organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o369-o370

1-[3-(Morpholin-4-yl)prop­yl]-4-(3-nitro­phen­yl)spiro­[azetidine-3,9′-xanthen]-2-one

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 18 February 2014; accepted 23 February 2014; online 28 February 2014)

The β-lactam (azetidin-2-one) ring of the title compound, C28H27N3O5, is nearly planar [maximum deviation = 0.010 (1) Å] and makes dihedral angles of 75.77 (5), 52.78 (9) and 88.72 (5)°, respectively, with the benzene ring, the least-squares plane formed by the four C atoms of the morpholine ring, which adopts a chair conformation, and the xanthene ring system. In the crystal, C—H⋯O hydrogen-bond contacts connect neighbouring mol­ecules into infinite zigzag chains running parallel to the b axis.

Related literature

For general background to β-lactams, see: Arumugam et al. (2011[Arumugam, N., Periyasami, G., Raghunathan, R., Kamalraj, S. & Muthumary, J. (2011). Eur. J. Med. Chem. 46, 600-607.]); Jarrahpour et al. (2010[Jarrahpour, A., Eskandari, M., Zomorodian, K., Barati, E., Ashori, R., Salehi Vaziri, M. & Pakshir, K. (2010). Anti-Infective Agents Med. Chem. 9, 205-219.]); Chrysselis et al. (2000[Chrysselis, M. C., Rekka, E. A. & Kourounakis, P. N. (2000). J. Med. Chem. 43, 609-612.]); Mehta et al. (2010[Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541-5560.]); Singh (2003[Singh, G. S. (2003). Tetrahedron, 59, 7631-7649.]); Singh et al. (2011[Singh, G. S., D'hooghe, M. & De Kimpe, N. (2011). Tetrahedron, 67, 1989-2012.], 2014[Singh, P., Raj, R., Singh, P., Gut, J., Rosenthal, P. J. & Kumar, V. (2014). Eur. J. Med. Chem. 71, 128-134.]). For similar structures, see: Akkurt et al. (2008a[Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466-o2467.],b[Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902-o903.]); Yalçın et al. (2009[Yalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626-o627.]); Çelik et al. (2009a[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009a). Acta Cryst. E65, o501-o502.],b[Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009b). Acta Cryst. E65, o2522-o2523.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C28H27N3O5

  • Mr = 485.53

  • Monoclinic, P 21 /n

  • a = 9.2637 (6) Å

  • b = 11.4091 (5) Å

  • c = 23.3310 (15) Å

  • β = 96.930 (5)°

  • V = 2447.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.55 × 0.38 × 0.22 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.957, Tmax = 0.983

  • 19036 measured reflections

  • 5393 independent reflections

  • 3044 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.093

  • S = 0.88

  • 5393 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.42 3.2423 (19) 148
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

2-Azetidinones, commonly known as β-lactams, occupy a central place among medicinally important compounds due to their unique structure and their antibacterial activities (Arumugam et al., 2011; Jarrahpour et al., 2010; Singh, 2003; Singh et al., 2011, 2014). β-Lactams have shown many interesting biological properties, such as acting as cholesterol absorption inhibitors, and applications as antimicrobial, antifungal, antitubercular, anticancer, anti HIV and antiparkinsonian agents (Mehta et al. 2010). Moreover the morpholine moiety is present in many heterocyclic compounds with hypocholesterolemic and hypolipidemic activity (Chrysselis et al. 2000).

The β-lactam unit in (I, Fig. 1) is nearly planar, with a maximum deviation of 0.010 (1) Å from the mean plane. Atom O1 lies almost in the β-lactam plane, with a deviation of -0.001 (1) Å. The β-lactam ring makes a dihedral angle of 75.77 (5)° with the benzene ring C16—C21.

The xanthene ring system is V-shaped, with a dihedral angle between the (C4–C9) and (C10–C15) benzene rings of 27.82 (5)°. Its central ring, C2/C4/C9/O2/C10/C15, is not planar, with puckering parameters: QT = 0.3640 (16) Å, θ = 81.6 (3)° and φ = 181.0 (3)° (Cremer & Pople, 1975). The mean plane of the xanthene ring system forms dihedral angles of 88.72 (5), 55.87 (4) and 44.54 (7)° (Nardelli, 1995), with the β-lactam ring, the benzene ring (C16–C21) and the least-squares plane formed by the four C atoms of the morpholine ring (N3/O5/C25–C28), respectively.

The bond lengths and angles in (I) are comparable with similar compounds that we have reported previously (Akkurt et al., 2008a,b; Çelik et al., 2009a,b; Yalçın et al., 2009).

In the crystal, molecules are linked by C—H···O hydrogen contacts (Table 1) into infinite zigzag chains running parallel to [010]. Fig. 2 shows a view down the a axis of the crystal packing of (I).

Related literature top

For general background to β-lactams, see: Arumugam et al. (2011); Jarrahpour et al. (2010); Chrysselis et al. (2000); Mehta et al. (2010); Singh (2003); Singh et al. (2011, 2014). For similar structures, see: Akkurt et al. (2008a,b); Yalçın et al. (2009); Çelik et al. (2009a,b). For geometric analysis, see: Cremer & Pople (1975); Nardelli (1995).

Experimental top

A mixture of N-(3-nitrobenzylidene)-3-morpholinopropan-1-amine (1.38 g, 5.00 mmol) and triethylamine (2.53 g, 25.00 mmol), 9H-xanthen-9-carboxylic acid (1.69 g, 7.50 mmol) and tosyl chloride (1.43 g, 7.50 mmol) in CH2Cl2 (25 ml) was stirred at room temperature overnight. Then it was washed with HCl 1 M, saturated sodium bicarbonate solution and brine, dried with Na2SO4 and the solvent was evaporated to give the crude product which was purified by column chromatography (eluent 10:1 EtOAc/EtOH) as light yellow crystalline solid (Yield 59%). mp: 424–426 K. IR (KBr, cm-1): 1751 (CO, β-lactam), 1342, 1527 (NO2). 1H-NMR (CDCl3) δ (p.p.m.): 1.94 (CH2—CH2—CH2–, m, 2H), 2.49 (CH2—CH2—CH2– and CH2—N morpholine ring, m, 6H), 3.18 (CH2—CH2—CH2–, m, 1H), 3.68 (CH2—O, m, 4H), 3.94 (CH2– CH2—CH2–, m, 1H), 4.72 (H-4, s, 1H), 5.43 (H-3, d, J = 4.4 Hz, 1H), 6.79- 7.94 (ArH, m, 12H). 13C-NMR (CDCl3) δ (p.p.m.): 24.9 (CH2—CH2—CH2–), 39.9 (CH2—CH2—CH2–), 53.5 (CH2—N morpholine ring), 56.0 (CH2—CH2—CH2–), 65.2 (C-4), 66.6 (CH2—O morpholine ring), 73.4 (C-3), 116.4, 116.8, 117.1, 121.2, 121.3, 122.9, 123.0, 124.4, 125.1, 127.8, 129.3, 129.4, 129.4, 132.6, 136.9, 147.9, 151.9, 152.1 (aromatic carbons), 168.1 (CO, β-lactam). GC–MS m/z = 485 [M+]. Anal. calcd for C28H27N3O5: C 69.26, H 5.61, N 8.65%. Found: C 69.30, H 5.69, N 8.67%.

Refinement top

H atoms were positioned geometrically and were refined using a riding model with Uiso(H) = 1.2Ueq(C). Reflections (-2 1 2), (-2 0 4) and (0 2 4), were omitted due to the large disagreement between Fobs and Fcalc.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The title molecule (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Hydrogen bonding and molecular packing of (I) viewed along the a axis. Only H atoms involved in H bonding are shown.
1-[3-(Morpholin-4-yl)propyl]-4-(3-nitrophenyl)spiro[azetidine-3,9'-xanthen]-2-one top
Crystal data top
C28H27N3O5F(000) = 1024
Mr = 485.53Dx = 1.317 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16797 reflections
a = 9.2637 (6) Åθ = 1.8–27.6°
b = 11.4091 (5) ŵ = 0.09 mm1
c = 23.3310 (15) ÅT = 296 K
β = 96.930 (5)°Block, light yellow
V = 2447.9 (2) Å30.55 × 0.38 × 0.22 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
5393 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3044 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.041
Detector resolution: 6.67 pixels mm-1θmax = 27.2°, θmin = 1.8°
ω scansh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1414
Tmin = 0.957, Tmax = 0.983l = 2929
19036 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0457P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
5393 reflectionsΔρmax = 0.15 e Å3
325 parametersΔρmin = 0.21 e Å3
Crystal data top
C28H27N3O5V = 2447.9 (2) Å3
Mr = 485.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2637 (6) ŵ = 0.09 mm1
b = 11.4091 (5) ÅT = 296 K
c = 23.3310 (15) Å0.55 × 0.38 × 0.22 mm
β = 96.930 (5)°
Data collection top
Stoe IPDS 2
diffractometer
5393 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3044 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.983Rint = 0.041
19036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.88Δρmax = 0.15 e Å3
5393 reflectionsΔρmin = 0.21 e Å3
325 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84675 (13)0.41791 (9)0.23520 (5)0.0578 (4)
O20.49859 (13)0.68567 (11)0.32597 (5)0.0642 (5)
O30.21884 (16)0.55524 (13)0.00379 (6)0.0903 (6)
O40.39138 (19)0.44168 (14)0.03770 (8)0.1073 (7)
O50.76395 (16)0.93149 (14)0.03119 (7)0.0914 (6)
N10.80288 (13)0.58505 (10)0.17769 (5)0.0425 (4)
N20.33075 (18)0.53649 (15)0.03527 (6)0.0641 (6)
N30.86873 (15)0.81179 (12)0.07346 (6)0.0539 (5)
C10.78855 (17)0.51133 (13)0.22163 (6)0.0424 (5)
C20.67968 (16)0.59013 (12)0.24776 (6)0.0406 (5)
C30.69833 (16)0.67310 (12)0.19331 (6)0.0405 (4)
C40.74121 (18)0.64401 (13)0.30441 (6)0.0447 (5)
C50.88946 (19)0.65055 (15)0.32229 (7)0.0566 (6)
C60.9422 (2)0.70557 (18)0.37322 (8)0.0727 (7)
C70.8472 (3)0.75553 (18)0.40659 (8)0.0746 (8)
C80.6998 (2)0.74905 (16)0.39060 (7)0.0667 (7)
C90.64771 (19)0.69209 (14)0.33962 (7)0.0512 (5)
C100.44594 (19)0.59521 (15)0.28968 (7)0.0533 (6)
C110.3044 (2)0.55984 (18)0.29314 (9)0.0704 (8)
C120.2471 (2)0.4687 (2)0.25963 (10)0.0783 (8)
C130.3315 (2)0.41067 (18)0.22397 (9)0.0729 (8)
C140.4725 (2)0.44662 (15)0.22061 (7)0.0588 (6)
C150.53121 (18)0.54190 (14)0.25249 (6)0.0465 (5)
C160.57100 (16)0.69479 (13)0.14871 (6)0.0405 (4)
C170.50680 (17)0.80495 (14)0.14408 (6)0.0484 (5)
C180.39007 (18)0.82805 (15)0.10310 (7)0.0557 (6)
C190.33281 (18)0.74088 (16)0.06655 (7)0.0535 (6)
C200.39514 (17)0.63143 (14)0.07194 (6)0.0462 (5)
C210.51418 (17)0.60747 (13)0.11139 (6)0.0454 (5)
C220.89002 (19)0.57752 (15)0.13018 (7)0.0534 (6)
C231.0149 (2)0.66323 (17)0.13299 (8)0.0672 (7)
C240.9716 (2)0.79100 (17)0.12441 (8)0.0637 (7)
C250.8098 (3)0.93061 (16)0.07274 (10)0.0799 (8)
C260.7015 (3)0.9490 (2)0.02030 (12)0.0950 (10)
C270.8214 (2)0.8171 (2)0.03121 (9)0.0820 (8)
C280.9321 (2)0.79517 (17)0.02015 (7)0.0643 (7)
H30.747300.746600.205600.0490*
H50.954400.617300.299500.0680*
H61.041700.708700.384800.0870*
H70.882800.794300.440400.0900*
H80.635600.782400.413600.0800*
H110.248600.597700.318100.0850*
H120.151200.446000.260900.0940*
H130.293400.347200.202100.0870*
H140.529000.406600.196700.0710*
H170.543200.864300.169100.0580*
H180.350000.902900.100200.0670*
H190.253900.755500.038900.0640*
H210.556100.533300.113000.0550*
H22A0.827100.590300.094400.0640*
H22B0.928700.498700.129000.0640*
H23A1.076200.641800.103700.0810*
H23B1.072900.655300.170300.0810*
H24A0.929100.817800.158100.0760*
H24B1.058300.837200.121600.0760*
H25A0.888400.986800.072700.0960*
H25B0.763200.943500.107300.0960*
H26A0.621000.895100.021400.1140*
H26B0.663301.028100.020800.1140*
H27A0.866200.805200.066300.0980*
H27B0.742800.760900.031100.0980*
H28A0.968700.715700.018600.0770*
H28B1.013300.848500.019200.0770*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0719 (8)0.0442 (6)0.0557 (6)0.0105 (6)0.0012 (6)0.0086 (5)
O20.0646 (8)0.0644 (8)0.0658 (8)0.0010 (7)0.0172 (6)0.0135 (6)
O30.0830 (10)0.1006 (11)0.0769 (9)0.0037 (8)0.0333 (8)0.0132 (8)
O40.1157 (13)0.0641 (10)0.1279 (13)0.0029 (9)0.0430 (11)0.0246 (9)
O50.0794 (10)0.0904 (11)0.1034 (12)0.0183 (9)0.0075 (9)0.0388 (9)
N10.0466 (7)0.0417 (7)0.0391 (6)0.0052 (6)0.0044 (6)0.0046 (6)
N20.0675 (10)0.0654 (10)0.0551 (9)0.0072 (8)0.0104 (8)0.0034 (8)
N30.0539 (8)0.0478 (8)0.0602 (8)0.0011 (7)0.0082 (7)0.0008 (7)
C10.0474 (9)0.0388 (8)0.0382 (8)0.0011 (7)0.0061 (7)0.0026 (7)
C20.0480 (9)0.0383 (8)0.0347 (7)0.0009 (7)0.0023 (6)0.0033 (6)
C30.0447 (8)0.0374 (8)0.0386 (7)0.0003 (7)0.0022 (6)0.0009 (6)
C40.0565 (10)0.0429 (8)0.0339 (7)0.0037 (8)0.0020 (7)0.0043 (6)
C50.0568 (11)0.0641 (11)0.0469 (9)0.0088 (9)0.0017 (8)0.0006 (8)
C60.0737 (13)0.0866 (14)0.0534 (10)0.0198 (12)0.0102 (10)0.0017 (10)
C70.0998 (17)0.0782 (14)0.0435 (10)0.0289 (12)0.0012 (11)0.0078 (9)
C80.0974 (16)0.0619 (11)0.0433 (9)0.0142 (11)0.0190 (10)0.0082 (8)
C90.0609 (11)0.0491 (9)0.0438 (8)0.0065 (8)0.0076 (8)0.0029 (8)
C100.0532 (10)0.0551 (10)0.0514 (9)0.0036 (9)0.0054 (8)0.0052 (8)
C110.0551 (12)0.0800 (14)0.0777 (13)0.0019 (10)0.0146 (10)0.0084 (11)
C120.0570 (12)0.0886 (15)0.0886 (15)0.0207 (12)0.0055 (11)0.0157 (13)
C130.0721 (14)0.0705 (13)0.0738 (13)0.0266 (11)0.0000 (11)0.0004 (11)
C140.0647 (12)0.0560 (10)0.0551 (10)0.0142 (9)0.0045 (9)0.0001 (8)
C150.0517 (10)0.0458 (9)0.0407 (8)0.0045 (8)0.0009 (7)0.0075 (7)
C160.0445 (8)0.0419 (8)0.0353 (7)0.0014 (7)0.0053 (6)0.0033 (7)
C170.0565 (10)0.0451 (9)0.0433 (8)0.0069 (8)0.0045 (8)0.0021 (7)
C180.0584 (11)0.0520 (10)0.0556 (10)0.0184 (8)0.0020 (8)0.0012 (8)
C190.0456 (9)0.0694 (11)0.0444 (9)0.0093 (9)0.0005 (8)0.0059 (8)
C200.0476 (9)0.0521 (9)0.0385 (8)0.0022 (8)0.0031 (7)0.0006 (7)
C210.0517 (9)0.0416 (9)0.0420 (8)0.0032 (7)0.0015 (7)0.0038 (7)
C220.0622 (11)0.0526 (10)0.0472 (9)0.0087 (9)0.0145 (8)0.0023 (8)
C230.0517 (10)0.0897 (15)0.0603 (11)0.0010 (10)0.0072 (9)0.0204 (10)
C240.0626 (12)0.0716 (12)0.0571 (10)0.0203 (10)0.0085 (9)0.0010 (9)
C250.0907 (15)0.0502 (11)0.1043 (16)0.0055 (11)0.0337 (14)0.0014 (11)
C260.0768 (15)0.0736 (15)0.136 (2)0.0262 (12)0.0188 (16)0.0281 (15)
C270.0839 (15)0.0882 (16)0.0705 (13)0.0121 (12)0.0048 (11)0.0079 (12)
C280.0641 (12)0.0697 (12)0.0586 (10)0.0146 (10)0.0059 (9)0.0062 (9)
Geometric parameters (Å, º) top
O1—C11.2189 (18)C18—C191.374 (2)
O2—C91.382 (2)C19—C201.375 (2)
O2—C101.386 (2)C20—C211.376 (2)
O3—N21.215 (2)C22—C231.510 (3)
O4—N21.217 (2)C23—C241.519 (3)
O5—C261.409 (3)C25—C261.500 (4)
O5—C271.410 (3)C27—C281.501 (3)
N1—C11.3449 (18)C3—H30.9800
N1—C31.4715 (19)C5—H50.9300
N1—C221.450 (2)C6—H60.9300
N2—C201.462 (2)C7—H70.9300
N3—C241.451 (2)C8—H80.9300
N3—C251.461 (2)C11—H110.9300
N3—C281.450 (2)C12—H120.9300
C1—C21.532 (2)C13—H130.9300
C2—C31.610 (2)C14—H140.9300
C2—C41.506 (2)C17—H170.9300
C2—C151.498 (2)C18—H180.9300
C3—C161.496 (2)C19—H190.9300
C4—C51.388 (2)C21—H210.9300
C4—C91.378 (2)C22—H22A0.9700
C5—C61.380 (3)C22—H22B0.9700
C6—C71.368 (3)C23—H23A0.9700
C7—C81.373 (3)C23—H23B0.9700
C8—C91.390 (2)C24—H24A0.9700
C10—C111.384 (3)C24—H24B0.9700
C10—C151.383 (2)C25—H25A0.9700
C11—C121.369 (3)C25—H25B0.9700
C12—C131.378 (3)C26—H26A0.9700
C13—C141.380 (3)C26—H26B0.9700
C14—C151.390 (2)C27—H27A0.9700
C16—C171.389 (2)C27—H27B0.9700
C16—C211.385 (2)C28—H28A0.9700
C17—C181.380 (2)C28—H28B0.9700
C9—O2—C10116.66 (13)C2—C3—H3111.00
C26—O5—C27108.99 (17)C16—C3—H3111.00
C1—N1—C396.30 (11)C4—C5—H5119.00
C1—N1—C22131.36 (13)C6—C5—H5119.00
C3—N1—C22132.33 (12)C5—C6—H6120.00
O3—N2—O4122.68 (17)C7—C6—H6120.00
O3—N2—C20118.78 (16)C6—C7—H7120.00
O4—N2—C20118.54 (16)C8—C7—H7120.00
C24—N3—C25111.64 (15)C7—C8—H8120.00
C24—N3—C28112.80 (14)C9—C8—H8120.00
C25—N3—C28107.51 (15)C10—C11—H11120.00
O1—C1—N1131.57 (14)C12—C11—H11120.00
O1—C1—C2134.57 (14)C11—C12—H12120.00
N1—C1—C293.82 (11)C13—C12—H12120.00
C1—C2—C383.83 (10)C12—C13—H13120.00
C1—C2—C4113.04 (12)C14—C13—H13120.00
C1—C2—C15117.93 (12)C13—C14—H14120.00
C3—C2—C4112.78 (11)C15—C14—H14120.00
C3—C2—C15117.45 (12)C16—C17—H17119.00
C4—C2—C15109.82 (12)C18—C17—H17119.00
N1—C3—C286.02 (10)C17—C18—H18120.00
N1—C3—C16115.33 (12)C19—C18—H18120.00
C2—C3—C16119.69 (12)C18—C19—H19121.00
C2—C4—C5122.79 (14)C20—C19—H19121.00
C2—C4—C9119.16 (15)C16—C21—H21120.00
C5—C4—C9118.02 (14)C20—C21—H21120.00
C4—C5—C6121.18 (16)N1—C22—H22A108.00
C5—C6—C7119.63 (18)N1—C22—H22B109.00
C6—C7—C8120.65 (18)C23—C22—H22A109.00
C7—C8—C9119.26 (17)C23—C22—H22B109.00
O2—C9—C4121.64 (14)H22A—C22—H22B108.00
O2—C9—C8117.15 (15)C22—C23—H23A108.00
C4—C9—C8121.21 (16)C22—C23—H23B108.00
O2—C10—C11116.60 (16)C24—C23—H23A108.00
O2—C10—C15121.69 (15)C24—C23—H23B108.00
C11—C10—C15121.70 (16)H23A—C23—H23B107.00
C10—C11—C12119.55 (18)N3—C24—H24A109.00
C11—C12—C13120.04 (18)N3—C24—H24B109.00
C12—C13—C14120.09 (18)C23—C24—H24A109.00
C13—C14—C15120.91 (17)C23—C24—H24B109.00
C2—C15—C10118.93 (14)H24A—C24—H24B108.00
C2—C15—C14123.45 (14)N3—C25—H25A109.00
C10—C15—C14117.61 (16)N3—C25—H25B110.00
C3—C16—C17119.86 (13)C26—C25—H25A110.00
C3—C16—C21121.75 (13)C26—C25—H25B110.00
C17—C16—C21118.39 (13)H25A—C25—H25B108.00
C16—C17—C18121.28 (14)O5—C26—H26A109.00
C17—C18—C19120.22 (16)O5—C26—H26B109.00
C18—C19—C20118.30 (15)C25—C26—H26A109.00
N2—C20—C19118.82 (14)C25—C26—H26B109.00
N2—C20—C21118.80 (14)H26A—C26—H26B108.00
C19—C20—C21122.37 (14)O5—C27—H27A109.00
C16—C21—C20119.40 (14)O5—C27—H27B109.00
N1—C22—C23115.00 (14)C28—C27—H27A109.00
C22—C23—C24115.28 (15)C28—C27—H27B109.00
N3—C24—C23113.70 (15)H27A—C27—H27B108.00
N3—C25—C26110.57 (17)N3—C28—H28A109.00
O5—C26—C25111.9 (2)N3—C28—H28B109.00
O5—C27—C28112.07 (17)C27—C28—H28A110.00
N3—C28—C27110.76 (15)C27—C28—H28B110.00
N1—C3—H3111.00H28A—C28—H28B108.00
C9—O2—C10—C11155.89 (16)C1—C2—C15—C1419.2 (2)
C10—O2—C9—C423.8 (2)C15—C2—C3—N1119.59 (13)
C10—O2—C9—C8156.04 (15)C1—C2—C15—C10161.87 (14)
C9—O2—C10—C1523.2 (2)C3—C2—C15—C1478.76 (19)
C27—O5—C26—C2557.9 (2)C1—C2—C4—C9163.90 (14)
C26—O5—C27—C2857.7 (2)C2—C3—C16—C17110.27 (15)
C1—N1—C22—C23110.50 (18)C2—C3—C16—C2169.70 (18)
C3—N1—C1—O1179.56 (17)N1—C3—C16—C2130.8 (2)
C22—N1—C1—C2179.91 (15)N1—C3—C16—C17149.28 (13)
C22—N1—C1—O11.9 (3)C5—C4—C9—O2177.71 (14)
C3—N1—C1—C21.50 (12)C9—C4—C5—C61.3 (2)
C3—N1—C22—C2371.4 (2)C2—C4—C5—C6176.86 (16)
C1—N1—C3—C16119.66 (13)C2—C4—C9—O24.1 (2)
C22—N1—C3—C2180.00 (15)C5—C4—C9—C82.2 (2)
C22—N1—C3—C1658.9 (2)C2—C4—C9—C8176.06 (15)
C1—N1—C3—C21.43 (11)C4—C5—C6—C70.6 (3)
O3—N2—C20—C21174.10 (15)C5—C6—C7—C81.6 (3)
O4—N2—C20—C19175.60 (17)C6—C7—C8—C90.7 (3)
O4—N2—C20—C215.7 (2)C7—C8—C9—O2178.67 (16)
O3—N2—C20—C194.6 (2)C7—C8—C9—C41.2 (3)
C24—N3—C25—C26178.81 (18)C11—C10—C15—C143.4 (2)
C28—N3—C24—C2369.47 (19)O2—C10—C15—C25.3 (2)
C25—N3—C24—C23169.34 (17)C11—C10—C15—C2175.60 (16)
C28—N3—C25—C2657.0 (2)C15—C10—C11—C120.9 (3)
C25—N3—C28—C2756.8 (2)O2—C10—C11—C12178.17 (18)
C24—N3—C28—C27179.73 (16)O2—C10—C15—C14175.66 (15)
O1—C1—C2—C1562.8 (2)C10—C11—C12—C131.8 (3)
O1—C1—C2—C3179.33 (19)C11—C12—C13—C142.0 (3)
O1—C1—C2—C467.2 (2)C12—C13—C14—C150.6 (3)
N1—C1—C2—C15119.25 (13)C13—C14—C15—C103.2 (2)
N1—C1—C2—C4110.79 (13)C13—C14—C15—C2175.76 (16)
N1—C1—C2—C31.37 (11)C21—C16—C17—C180.6 (2)
C1—C2—C4—C518.0 (2)C3—C16—C17—C18179.44 (14)
C15—C2—C3—C162.59 (19)C3—C16—C21—C20178.70 (14)
C4—C2—C15—C14150.62 (15)C17—C16—C21—C201.3 (2)
C15—C2—C4—C929.94 (19)C16—C17—C18—C191.4 (2)
C3—C2—C4—C9103.12 (16)C17—C18—C19—C200.2 (2)
C15—C2—C4—C5151.94 (15)C18—C19—C20—C211.7 (2)
C4—C2—C3—C16131.83 (14)C18—C19—C20—N2176.99 (15)
C3—C2—C15—C10100.18 (16)C19—C20—C21—C162.5 (2)
C4—C2—C3—N1111.17 (13)N2—C20—C21—C16176.22 (14)
C1—C2—C3—C16115.75 (13)N1—C22—C23—C2468.6 (2)
C1—C2—C3—N11.25 (10)C22—C23—C24—N350.6 (2)
C4—C2—C15—C1030.44 (19)N3—C25—C26—O559.3 (2)
C3—C2—C4—C575.00 (18)O5—C27—C28—N359.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.423.2423 (19)148
C22—H22A···N30.972.612.978 (2)103
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.423.2423 (19)148
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, o2466–o2467.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, o902–o903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArumugam, N., Periyasami, G., Raghunathan, R., Kamalraj, S. & Muthumary, J. (2011). Eur. J. Med. Chem. 46, 600–607.  Web of Science CrossRef CAS PubMed Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009a). Acta Cryst. E65, o501–o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009b). Acta Cryst. E65, o2522–o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChrysselis, M. C., Rekka, E. A. & Kourounakis, P. N. (2000). J. Med. Chem. 43, 609–612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A., Eskandari, M., Zomorodian, K., Barati, E., Ashori, R., Salehi Vaziri, M. & Pakshir, K. (2010). Anti-Infective Agents Med. Chem. 9, 205–219.  CrossRef CAS Google Scholar
First citationMehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541–5560.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G. S. (2003). Tetrahedron, 59, 7631–7649.  Web of Science CrossRef CAS Google Scholar
First citationSingh, G. S., D'hooghe, M. & De Kimpe, N. (2011). Tetrahedron, 67, 1989–2012.  Web of Science CrossRef CAS Google Scholar
First citationSingh, P., Raj, R., Singh, P., Gut, J., Rosenthal, P. J. & Kumar, V. (2014). Eur. J. Med. Chem. 71, 128–134.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o626–o627.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o369-o370
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds