organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o281-o282

Methyl 1-phenyl-3-p-tolyl-1,9b-di­hydro-3H-chromeno[4,3-c]isoxazole-3a(4H)-carboxyl­ate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 20 December 2013; accepted 3 February 2014; online 12 February 2014)

In the title compound, C25H23NO4, the pyran ring of the chroman moiety has an envelope conformation with the methyl­ene C atom as the flap. The isoxazole ring has a twist conformation on the O—C bond. The dihedral angle between their mean planes is 57.87 (9)°. The attached phenyl and benzene rings are twisted away from its mean plane by 56.19 (10) and 50.57 (10)°, respectively. These two rings are normal to each other, subtending a dihedral angle of 89.2 (1)°. In the crystal, there are no classical hydrogen bonds; the mol­ecules are linked via C—H⋯π inter­actions, forming a two-dimensional network lying parallel to (10-1).

Related literature

For the biological activity of isoxazoline derivatives, see: Kozikowski (1984[Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410-416.]); Howe & Shelton (1990[Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.]); Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]). For the synthesis of chromenoisoxazolidines by intra­molecular 1,3-dipolar cyclo­additions, see: Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23NO4

  • Mr = 401.44

  • Monoclinic, P 21 /n

  • a = 14.0674 (7) Å

  • b = 7.8105 (4) Å

  • c = 19.7680 (9) Å

  • β = 110.456 (3)°

  • V = 2035.01 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.985

  • 18922 measured reflections

  • 5086 independent reflections

  • 3415 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.151

  • S = 1.02

  • 5086 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg5 are the centroids of rings C1–C6 and C17–C22, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg5i 0.93 2.91 3.757 (2) 151
C25—H25BCg3ii 0.96 2.71 3.450 (3) 134
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoxazoline derivatives have been shown to be efficient precursors for the preparation of many synthetic intermediates including γ-amino alcohols and β-hydroxy ketones (Kozikowski, 1984). They display interesting biological properties such as herbicidal, plant growth regulators and antitumour activities (Howe & Shelton, 1990). The title compound in which a chromane and isoxazole ring are fused was synthesized by (Bakthadoss & Murugan, 2010), and we report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The bond lengths (Allen et al., 1987) and bond angles are normal. The pyran ring (O1/C1/C6-C9) of the chromane moiety adopts an envelope conformation with atom C9 as the flap; puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli,1983) are: q2=0.405 (2) Å, q3 = -0.247 (2) Å, φ2 = 123.9 (3)° and Δs(C9)= 6.26 (2)°, respectively.

The isoxazole ring (N1/C7/C8/C10/O2) has a twist conformation on bond O2-C10. The attached aromatic rings (C11—C16 and C17—C22) are twisted away from its mean plane by 56.19 (10)° and 50.57 (10)°, respectively. The two aromatic rings are normal to each other with a dihedral angle of 89.2 (1) °.

The carboxylate group assumes an extended conformation which can be seen from the torsion angle C8—C24—O4—C25 = -179.18 (19)°.

In the crystal, there are no classical hydrogen bonds. The molecules are linked via C—H···π interactions (Table 1), forming a two-dimensional network lying parallel to plane (1 0 -1).

Related literature top

For the biological activity of isoxazoline derivatives, see: Kozikowski (1984); Howe & Shelton (1990); Bakthadoss & Murugan (2010). For the synthesis of chromenoisoxazolidines by intramolecular 1,3-dipolar cycloadditions, see: Bakthadoss & Murugan (2010). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to the published procedure (Bakthadoss & Murugan, 2010). A mixture of (E)- methyl 2-((2-formylphenoxy)methyl)-3-p-tolylacrylate (2 mmol, 0.60 g) and N-phenylhydroxylamine (3 mmol, 0.33 g) in ethanol (10 ml) was refluxed for 6 h. After the completion of the reaction, as indicated by TLC, the reaction mixture was concentrated under reduced pressure and the resulting crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 × 15 ml). The organic layers were combined and washed with brine (3 × 15 ml) and dried over anhydrous Na2SO4, and the solvent was removed under reduced pressure. The crude mass was purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate-hexane (0.5: 9.5) to afford the pure compound as a colourless solid in 92% yield. Colourless block-like crystals were obtained by slow evaporation of a solution in ethyl acetate-hexane (0.5: 9.5).

Refinement top

N and C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: N-H = 0. \%A, C–H = 0.93–0.98 Å, with Uiso(H) =1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at 30% probability level. the H atoms have been omitted for clarity.
Methyl 1-phenyl-3-p-tolyl-1,9b-dihydro-3H-chromeno[4,3-c]isoxazole-3a(4H)-carboxylate top
Crystal data top
C25H23NO4F(000) = 848
Mr = 401.44Dx = 1.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3415 reflections
a = 14.0674 (7) Åθ = 1.6–28.4°
b = 7.8105 (4) ŵ = 0.09 mm1
c = 19.7680 (9) ÅT = 293 K
β = 110.456 (3)°Block, colourless
V = 2035.01 (17) Å30.22 × 0.19 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
5086 independent reflections
Radiation source: fine-focus sealed tube3415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1816
Tmin = 0.981, Tmax = 0.985k = 108
18922 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.5852P]
where P = (Fo2 + 2Fc2)/3
5086 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C25H23NO4V = 2035.01 (17) Å3
Mr = 401.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.0674 (7) ŵ = 0.09 mm1
b = 7.8105 (4) ÅT = 293 K
c = 19.7680 (9) Å0.22 × 0.19 × 0.17 mm
β = 110.456 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5086 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3415 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.035
18922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
5086 reflectionsΔρmin = 0.39 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28173 (13)0.2285 (2)0.03324 (9)0.0428 (4)
C20.21242 (16)0.2949 (3)0.03043 (10)0.0549 (5)
H20.14320.29210.03850.066*
C30.24774 (18)0.3646 (3)0.08108 (10)0.0641 (6)
H30.20200.40920.12360.077*
C40.35030 (19)0.3690 (3)0.06946 (10)0.0610 (6)
H40.37370.41810.10360.073*
C50.41795 (16)0.3000 (2)0.00667 (10)0.0499 (5)
H50.48700.30130.00070.060*
C60.38480 (13)0.2284 (2)0.04573 (9)0.0396 (4)
C70.46000 (12)0.1483 (2)0.11273 (8)0.0362 (4)
H70.49200.05030.09830.043*
C80.41150 (12)0.0860 (2)0.16788 (8)0.0354 (4)
C90.31056 (13)0.1770 (2)0.15550 (9)0.0433 (4)
H9A0.27880.12830.18740.052*
H9B0.32340.29710.16770.052*
C100.49094 (12)0.1477 (2)0.24007 (8)0.0363 (4)
H100.54820.06760.25480.044*
C110.64415 (12)0.2269 (2)0.16687 (9)0.0366 (4)
C120.67274 (15)0.1419 (2)0.11511 (10)0.0486 (4)
H120.62360.10260.07290.058*
C130.77511 (17)0.1158 (3)0.12682 (13)0.0592 (6)
H130.79400.05840.09230.071*
C140.84856 (16)0.1735 (3)0.18855 (13)0.0594 (5)
H140.91680.15670.19560.071*
C150.82042 (14)0.2561 (3)0.23968 (12)0.0544 (5)
H150.87010.29440.28180.065*
C160.71910 (13)0.2836 (2)0.22953 (10)0.0435 (4)
H160.70120.34010.26470.052*
C170.45771 (12)0.1822 (2)0.30376 (8)0.0387 (4)
C180.43833 (14)0.3468 (2)0.32141 (10)0.0469 (4)
H180.44120.43780.29190.056*
C190.41461 (14)0.3771 (3)0.38296 (10)0.0529 (5)
H190.40310.48870.39460.063*
C200.40780 (14)0.2438 (3)0.42726 (10)0.0526 (5)
C210.42430 (16)0.0803 (3)0.40799 (10)0.0591 (5)
H210.41780.01140.43610.071*
C220.45034 (15)0.0490 (3)0.34767 (9)0.0516 (5)
H220.46300.06260.33670.062*
C230.3852 (2)0.2806 (4)0.49513 (12)0.0751 (7)
H23A0.36970.17540.51420.113*
H23B0.32820.35670.48400.113*
H23C0.44330.33290.53030.113*
C240.39583 (14)0.1064 (2)0.16638 (9)0.0438 (4)
C250.3720 (2)0.3606 (3)0.09983 (16)0.0832 (8)
H25A0.43200.41810.13030.125*
H25B0.35700.39610.05070.125*
H25C0.31610.38910.11490.125*
N10.54050 (10)0.27177 (18)0.15286 (7)0.0368 (3)
O10.24239 (9)0.16260 (17)0.08243 (6)0.0490 (3)
O20.52327 (8)0.30692 (14)0.21877 (6)0.0401 (3)
O30.3903 (2)0.1874 (2)0.21509 (9)0.1145 (9)
O40.38844 (14)0.17740 (17)0.10527 (8)0.0697 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0519 (10)0.0355 (9)0.0363 (8)0.0049 (7)0.0094 (7)0.0022 (7)
C20.0565 (11)0.0533 (12)0.0436 (10)0.0008 (9)0.0034 (8)0.0021 (8)
C30.0841 (16)0.0579 (13)0.0360 (9)0.0009 (11)0.0030 (9)0.0054 (9)
C40.0884 (16)0.0548 (13)0.0381 (9)0.0088 (11)0.0201 (10)0.0060 (9)
C50.0642 (12)0.0465 (11)0.0398 (9)0.0085 (9)0.0190 (8)0.0005 (8)
C60.0525 (10)0.0304 (8)0.0339 (8)0.0071 (7)0.0126 (7)0.0040 (6)
C70.0435 (9)0.0304 (8)0.0351 (8)0.0050 (7)0.0140 (7)0.0030 (6)
C80.0408 (8)0.0336 (9)0.0314 (7)0.0032 (7)0.0123 (6)0.0007 (6)
C90.0420 (9)0.0505 (11)0.0367 (8)0.0014 (8)0.0130 (7)0.0019 (7)
C100.0375 (8)0.0362 (9)0.0354 (8)0.0007 (7)0.0133 (6)0.0040 (7)
C110.0425 (9)0.0313 (8)0.0410 (8)0.0024 (7)0.0208 (7)0.0022 (7)
C120.0606 (11)0.0467 (11)0.0483 (10)0.0032 (9)0.0312 (9)0.0022 (8)
C130.0742 (14)0.0491 (12)0.0769 (14)0.0044 (10)0.0549 (12)0.0031 (10)
C140.0486 (11)0.0531 (12)0.0858 (15)0.0058 (9)0.0350 (11)0.0145 (11)
C150.0433 (10)0.0517 (12)0.0670 (12)0.0033 (8)0.0176 (9)0.0066 (10)
C160.0437 (9)0.0414 (10)0.0479 (10)0.0033 (7)0.0190 (7)0.0026 (8)
C170.0362 (8)0.0455 (10)0.0329 (8)0.0014 (7)0.0103 (6)0.0036 (7)
C180.0503 (10)0.0484 (11)0.0460 (10)0.0016 (8)0.0220 (8)0.0058 (8)
C190.0502 (10)0.0604 (12)0.0519 (11)0.0054 (9)0.0225 (9)0.0127 (9)
C200.0463 (10)0.0751 (14)0.0370 (9)0.0064 (9)0.0155 (7)0.0053 (9)
C210.0724 (13)0.0688 (14)0.0397 (10)0.0044 (11)0.0242 (9)0.0074 (9)
C220.0664 (12)0.0503 (11)0.0390 (9)0.0066 (9)0.0196 (8)0.0004 (8)
C230.0841 (16)0.102 (2)0.0469 (11)0.0109 (14)0.0328 (11)0.0068 (12)
C240.0516 (10)0.0380 (9)0.0379 (8)0.0074 (8)0.0104 (7)0.0017 (7)
C250.123 (2)0.0343 (12)0.106 (2)0.0138 (12)0.0565 (18)0.0164 (12)
N10.0402 (7)0.0371 (7)0.0361 (7)0.0032 (6)0.0169 (6)0.0053 (6)
O10.0406 (6)0.0594 (8)0.0419 (6)0.0064 (6)0.0079 (5)0.0042 (6)
O20.0450 (6)0.0381 (7)0.0427 (6)0.0064 (5)0.0223 (5)0.0115 (5)
O30.230 (3)0.0594 (11)0.0599 (11)0.0586 (13)0.0579 (14)0.0059 (8)
O40.1217 (13)0.0332 (7)0.0694 (10)0.0144 (8)0.0526 (9)0.0117 (7)
Geometric parameters (Å, º) top
C1—O11.376 (2)C13—C141.371 (3)
C1—C61.383 (2)C13—H130.9300
C1—C21.395 (2)C14—C151.369 (3)
C2—C31.376 (3)C14—H140.9300
C2—H20.9300C15—C161.385 (2)
C3—C41.380 (3)C15—H150.9300
C3—H30.9300C16—H160.9300
C4—C51.383 (3)C17—C221.382 (3)
C4—H40.9300C17—C181.384 (2)
C5—C61.393 (2)C18—C191.390 (2)
C5—H50.9300C18—H180.9300
C6—C71.512 (2)C19—C201.385 (3)
C7—N11.488 (2)C19—H190.9300
C7—C81.553 (2)C20—C211.376 (3)
C7—H70.9800C20—C231.511 (3)
C8—C241.518 (2)C21—C221.386 (2)
C8—C91.529 (2)C21—H210.9300
C8—C101.550 (2)C22—H220.9300
C9—O11.432 (2)C23—H23A0.9600
C9—H9A0.9700C23—H23B0.9600
C9—H9B0.9700C23—H23C0.9600
C10—O21.4368 (19)C24—O31.178 (2)
C10—C171.513 (2)C24—O41.300 (2)
C10—H100.9800C25—O41.447 (2)
C11—C161.389 (2)C25—H25A0.9600
C11—C121.392 (2)C25—H25B0.9600
C11—N11.429 (2)C25—H25C0.9600
C12—C131.391 (3)N1—O21.4326 (16)
C12—H120.9300
O1—C1—C6121.96 (15)C12—C13—H13119.5
O1—C1—C2116.73 (16)C15—C14—C13119.32 (18)
C6—C1—C2121.31 (17)C15—C14—H14120.3
C3—C2—C1119.17 (19)C13—C14—H14120.3
C3—C2—H2120.4C14—C15—C16121.0 (2)
C1—C2—H2120.4C14—C15—H15119.5
C2—C3—C4120.76 (18)C16—C15—H15119.5
C2—C3—H3119.6C15—C16—C11120.13 (17)
C4—C3—H3119.6C15—C16—H16119.9
C3—C4—C5119.41 (19)C11—C16—H16119.9
C3—C4—H4120.3C22—C17—C18118.46 (16)
C5—C4—H4120.3C22—C17—C10120.09 (16)
C4—C5—C6121.32 (19)C18—C17—C10121.39 (15)
C4—C5—H5119.3C17—C18—C19120.50 (18)
C6—C5—H5119.3C17—C18—H18119.7
C1—C6—C5118.01 (16)C19—C18—H18119.7
C1—C6—C7121.70 (15)C20—C19—C18121.11 (19)
C5—C6—C7120.26 (16)C20—C19—H19119.4
N1—C7—C6111.58 (13)C18—C19—H19119.4
N1—C7—C8105.54 (12)C21—C20—C19117.84 (17)
C6—C7—C8113.59 (13)C21—C20—C23122.1 (2)
N1—C7—H7108.7C19—C20—C23120.1 (2)
C6—C7—H7108.7C20—C21—C22121.52 (19)
C8—C7—H7108.7C20—C21—H21119.2
C24—C8—C9109.67 (14)C22—C21—H21119.2
C24—C8—C10112.27 (13)C17—C22—C21120.52 (19)
C9—C8—C10109.47 (13)C17—C22—H22119.7
C24—C8—C7113.13 (13)C21—C22—H22119.7
C9—C8—C7110.69 (13)C20—C23—H23A109.5
C10—C8—C7101.35 (12)C20—C23—H23B109.5
O1—C9—C8112.46 (14)H23A—C23—H23B109.5
O1—C9—H9A109.1C20—C23—H23C109.5
C8—C9—H9A109.1H23A—C23—H23C109.5
O1—C9—H9B109.1H23B—C23—H23C109.5
C8—C9—H9B109.1O3—C24—O4121.62 (18)
H9A—C9—H9B107.8O3—C24—C8124.52 (17)
O2—C10—C17108.13 (13)O4—C24—C8113.86 (15)
O2—C10—C8101.51 (12)O4—C25—H25A109.5
C17—C10—C8119.25 (13)O4—C25—H25B109.5
O2—C10—H10109.1H25A—C25—H25B109.5
C17—C10—H10109.1O4—C25—H25C109.5
C8—C10—H10109.1H25A—C25—H25C109.5
C16—C11—C12118.91 (16)H25B—C25—H25C109.5
C16—C11—N1119.98 (14)C11—N1—O2110.86 (12)
C12—C11—N1120.78 (15)C11—N1—C7118.62 (13)
C13—C12—C11119.71 (18)O2—N1—C7105.67 (11)
C13—C12—H12120.1C1—O1—C9112.99 (13)
C11—C12—H12120.1N1—O2—C10105.79 (11)
C14—C13—C12120.97 (18)C24—O4—C25116.71 (17)
C14—C13—H13119.5
O1—C1—C2—C3179.09 (17)O2—C10—C17—C22161.69 (15)
C6—C1—C2—C31.3 (3)C8—C10—C17—C2283.2 (2)
C1—C2—C3—C40.1 (3)O2—C10—C17—C1815.5 (2)
C2—C3—C4—C51.1 (3)C8—C10—C17—C1899.61 (19)
C3—C4—C5—C61.1 (3)C22—C17—C18—C191.6 (3)
O1—C1—C6—C5179.12 (16)C10—C17—C18—C19175.59 (15)
C2—C1—C6—C51.2 (3)C17—C18—C19—C201.3 (3)
O1—C1—C6—C73.0 (3)C18—C19—C20—C210.6 (3)
C2—C1—C6—C7176.68 (16)C18—C19—C20—C23178.06 (19)
C4—C5—C6—C10.1 (3)C19—C20—C21—C222.2 (3)
C4—C5—C6—C7177.88 (17)C23—C20—C21—C22176.5 (2)
C1—C6—C7—N1125.26 (16)C18—C17—C22—C210.1 (3)
C5—C6—C7—N156.9 (2)C10—C17—C22—C21177.14 (17)
C1—C6—C7—C86.1 (2)C20—C21—C22—C171.8 (3)
C5—C6—C7—C8176.00 (15)C9—C8—C24—O380.1 (3)
N1—C7—C8—C24134.90 (14)C10—C8—C24—O341.9 (3)
C6—C7—C8—C24102.56 (16)C7—C8—C24—O3155.8 (2)
N1—C7—C8—C9101.55 (15)C9—C8—C24—O499.69 (18)
C6—C7—C8—C920.99 (18)C10—C8—C24—O4138.38 (16)
N1—C7—C8—C1014.50 (15)C7—C8—C24—O424.4 (2)
C6—C7—C8—C10137.04 (14)C16—C11—N1—O225.1 (2)
C24—C8—C9—O172.08 (17)C12—C11—N1—O2161.65 (14)
C10—C8—C9—O1164.32 (13)C16—C11—N1—C7147.58 (15)
C7—C8—C9—O153.43 (18)C12—C11—N1—C739.2 (2)
C24—C8—C10—O2156.94 (13)C6—C7—N1—C11123.39 (15)
C9—C8—C10—O281.01 (14)C8—C7—N1—C11112.79 (15)
C7—C8—C10—O235.94 (14)C6—C7—N1—O2111.56 (14)
C24—C8—C10—C1784.50 (19)C8—C7—N1—O212.26 (15)
C9—C8—C10—C1737.5 (2)C6—C1—O1—C929.8 (2)
C7—C8—C10—C17154.50 (15)C2—C1—O1—C9150.52 (16)
C16—C11—C12—C130.2 (3)C8—C9—O1—C158.64 (19)
N1—C11—C12—C13173.12 (16)C11—N1—O2—C1092.54 (14)
C11—C12—C13—C140.3 (3)C7—N1—O2—C1037.19 (14)
C12—C13—C14—C150.8 (3)C17—C10—O2—N1172.31 (12)
C13—C14—C15—C160.7 (3)C8—C10—O2—N146.05 (13)
C14—C15—C16—C110.1 (3)O3—C24—O4—C250.6 (3)
C12—C11—C16—C150.3 (3)C8—C24—O4—C25179.18 (19)
N1—C11—C16—C15173.06 (16)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg5 are the centroids of rings C1–C6 and C17–C22, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg5i0.932.913.757 (2)151
C25—H25B···Cg3ii0.962.713.450 (3)134
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg5 are the centroids of rings C1–C6 and C17–C22, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg5i0.932.913.757 (2)151
C25—H25B···Cg3ii0.962.713.450 (3)134
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y1, z.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Web of Science Google Scholar
First citationBakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHowe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603–4607.  CrossRef CAS Web of Science Google Scholar
First citationKozikowski, A. P. (1984). Acc. Chem. Res. 17, 410–416.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o281-o282
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds