9104.2 (3)C25—C16—C19—C20100.9 (3)
N1—C1—C4—C5162.1 (2)N4—C16—C19—C24158.5 (2)
C2—C1—C4—C549.7 (3)C17—C16—C19—C2448.1 (3)
C10—C1—C4—C572.8 (3)C25—C16—C19—C2475.6 (3)
C9—C4—C5—C60.4 (4)C24—C19—C20—C210.1 (4)
C1—C4—C5—C6177.5 (2)C16—C19—C20—C21176.8 (2)
C4—C5—C6—C70.4 (4)C19—C20—C21—C220.1 (4)
C5—C6—C7—C80.3 (4)C20—C21—C22—C230.0 (4)
C6—C7—C8—C91.0 (4)C21—C22—C23—C240.3 (4)
C7—C8—C9—C41.0 (4)C22—C23—C24—C190.5 (4)
C5—C4—C9—C80.3 (4)C20—C19—C24—C230.4 (4)
C1—C4—C9—C8176.8 (2)C16—C19—C24—C23177.0 (2)
N1—C1—C10—C15153.5 (2)N4—C16—C25—C26160.2 (2)
C4—C1—C10—C1580.9 (3)C17—C16—C25—C2649.8 (3)
C2—C1—C10—C1544.2 (3)C19—C16—C25—C2673.9 (3)
N1—C1—C10—C1128.9 (3)N4—C16—C25—C3021.3 (3)
C4—C1—C10—C1196.7 (3)C17—C16—C25—C30131.6 (3)
C2—C1—C10—C11138.3 (2)C19—C16—C25—C30104.6 (3)
C15—C10—C11—C120.9 (4)C30—C25—C26—C271.2 (4)
C1—C10—C11—C12178.6 (2)C16—C25—C26—C27179.8 (2)
C10—C11—C12—C130.4 (4)C25—C26—C27—C280.1 (4)
C11—C12—C13—C141.0 (4)C26—C27—C28—C290.9 (4)
C12—C13—C14—C150.2 (4)C27—C28—C29—C300.4 (4)
C11—C10—C15—C141.6 (4)C28—C29—C30—C251.0 (4)
C1—C10—C15—C14179.3 (2)C26—C25—C30—C291.8 (4)
C13—C14—C15—C101.1 (4)C16—C25—C30—C29179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.911.922.828 (3)177
N3—H3A···O30.912.112.957 (3)154
N4—H4···O4ii0.911.912.820 (3)176
N6—H6A···O3i0.912.583.320 (3)139
N6—H6B···O2iii0.912.463.070 (3)124
N6—H6B···N3iii0.912.523.363 (3)154
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.911.922.828 (3)177
N3—H3A···O30.912.112.957 (3)154
N4—H4···O4ii0.911.912.820 (3)176
N6—H6A···O3i0.912.583.320 (3)139
N6—H6B···O2iii0.912.463.070 (3)124
N6—H6B···N3iii0.912.523.363 (3)154
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Research Center of Pharmacy, King Saud University, for funding this work. The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged as is the Chemistry Department of Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P. V., Alfieri, R. R., Petronini, P. G. & Mor, M. (2006). Bioorg. Med. Chem. Lett. 16, 4021–4025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCiechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86–96.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoquerel, G., Petit, M. N. & Robert, F. (1993). Acta Cryst. C49, 824–825.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDelgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448–o450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEknoian, M. W., Webb, T. R., Worley, S. D., Braswell, A. & Hadley, J. (1999). Acta Cryst. C55, 405–407.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Deeb, I. M., Bayoumi, S. M., El-Sherbeny, M. A. & Abdel-Aziz, A. A.-M. (2010). Eur. J. Med. Chem. 45, 2516–2530.  Web of Science CAS PubMed Google Scholar
First citationKashif, M. K., Hussain, A., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008). Acta Cryst. E64, o444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiec-Kononowicz, K., Zejc, A. & Byrtus, H. (1984). Pol. J. Chem. 58, 585–591.  CAS Google Scholar
First citationRajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837–848.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoszak, A. W. & Weaver, D. F. (1998). Acta Cryst. C54, 1168–1170.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332–4335.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSethuSankar, K., Thennarasu, S., Velmurugan, D. & Kim, M. J. (2002). Acta Cryst. C58, o715–o717.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o262-o263
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds