organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-phenyl­isoxazole-5-carboxyl­ate

aAffiliated Hospital of Xi'an Medical College, 48 Fenghao West Road, 710077, Xi'an, People's Republic of China
*Correspondence e-mail: liyajun9@hotmail.com

(Received 31 December 2013; accepted 2 January 2014; online 5 February 2014)

In the title compound, C11H9NO3, the dihedral angle between the isoxazole and phenyl rings is 19.79 (12), while the ester group is inclined to the isoxazole group by 12.14 (6)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming layers lying parallel to (010).

Related literature

For the biological activity of isoxazole derivatives, see: Musad et al. (2011[Musad, E. A., Mohamed, R., Saeed, B. A., Vishwanath, B. S. & Lokanatha, R. K. M. (2011). Bioorg. Med. Chem. Lett. 21, 3536-3540.]). For the synthesis and the structure of a related compound, see: Wang et al. (2013[Wang, L., Liu, X.-Y., Li, Z.-W. & Zhang, S.-Y. (2013). Acta Cryst. E69, o733.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO3

  • Mr = 203.19

  • Monoclinic, P 21 /c

  • a = 12.2275 (18) Å

  • b = 13.604 (2) Å

  • c = 5.8746 (9) Å

  • β = 97.011 (3)°

  • V = 969.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.36 × 0.25 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.987

  • 4807 measured reflections

  • 1718 independent reflections

  • 1238 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.133

  • S = 1.13

  • 1718 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.58 3.512 (3) 175
C12—H12B⋯O2ii 0.96 2.50 3.412 (3) 159
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The wide occurrence of heterocycles, such as isoxazoles, in bioactive natural products, pharmaceuticals and agrochemicals has made them important synthetic targets. They are of great importance in biological chemistry, showing anticancer activity, and substituted isoxazoles have revealed antibacterial, antioxidant, insecticidal properties (Musad et al., 2011). Here we report on the crystal structure of the title isoxazole derivative, synthesized by alcoholysis of 3-Phenyl-isoxazole-5-carbonyl chloride in dichloromethane.

In the molecule of the title compound, Fig. 1, the dihedral angle between the phenyl and the isoxazole rings is 19.79 (12) °. This is larger than that of 7.37 (19)° observed in the related compound Isopropyl 3-phenylisoxazole-5-carboxylate (Wang et al., 2013), but the bond lengths within the isoxazole ring are the same.

In the crystal, molecules are linked by C—H···O hydrogen bonds (Table 1), forming layers lying parallel to (010).

Related literature top

For the biological activity of isoxazole derivatives, see: Musad et al. (2011). For the synthesis and the structure of a related compound, see: Wang et al. (2013).

Experimental top

3-Phenylisoxazole-5-carboxylic acid (10 mmol, 1.95 g; Wang et al., 2013) was dissolved in 100 ml dichloromethane, then thionyl chloride (12 mmol, 1.43 g) was added drop wise while the solution was stirred for 20 minutes in an ice bath. The solvent was removed under reduced pressure and the mixture was used for the next step without further purification. Methanol (20 mmol, 0.64 g) was then added and the mixture stirred for 6 h at room temperature. The resulting residue was purified as a white solid (1.54 g; 76% yield). Recrystallization in dichloromethane gave fine colourless plate-like crystals suitable for X-ray diffraction analysis.

Refinement top

All H atoms were placed in idealized positions and allowed to ride on the respective parent atom: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Methyl 3-phenylisoxazole-5-carboxylate top
Crystal data top
C11H9NO3Z = 4
Mr = 203.19F(000) = 424
Monoclinic, P21/cDx = 1.392 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.2275 (18) Åθ = 1.7–25.1°
b = 13.604 (2) ŵ = 0.10 mm1
c = 5.8746 (9) ÅT = 296 K
β = 97.011 (3)°Plate, colourless
V = 969.9 (3) Å30.36 × 0.25 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
1718 independent reflections
Radiation source: fine-focus sealed tube1238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1410
Tmin = 0.964, Tmax = 0.987k = 1516
4807 measured reflectionsl = 67
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0531P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1718 reflectionsΔρmax = 0.17 e Å3
138 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (19)
Crystal data top
C11H9NO3V = 969.9 (3) Å3
Mr = 203.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2275 (18) ŵ = 0.10 mm1
b = 13.604 (2) ÅT = 296 K
c = 5.8746 (9) Å0.36 × 0.25 × 0.13 mm
β = 97.011 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1238 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.987Rint = 0.036
4807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.13Δρmax = 0.17 e Å3
1718 reflectionsΔρmin = 0.15 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58165 (16)0.12445 (15)0.1263 (4)0.0548 (6)
O10.69685 (13)0.12779 (12)0.1714 (3)0.0568 (5)
O20.91297 (15)0.11346 (15)0.3629 (3)0.0734 (7)
O30.85964 (13)0.14679 (13)0.7065 (3)0.0601 (5)
C10.3828 (2)0.15075 (17)0.5374 (4)0.0497 (7)
H10.42980.17420.66200.060*
C20.2707 (2)0.14652 (19)0.5489 (5)0.0581 (7)
H20.24260.16770.68070.070*
C30.2004 (2)0.11121 (19)0.3669 (5)0.0593 (8)
H30.12490.10880.37460.071*
C40.2428 (2)0.07947 (19)0.1727 (5)0.0585 (7)
H40.19560.05460.05010.070*
C50.35431 (19)0.08422 (18)0.1585 (4)0.0495 (7)
H50.38200.06320.02610.059*
C60.42544 (18)0.12036 (15)0.3418 (4)0.0419 (6)
C70.54474 (18)0.12641 (15)0.3261 (4)0.0404 (6)
C90.72372 (19)0.13278 (17)0.4011 (4)0.0447 (6)
C100.63299 (18)0.13246 (16)0.5065 (4)0.0451 (6)
H100.62860.13550.66330.054*
C110.8426 (2)0.13030 (18)0.4824 (5)0.0511 (7)
C120.9720 (2)0.1372 (2)0.8127 (5)0.0722 (9)
H12A1.00150.07550.76940.108*
H12B0.97370.13970.97640.108*
H12C1.01540.19000.76290.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0377 (12)0.0773 (16)0.0498 (14)0.0009 (10)0.0068 (10)0.0028 (11)
O10.0444 (11)0.0800 (13)0.0475 (11)0.0009 (9)0.0119 (8)0.0010 (9)
O20.0451 (11)0.1176 (18)0.0603 (13)0.0086 (11)0.0184 (9)0.0003 (11)
O30.0400 (10)0.0877 (14)0.0523 (12)0.0010 (9)0.0044 (8)0.0068 (10)
C10.0448 (15)0.0555 (16)0.0492 (16)0.0026 (12)0.0074 (12)0.0066 (12)
C20.0490 (17)0.0677 (18)0.0603 (18)0.0044 (13)0.0173 (13)0.0047 (14)
C30.0363 (14)0.0689 (19)0.073 (2)0.0013 (13)0.0078 (14)0.0140 (15)
C40.0425 (16)0.0702 (18)0.0598 (19)0.0053 (13)0.0062 (13)0.0057 (14)
C50.0455 (15)0.0563 (15)0.0466 (16)0.0009 (12)0.0054 (12)0.0007 (12)
C60.0406 (14)0.0411 (13)0.0438 (14)0.0013 (10)0.0039 (11)0.0035 (11)
C70.0412 (14)0.0371 (13)0.0427 (14)0.0005 (10)0.0040 (11)0.0020 (11)
C90.0441 (15)0.0497 (15)0.0405 (14)0.0008 (11)0.0057 (11)0.0024 (11)
C100.0427 (14)0.0525 (15)0.0407 (14)0.0043 (12)0.0075 (11)0.0007 (11)
C110.0451 (16)0.0565 (16)0.0529 (17)0.0014 (12)0.0108 (13)0.0010 (13)
C120.0457 (17)0.104 (2)0.0639 (19)0.0039 (15)0.0067 (14)0.0015 (17)
Geometric parameters (Å, º) top
N1—C71.308 (3)C4—C51.378 (3)
N1—O11.402 (2)C4—H40.9300
O1—C91.351 (3)C5—C61.389 (3)
O2—C111.197 (3)C5—H50.9300
O3—C111.326 (3)C6—C71.475 (3)
O3—C121.443 (3)C7—C101.420 (3)
C1—C61.382 (3)C9—C101.335 (3)
C1—C21.382 (3)C9—C111.474 (3)
C1—H10.9300C10—H100.9300
C2—C31.374 (4)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.379 (4)C12—H12C0.9600
C3—H30.9300
C7—N1—O1106.16 (18)C5—C6—C7120.1 (2)
C9—O1—N1107.86 (17)N1—C7—C10110.9 (2)
C11—O3—C12116.1 (2)N1—C7—C6120.5 (2)
C6—C1—C2120.3 (2)C10—C7—C6128.6 (2)
C6—C1—H1119.8C10—C9—O1110.4 (2)
C2—C1—H1119.8C10—C9—C11133.8 (2)
C3—C2—C1120.4 (3)O1—C9—C11115.6 (2)
C3—C2—H2119.8C9—C10—C7104.6 (2)
C1—C2—H2119.8C9—C10—H10127.7
C2—C3—C4119.4 (2)C7—C10—H10127.7
C2—C3—H3120.3O2—C11—O3125.2 (2)
C4—C3—H3120.3O2—C11—C9124.4 (3)
C5—C4—C3120.7 (2)O3—C11—C9110.3 (2)
C5—C4—H4119.7O3—C12—H12A109.5
C3—C4—H4119.7O3—C12—H12B109.5
C4—C5—C6120.0 (2)H12A—C12—H12B109.5
C4—C5—H5120.0O3—C12—H12C109.5
C6—C5—H5120.0H12A—C12—H12C109.5
C1—C6—C5119.1 (2)H12B—C12—H12C109.5
C1—C6—C7120.8 (2)
C7—N1—O1—C90.7 (3)C5—C6—C7—C10159.5 (2)
C6—C1—C2—C30.6 (4)N1—O1—C9—C100.2 (3)
C1—C2—C3—C40.3 (4)N1—O1—C9—C11176.1 (2)
C2—C3—C4—C51.0 (4)O1—C9—C10—C70.2 (3)
C3—C4—C5—C60.7 (4)C11—C9—C10—C7174.6 (3)
C2—C1—C6—C50.9 (3)N1—C7—C10—C90.7 (3)
C2—C1—C6—C7178.8 (2)C6—C7—C10—C9177.9 (2)
C4—C5—C6—C10.3 (3)C12—O3—C11—O24.0 (4)
C4—C5—C6—C7179.4 (2)C12—O3—C11—C9174.4 (2)
O1—N1—C7—C100.8 (3)C10—C9—C11—O2166.0 (3)
O1—N1—C7—C6177.87 (18)O1—C9—C11—O28.7 (4)
C1—C6—C7—N1160.8 (2)C10—C9—C11—O312.4 (4)
C5—C6—C7—N118.9 (3)O1—C9—C11—O3172.9 (2)
C1—C6—C7—C1020.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.583.512 (3)175
C12—H12B···O2ii0.962.503.412 (3)159
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.583.512 (3)175
C12—H12B···O2ii0.962.503.412 (3)159
Symmetry codes: (i) x1, y, z; (ii) x, y, z+1.
 

Acknowledgements

Part of this work was supported by the Basic Research Project of the Natural Science Foundation of Shaanxi Province (No. 2009JM4035) and the Project of the Health Office of Shaanxi Province (No. 08H38).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMusad, E. A., Mohamed, R., Saeed, B. A., Vishwanath, B. S. & Lokanatha, R. K. M. (2011). Bioorg. Med. Chem. Lett. 21, 3536–3540.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Liu, X.-Y., Li, Z.-W. & Zhang, S.-Y. (2013). Acta Cryst. E69, o733.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds