organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o256-o257

Bis(6-nitro-1,10-phenanthrolin-1-ium) 2,5-di­carb­­oxy­terephthalate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong76@163.com

(Received 7 January 2014; accepted 3 February 2014; online 8 February 2014)

In the structure of the title 2:1 proton-transfer compound, 2C12H8N3O2+·C10H4O82−, the 6-nitro-1,10-phenanthroline mol­ecules act as proton sponges, accepting protons from pyromellitic acid. The –NO2 group of one of the 6-nitro-1,10-phenanthrolin-1-ium cations is disordered and was refined with a site-occupancy ratio of 0.624 (15):0.376 (15). Two –COOH(–COO) groups of the 2,5-di­carb­oxy­terephthalate dianion are disordered and were refined with site-occupancy ratios of 0.769 (4):0.231 (4) and 0.766 (5):0.234 (5). The –NO2 group of the second cation is also disordered about a pseudo-twofold rotation axis and was refined with a site-occupancy ratio of 0.903 (3):0.097 (3). There is an intra­molecular O—H⋯O hydrogen bond in the anion. The phenanthroline rings of the two cations are inclined to one another by 31.3 (1)°. In the anions, considering the major components only, the carb­oxy­lic acid groups (–COOH) are inclined to the benzene ring by 17.3 (2) and 22.3 (3)°. The carboxyl­ate groups (–COO) are twisted by 9.3 (2) and 13.6 (6)° with respect to the benzene ring. In the crystal, adjacent 2,5-di­carb­oxy­terephthalate anions are linked via O—H⋯O hydrogen bonds, forming chains propagating along [010]. The cations are attached to the chain of anions by N—H⋯O hydrogen bonds.

Related literature

For related structures involving pyromellitic acid, see: Li et al. (2003[Li, Y., Hao, N., Lu, Y. & Wang, E.-B. (2003). Inorg. Chem. 42, 3119-3124.]); Guo et al. (2007[Guo, H., Lu, D.-H. & Lu, X.-W. (2007). Z. Kristallogr. New Cryst. Struct. 222, 348-350.]); Fabelo et al. (2008[Fabelo, O., Pason, J., Lloret, F., Julve, M. & Ruiz-Perez, C. (2008). Inorg. Chem. 47, 3568-3576.]); Zhong (2013[Zhong, K.-L. (2013). Acta Cryst. E69, o1782-o1783.]).

[Scheme 1]

Experimental

Crystal data
  • 2C12H8N3O2+·C10H4O82−

  • Mr = 704.56

  • Triclinic, [P \overline 1]

  • a = 8.5937 (6) Å

  • b = 9.8302 (7) Å

  • c = 18.8700 (14) Å

  • α = 77.810 (2)°

  • β = 83.622 (2)°

  • γ = 68.025 (2)°

  • V = 1444.05 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 223 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.969, Tmax = 0.981

  • 30563 measured reflections

  • 5237 independent reflections

  • 3942 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.191

  • S = 1.05

  • 5237 reflections

  • 518 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O8 0.83 1.36 2.031 (10) 135
O6—H6O⋯O8′ 0.83 2.50 3.024 (4) 123
O10—H10O⋯O5i 0.83 1.92 2.724 (4) 164
N2—H2N′⋯O7′ii 0.87 2.16 3.012 (4) 165
N3—H3N⋯O7′ii 0.87 1.86 2.695 (4) 160
N2—H2N′⋯O7ii 0.87 2.21 3.078 (9) 172
N3—H3N⋯O7ii 0.87 1.84 2.678 (11) 162
N6—H6N⋯O11iii 0.87 1.85 2.712 (4) 168
Symmetry codes: (i) x, y+1, z; (ii) x+1, y-1, z; (iii) -x+1, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyromellitic (PMA) acid (Li et al., 2003; Fabelo et al., 2008) has been widely use in constructing interesting supramolecular networks because it can act not only as an hydrogen bond acceptor but also as an hydrogen bond donor, depending upon the number of deprotonated carboxylate groups present. Proton-transfer compounds of PMA with 1,10-phenanthroline for example 1,10-Phenanthrolinium trihydrogen-1,2,4,5-benzenetetracarboxylate monohydrate [Guo et al., 2007] and a substituted phenanthroline 2,9-Dimethyl-1,10-phenanthrolin-1-ium 2,4,5-tricarboxybenzoate monohydrate [Zhong, 2013] have been synthesized and reported. The title compound was obtained using PMA and 6-nitro-1,10-phenanthroline, via a thermal reaction and we report herein on its crystal structure.

The asymmetric unit of the title compound consists of two 6-nitro-1,10-phenanthrolin-1-ium cations, one 2,5-dicarboxyterephthalate anion, Fig. 1. The proton transfer is from two carboxyl groups to the ring N atoms (N3 and N6) of the 5-nitro-1,10-phenanthroline cations. In the anion, the dihedral angles between the benzene ring of PMA2- and the mean-planes of the COOH (COO-) groups are 17.3 (2) ° for (O5/C25/O6), 22.3 (3) ° for (O9/C31/O10), 13.6 (6) ° for (O7/C28/O8) and 9.3 (2)° for (O11/C33/O12). An intramolecular O—H···O hydrogen bond is observed in the anion (Fig. 1 and Table 1).

In the crystal, adjacent PMA2- anions interact via O—H···O hydrogen bonds, forming one-dimensional chains along the b axis, and the 6-nitro-1,10-phenanthrolin-1-ium cations are attached to the PMA2- anions by N—H···O hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For related structures involving pyromellitic acid, see: Li et al. (2003); Guo et al. (2007); Fabelo et al. (2008); Zhong (2013).

Experimental top

0.1 mmol 5-nitro-1,10-phenanthroline, 0.1 mmol 1,2,4,5-benzenetetracarboxylic acid, and 2.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 383 K for 72 h, whereupon pink block-shaped crystals of the title compound were obtained.

Refinement top

The NH H atoms and the carboxyl H atoms were located from difference electron-density maps. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: N—H = 0.87 Å and O—H = 0.83 Å withUiso(H) = 1.2Ueq(N) and = 1.5Ueq(O). The C bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.94 Å with Uiso(H) = 1.2Ueq(C). The –NO2 group (atoms O3/O4) of the one of the 5-nitro-1,10-phenanthrolin-1-ium cations was refined with a site-occupancy ratio of 0.624 (15):0.376 (15). Two –COOH(–COO-) groups (atoms O7/O8 and O9) of the 2,5-dicarboxyterephthalate dianion are disordered and were refined with site-occupancy ratios of 0.769 (4):0.231 (4) and 0.766 (5):0.234 (5), respectively. The –NO2 group (atoms N1/O1/O2) of the second cation is also disordered about a pseudo twofold rotation axis and was refined with a site-occupancy ratio of 0.903 (3):0.097 (3).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Only the major components of the disordered atoms are shown. There is an intramolecular O—H···O hydrogen bond in the anion shown as a thin dashed line (See Table 1 for details).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; symmetry codes: (i) x, y + 1, z; (ii) x + 1, y - 1, z; (iii) -x + 1, -y + 2, -z; (iv) x, - y + 1, z; (v) x, y + 1, z].
Bis(6-nitro-1,10-phenanthrolin-1-ium) 2,5-dicarboxyterephthalate top
Crystal data top
2C12H8N3O2+·C10H4O82Z = 2
Mr = 704.56F(000) = 724
Triclinic, P1Dx = 1.620 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5937 (6) ÅCell parameters from 9974 reflections
b = 9.8302 (7) Åθ = 2.3–27.2°
c = 18.8700 (14) ŵ = 0.13 mm1
α = 77.810 (2)°T = 223 K
β = 83.622 (2)°Block, pink
γ = 68.025 (2)°0.25 × 0.20 × 0.15 mm
V = 1444.05 (18) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
5237 independent reflections
Radiation source: fine-focus sealed tube3942 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.036
Detector resolution: 28.5714 pixels mm-1θmax = 25.3°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1111
Tmin = 0.969, Tmax = 0.981l = 2222
30563 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0939P)2 + 1.9537P]
where P = (Fo2 + 2Fc2)/3
5237 reflections(Δ/σ)max = 0.001
518 parametersΔρmax = 0.72 e Å3
24 restraintsΔρmin = 0.73 e Å3
Crystal data top
2C12H8N3O2+·C10H4O82γ = 68.025 (2)°
Mr = 704.56V = 1444.05 (18) Å3
Triclinic, P1Z = 2
a = 8.5937 (6) ÅMo Kα radiation
b = 9.8302 (7) ŵ = 0.13 mm1
c = 18.8700 (14) ÅT = 223 K
α = 77.810 (2)°0.25 × 0.20 × 0.15 mm
β = 83.622 (2)°
Data collection top
Rigaku Mercury CCD
diffractometer
5237 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
3942 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.981Rint = 0.036
30563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06824 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.05Δρmax = 0.72 e Å3
5237 reflectionsΔρmin = 0.73 e Å3
518 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3137 (4)0.3400 (3)0.5554 (2)0.0744 (12)0.903 (3)
O1'0.491 (4)0.164 (2)0.6658 (19)0.0744 (12)0.097 (3)
O20.3275 (5)0.1593 (4)0.64151 (19)0.0756 (12)0.903 (3)
O2'0.381 (4)0.069 (3)0.6705 (19)0.0756 (12)0.097 (3)
O30.1801 (12)0.5821 (17)0.2706 (6)0.068 (3)0.624 (15)
O3'0.123 (3)0.582 (3)0.2876 (10)0.094 (7)0.376 (15)
O40.0292 (11)0.4192 (7)0.2234 (3)0.065 (3)0.624 (15)
O4'0.0960 (19)0.4854 (14)0.1923 (7)0.082 (5)0.376 (15)
O50.5115 (3)0.4118 (3)0.20188 (16)0.0523 (7)
O60.2903 (4)0.4939 (3)0.27486 (15)0.0641 (9)
H6O0.23340.57210.28980.096*
O7'0.1076 (4)0.8482 (3)0.33626 (16)0.0324 (8)0.769 (4)
O70.1737 (14)0.8568 (10)0.3577 (6)0.0324 (8)0.231 (4)
O8'0.3302 (4)0.6580 (3)0.38628 (16)0.0420 (8)0.769 (4)
O80.2274 (13)0.6234 (9)0.3520 (5)0.0420 (8)0.231 (4)
O90.5320 (5)1.1519 (3)0.11200 (17)0.0479 (11)0.766 (5)
O9'0.3760 (13)1.1813 (10)0.1143 (5)0.045 (3)0.234 (5)
O100.4440 (6)1.1561 (4)0.22447 (18)0.0537 (11)0.766 (5)
H10O0.44911.24060.21250.081*0.766 (5)
O10'0.5481 (17)1.1344 (13)0.2056 (6)0.0537 (11)0.234 (5)
H10'0.59451.06360.23830.081*0.234 (5)
O110.6743 (3)0.9654 (3)0.04547 (15)0.0536 (7)
O120.7415 (5)0.7292 (3)0.04701 (17)0.0751 (11)
N10.3874 (4)0.2155 (4)0.58681 (16)0.0355 (8)0.903 (3)
N1'0.475 (2)0.0347 (19)0.6420 (9)0.0355 (8)0.097 (3)
H12A0.54630.05020.63770.043*0.903 (3)
N20.8495 (3)0.1032 (3)0.39818 (13)0.0283 (6)
H2N'0.93720.03570.38240.034*0.097 (3)
N30.9666 (3)0.1817 (3)0.47071 (13)0.0245 (6)
H3N1.01410.15380.43000.029*0.903 (3)
N40.0665 (5)0.5579 (4)0.2275 (2)0.0570 (9)
N50.2343 (4)0.7762 (3)0.02188 (14)0.0364 (7)
N60.1136 (3)1.0338 (3)0.07212 (14)0.0336 (6)
H6N0.18111.02170.03410.040*
C10.5424 (4)0.1202 (4)0.55391 (17)0.0293 (7)
H1A0.44480.18710.57280.035*0.097 (3)
C20.6201 (4)0.1748 (3)0.48754 (16)0.0258 (7)
C30.7642 (4)0.0698 (3)0.45973 (15)0.0231 (6)
C40.7944 (4)0.2422 (3)0.36302 (17)0.0334 (7)
H40.85220.26690.31990.040*
C50.6551 (4)0.3547 (3)0.38622 (18)0.0355 (8)
H50.62220.45260.35960.043*
C60.5674 (4)0.3217 (3)0.44759 (18)0.0330 (7)
H60.47230.39640.46330.040*
C70.8291 (3)0.0827 (3)0.49830 (15)0.0222 (6)
C81.0286 (4)0.3212 (3)0.50596 (17)0.0299 (7)
H81.12480.38840.48630.036*
C90.9570 (4)0.3723 (4)0.57085 (18)0.0346 (8)
H91.00410.47210.59440.042*
C100.8179 (4)0.2759 (4)0.59978 (17)0.0327 (7)
H100.76770.30830.64360.039*
C110.7504 (4)0.1275 (3)0.56345 (16)0.0261 (7)
C120.6032 (4)0.0210 (4)0.58953 (17)0.0307 (7)
C130.0143 (5)0.6806 (4)0.18440 (19)0.0414 (9)
C140.0943 (4)0.6569 (4)0.12056 (18)0.0389 (8)
C150.1353 (4)0.7798 (4)0.08272 (17)0.0315 (7)
C160.2957 (5)0.6494 (4)0.0025 (2)0.0450 (9)
H160.36430.64500.04510.054*
C170.2641 (6)0.5225 (4)0.0315 (2)0.0543 (10)
H170.31170.43450.01220.065*
C180.1644 (5)0.5253 (4)0.0926 (2)0.0512 (10)
H180.14280.43930.11600.061*
C190.0706 (4)0.9189 (4)0.10846 (16)0.0308 (7)
C200.0556 (5)1.1644 (4)0.0928 (2)0.0434 (9)
H200.08731.24280.06610.052*
C210.0522 (5)1.1882 (5)0.1538 (2)0.0524 (10)
H210.09541.28230.16750.063*
C220.0935 (5)1.0725 (5)0.1930 (2)0.0469 (9)
H220.16231.08570.23520.056*
C230.0344 (4)0.9347 (4)0.17093 (17)0.0360 (8)
C240.0752 (4)0.8099 (4)0.20862 (18)0.0411 (9)
H240.14520.81840.25070.049*
C250.4054 (5)0.5133 (4)0.23522 (19)0.0401 (9)
C260.4305 (4)0.6590 (3)0.21941 (16)0.0254 (6)
C270.3503 (4)0.7690 (3)0.26201 (16)0.0251 (6)
C280.2554 (4)0.7475 (3)0.33295 (16)0.0299 (7)
C290.3697 (4)0.9063 (3)0.24121 (16)0.0283 (7)
H290.31450.98020.26930.034*
C300.4667 (4)0.9397 (3)0.18090 (16)0.0274 (7)
C310.4709 (5)1.0956 (4)0.16873 (18)0.0449 (10)
C320.5472 (4)0.8295 (3)0.13834 (16)0.0273 (7)
C330.6613 (4)0.8400 (4)0.07175 (17)0.0340 (8)
C340.5260 (4)0.6923 (3)0.15919 (16)0.0268 (7)
H340.57960.61870.13070.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.064 (2)0.0355 (18)0.093 (3)0.0035 (16)0.0379 (19)0.0064 (17)
O1'0.064 (2)0.0355 (18)0.093 (3)0.0035 (16)0.0379 (19)0.0064 (17)
O20.065 (2)0.070 (3)0.057 (2)0.0023 (19)0.0344 (18)0.0056 (18)
O2'0.065 (2)0.070 (3)0.057 (2)0.0023 (19)0.0344 (18)0.0056 (18)
O30.059 (5)0.075 (4)0.063 (5)0.036 (5)0.018 (4)0.015 (4)
O3'0.090 (14)0.104 (10)0.071 (11)0.043 (12)0.026 (9)0.020 (9)
O40.102 (6)0.051 (4)0.058 (3)0.048 (4)0.003 (3)0.006 (3)
O4'0.096 (11)0.066 (7)0.106 (9)0.056 (8)0.017 (8)0.020 (7)
O50.0588 (17)0.0277 (13)0.0744 (19)0.0193 (12)0.0006 (14)0.0126 (13)
O60.093 (2)0.070 (2)0.0496 (17)0.0616 (19)0.0145 (16)0.0015 (14)
O7'0.0319 (19)0.0326 (14)0.0226 (17)0.0022 (14)0.0039 (13)0.0037 (12)
O70.0319 (19)0.0326 (14)0.0226 (17)0.0022 (14)0.0039 (13)0.0037 (12)
O8'0.0454 (19)0.0321 (16)0.0299 (16)0.0002 (13)0.0076 (13)0.0028 (13)
O80.0454 (19)0.0321 (16)0.0299 (16)0.0002 (13)0.0076 (13)0.0028 (13)
O90.075 (3)0.0351 (18)0.0397 (19)0.0317 (18)0.0217 (17)0.0100 (14)
O9'0.053 (8)0.029 (5)0.057 (7)0.024 (5)0.009 (5)0.005 (5)
O100.094 (4)0.0337 (17)0.045 (2)0.040 (2)0.0231 (19)0.0130 (15)
O10'0.094 (4)0.0337 (17)0.045 (2)0.040 (2)0.0231 (19)0.0130 (15)
O110.0618 (18)0.0396 (15)0.0605 (17)0.0292 (13)0.0254 (14)0.0053 (13)
O120.109 (3)0.064 (2)0.073 (2)0.0548 (19)0.0611 (19)0.0440 (17)
N10.0292 (17)0.0409 (19)0.0323 (17)0.0057 (14)0.0047 (13)0.0140 (14)
N1'0.0292 (17)0.0409 (19)0.0323 (17)0.0057 (14)0.0047 (13)0.0140 (14)
N20.0332 (15)0.0240 (13)0.0267 (13)0.0109 (11)0.0042 (11)0.0044 (11)
N30.0264 (13)0.0217 (13)0.0247 (13)0.0092 (10)0.0057 (10)0.0049 (10)
N40.066 (3)0.071 (3)0.046 (2)0.044 (2)0.0018 (18)0.0004 (18)
N50.0405 (17)0.0386 (16)0.0285 (14)0.0132 (13)0.0065 (12)0.0088 (12)
N60.0363 (15)0.0400 (16)0.0277 (14)0.0168 (13)0.0070 (11)0.0116 (12)
C10.0217 (16)0.0374 (18)0.0308 (17)0.0081 (14)0.0014 (13)0.0164 (14)
C20.0225 (15)0.0272 (16)0.0289 (16)0.0068 (12)0.0027 (12)0.0110 (13)
C30.0227 (15)0.0238 (15)0.0241 (15)0.0098 (12)0.0003 (12)0.0052 (12)
C40.044 (2)0.0289 (17)0.0267 (16)0.0151 (15)0.0006 (14)0.0007 (13)
C50.043 (2)0.0213 (16)0.0372 (18)0.0068 (14)0.0065 (15)0.0010 (13)
C60.0302 (17)0.0253 (16)0.0383 (18)0.0014 (13)0.0043 (14)0.0097 (14)
C70.0208 (15)0.0248 (15)0.0225 (14)0.0093 (12)0.0005 (11)0.0060 (12)
C80.0297 (17)0.0232 (15)0.0335 (17)0.0054 (13)0.0009 (13)0.0061 (13)
C90.0413 (19)0.0237 (16)0.0364 (18)0.0120 (14)0.0037 (15)0.0016 (13)
C100.0381 (19)0.0339 (18)0.0265 (16)0.0182 (15)0.0023 (13)0.0018 (14)
C110.0259 (16)0.0313 (16)0.0246 (15)0.0145 (13)0.0013 (12)0.0062 (12)
C120.0281 (17)0.0405 (19)0.0277 (16)0.0164 (14)0.0066 (13)0.0113 (14)
C130.043 (2)0.055 (2)0.0313 (18)0.0286 (18)0.0008 (15)0.0009 (16)
C140.041 (2)0.045 (2)0.0332 (18)0.0209 (17)0.0028 (15)0.0015 (15)
C150.0331 (18)0.0369 (18)0.0263 (16)0.0156 (14)0.0014 (13)0.0055 (13)
C160.052 (2)0.039 (2)0.043 (2)0.0147 (17)0.0113 (17)0.0165 (17)
C170.066 (3)0.038 (2)0.061 (3)0.0191 (19)0.011 (2)0.0184 (19)
C180.064 (3)0.038 (2)0.056 (2)0.0261 (19)0.007 (2)0.0073 (18)
C190.0302 (17)0.0432 (19)0.0221 (15)0.0161 (15)0.0002 (13)0.0075 (14)
C200.047 (2)0.044 (2)0.045 (2)0.0211 (17)0.0122 (17)0.0201 (17)
C210.057 (3)0.055 (2)0.054 (2)0.023 (2)0.0160 (19)0.031 (2)
C220.044 (2)0.066 (3)0.038 (2)0.0224 (19)0.0148 (16)0.0285 (19)
C230.0324 (18)0.055 (2)0.0256 (16)0.0192 (16)0.0024 (13)0.0133 (15)
C240.0369 (19)0.066 (3)0.0248 (17)0.0262 (18)0.0030 (14)0.0050 (16)
C250.055 (2)0.0309 (18)0.0377 (19)0.0223 (17)0.0136 (17)0.0062 (15)
C260.0263 (16)0.0225 (15)0.0263 (15)0.0094 (12)0.0037 (12)0.0004 (12)
C270.0249 (15)0.0244 (15)0.0251 (15)0.0087 (12)0.0012 (12)0.0026 (12)
C280.0340 (18)0.0208 (15)0.0310 (17)0.0074 (14)0.0059 (14)0.0047 (13)
C290.0324 (17)0.0255 (16)0.0253 (16)0.0086 (13)0.0032 (13)0.0066 (12)
C300.0292 (16)0.0250 (16)0.0271 (16)0.0101 (13)0.0007 (12)0.0030 (12)
C310.054 (2)0.0260 (17)0.049 (2)0.0144 (17)0.0295 (19)0.0101 (16)
C320.0310 (17)0.0283 (16)0.0240 (15)0.0129 (13)0.0012 (12)0.0050 (12)
C330.042 (2)0.0395 (19)0.0274 (17)0.0221 (16)0.0069 (14)0.0117 (15)
C340.0313 (17)0.0247 (15)0.0253 (15)0.0101 (13)0.0004 (13)0.0069 (12)
Geometric parameters (Å, º) top
O1—N11.203 (4)C4—C51.395 (5)
O1'—N1'1.219 (18)C4—H40.9400
O1'—H12A1.3632C5—C61.358 (5)
O2—N11.220 (4)C5—H50.9400
O2'—N1'1.223 (19)C6—H60.9400
O3—N41.184 (10)C7—C111.405 (4)
O3'—N41.218 (17)C8—C91.391 (5)
O4—N41.316 (7)C8—H80.9400
O4'—N41.177 (10)C9—C101.360 (5)
O5—C251.296 (4)C9—H90.9400
O6—C251.221 (5)C10—C111.402 (4)
O6—H6O0.8300C10—H100.9400
O7'—C281.290 (4)C11—C121.424 (4)
O7—C281.200 (8)C12—H12A1.0218
O8'—C281.243 (4)C13—C241.339 (5)
O8—C281.300 (8)C13—C141.443 (5)
O9—C311.253 (4)C14—C181.396 (5)
O9'—C311.317 (7)C14—C151.412 (5)
O10—C311.273 (4)C15—C191.437 (5)
O10—H10O0.8300C16—C171.385 (5)
O10'—C311.214 (7)C16—H160.9400
O10'—H10'0.8300C17—C181.358 (6)
O11—C331.269 (4)C17—H170.9400
O12—C331.209 (4)C18—H180.9400
N1—C11.472 (4)C19—C231.402 (4)
N1'—C121.423 (16)C20—C211.397 (5)
N1'—H12A0.5737C20—H200.9400
N2—C41.316 (4)C21—C221.362 (6)
N2—C31.350 (4)C21—H210.9400
N2—H2N'0.8700C22—C231.394 (5)
N3—C81.324 (4)C22—H220.9400
N3—C71.353 (4)C23—C241.425 (5)
N3—H3N0.8700C24—H240.9400
N4—C131.492 (5)C25—C261.491 (4)
N5—C161.319 (4)C26—C341.382 (4)
N5—C151.349 (4)C26—C271.406 (4)
N6—C201.319 (4)C27—C291.390 (4)
N6—C191.346 (4)C27—C281.506 (4)
N6—H6N0.8700C29—C301.391 (4)
C1—C121.339 (5)C29—H290.9400
C1—C21.449 (4)C30—C321.407 (4)
C1—H1A0.9400C30—C311.514 (4)
C2—C61.409 (4)C32—C341.397 (4)
C2—C31.415 (4)C32—C331.516 (4)
C3—C71.446 (4)C34—H340.9400
C25—O6—H6O109.5C18—C14—C13127.1 (3)
C31—O10—H10O109.5C15—C14—C13116.4 (3)
C31—O10'—H10'109.5N5—C15—C14123.7 (3)
O1—N1—O2121.6 (3)N5—C15—C19116.1 (3)
O1—N1—C1119.7 (3)C14—C15—C19120.2 (3)
O2—N1—C1118.1 (3)N5—C16—C17123.2 (3)
O2'—N1'—O1'123 (3)N5—C16—H16118.4
O2'—N1'—C12123 (2)C17—C16—H16118.4
O1'—N1'—C12112.6 (19)C18—C17—C16120.0 (4)
O2'—N1'—H12A125.2C18—C17—H17120.0
O1'—N1'—H12A91.8C16—C17—H17120.0
C4—N2—C3117.3 (3)C17—C18—C14119.4 (4)
C4—N2—H2N'121.3C17—C18—H18120.3
C3—N2—H2N'121.3C14—C18—H18120.3
C8—N3—C7119.7 (3)N6—C19—C23120.2 (3)
C8—N3—H3N120.2N6—C19—C15119.1 (3)
C7—N3—H3N120.2C23—C19—C15120.7 (3)
O4'—N4—O3103.7 (8)N6—C20—C21121.0 (4)
O4'—N4—O3'128.7 (14)N6—C20—H20119.5
O4'—N4—O455.9 (7)C21—C20—H20119.5
O3—N4—O4119.8 (8)C22—C21—C20118.8 (4)
O3'—N4—O4116.5 (14)C22—C21—H21120.6
O4'—N4—C13114.4 (6)C20—C21—H21120.6
O3—N4—C13121.3 (8)C21—C22—C23120.5 (3)
O3'—N4—C13112.0 (14)C21—C22—H22119.8
O4—N4—C13118.4 (4)C23—C22—H22119.8
C16—N5—C15117.2 (3)C22—C23—C19117.9 (3)
C20—N6—C19121.5 (3)C22—C23—C24123.4 (3)
C20—N6—H6N119.3C19—C23—C24118.7 (3)
C19—N6—H6N119.3C13—C24—C23120.3 (3)
C12—C1—C2123.1 (3)C13—C24—H24119.8
C12—C1—N1114.5 (3)C23—C24—H24119.8
C2—C1—N1122.4 (3)O6—C25—O5123.2 (3)
C12—C1—H1A118.5O6—C25—C26122.0 (3)
C2—C1—H1A118.5O5—C25—C26114.7 (3)
C6—C2—C3116.3 (3)C34—C26—C27118.3 (3)
C6—C2—C1126.9 (3)C34—C26—C25120.1 (3)
C3—C2—C1116.8 (3)C27—C26—C25121.5 (3)
N2—C3—C2123.7 (3)C29—C27—C26118.5 (3)
N2—C3—C7116.3 (2)C29—C27—C28115.8 (3)
C2—C3—C7119.9 (3)C26—C27—C28125.4 (3)
N2—C4—C5123.6 (3)O7—C28—O8'103.2 (6)
N2—C4—H4118.2O8'—C28—O7'124.4 (3)
C5—C4—H4118.2O7—C28—O8122.1 (7)
C6—C5—C4119.6 (3)O8'—C28—O862.8 (5)
C6—C5—H5120.2O7'—C28—O8103.2 (5)
C4—C5—H5120.2O7—C28—C27117.5 (6)
C5—C6—C2119.5 (3)O8'—C28—C27120.0 (3)
C5—C6—H6120.3O7'—C28—C27114.0 (3)
C2—C6—H6120.3O8—C28—C27117.3 (5)
N3—C7—C11120.4 (3)C27—C29—C30123.3 (3)
N3—C7—C3119.1 (3)C27—C29—H29118.3
C11—C7—C3120.5 (3)C30—C29—H29118.3
N3—C8—C9122.6 (3)C29—C30—C32118.2 (3)
N3—C8—H8118.7C29—C30—C31114.3 (3)
C9—C8—H8118.7C32—C30—C31127.5 (3)
C10—C9—C8119.2 (3)O10'—C31—O990.6 (7)
C10—C9—H9120.4O9—C31—O10118.9 (3)
C8—C9—H9120.4O10'—C31—O9'126.0 (8)
C9—C10—C11119.2 (3)O9—C31—O9'58.6 (5)
C9—C10—H10120.4O10—C31—O9'113.0 (6)
C11—C10—H10120.4O10'—C31—C30123.9 (6)
C10—C11—C7118.9 (3)O9—C31—C30122.9 (3)
C10—C11—C12122.4 (3)O10—C31—C30116.5 (3)
C7—C11—C12118.7 (3)O9'—C31—C30110.1 (5)
C1—C12—C11121.1 (3)C34—C32—C30118.2 (3)
C1—C12—N1'104.9 (8)C34—C32—C33114.5 (3)
C11—C12—N1'132.8 (8)C30—C32—C33127.2 (3)
C1—C12—H12A118.9O12—C33—O11122.0 (3)
C11—C12—H12A119.9O12—C33—C32119.7 (3)
C24—C13—C14123.8 (3)O11—C33—C32118.2 (3)
C24—C13—N4115.9 (3)C26—C34—C32123.5 (3)
C14—C13—N4120.4 (3)C26—C34—H34118.3
C18—C14—C15116.6 (3)C32—C34—H34118.3
O1—N1—C1—C12172.9 (4)C15—N5—C16—C170.5 (6)
O2—N1—C1—C121.0 (5)N5—C16—C17—C180.6 (7)
O1—N1—C1—C25.9 (5)C16—C17—C18—C140.2 (7)
O2—N1—C1—C2177.7 (3)C15—C14—C18—C170.9 (6)
C12—C1—C2—C6178.3 (3)C13—C14—C18—C17179.8 (4)
N1—C1—C2—C63.1 (5)C20—N6—C19—C231.7 (5)
C12—C1—C2—C31.6 (4)C20—N6—C19—C15178.9 (3)
N1—C1—C2—C3177.0 (3)N5—C15—C19—N61.1 (4)
C4—N2—C3—C20.5 (4)C14—C15—C19—N6179.0 (3)
C4—N2—C3—C7178.7 (3)N5—C15—C19—C23179.5 (3)
C6—C2—C3—N20.6 (4)C14—C15—C19—C230.4 (5)
C1—C2—C3—N2179.4 (3)C19—N6—C20—C210.5 (5)
C6—C2—C3—C7178.5 (3)N6—C20—C21—C221.7 (6)
C1—C2—C3—C71.4 (4)C20—C21—C22—C232.5 (6)
C3—N2—C4—C50.4 (5)C21—C22—C23—C191.3 (6)
N2—C4—C5—C61.2 (5)C21—C22—C23—C24178.8 (4)
C4—C5—C6—C21.0 (5)N6—C19—C23—C220.8 (5)
C3—C2—C6—C50.2 (4)C15—C19—C23—C22179.8 (3)
C1—C2—C6—C5179.8 (3)N6—C19—C23—C24179.1 (3)
C8—N3—C7—C111.0 (4)C15—C19—C23—C240.3 (5)
C8—N3—C7—C3179.2 (3)C14—C13—C24—C230.2 (6)
N2—C3—C7—N31.1 (4)N4—C13—C24—C23179.3 (3)
C2—C3—C7—N3179.7 (3)C22—C23—C24—C13179.9 (3)
N2—C3—C7—C11179.0 (3)C19—C23—C24—C130.2 (5)
C2—C3—C7—C110.2 (4)O6—C25—C26—C34160.3 (3)
C7—N3—C8—C90.6 (5)O5—C25—C26—C3417.6 (4)
N3—C8—C9—C100.1 (5)O6—C25—C26—C2715.7 (5)
C8—C9—C10—C110.0 (5)O5—C25—C26—C27166.5 (3)
C9—C10—C11—C70.3 (5)C34—C26—C27—C290.5 (4)
C9—C10—C11—C12178.7 (3)C25—C26—C27—C29175.5 (3)
N3—C7—C11—C100.8 (4)C34—C26—C27—C28173.9 (3)
C3—C7—C11—C10179.3 (3)C25—C26—C27—C2810.1 (5)
N3—C7—C11—C12178.2 (3)C29—C27—C28—O715.9 (8)
C3—C7—C11—C121.7 (4)C26—C27—C28—O7169.5 (7)
C2—C1—C12—C110.2 (5)C29—C27—C28—O8'110.8 (4)
N1—C1—C12—C11178.6 (3)C26—C27—C28—O8'63.8 (4)
C2—C1—C12—N1'169.0 (9)C29—C27—C28—O7'55.7 (4)
N1—C1—C12—N1'9.8 (9)C26—C27—C28—O7'129.7 (3)
C10—C11—C12—C1179.5 (3)C29—C27—C28—O8176.4 (6)
C7—C11—C12—C11.5 (5)C26—C27—C28—O89.0 (7)
C10—C11—C12—N1'15.3 (13)C26—C27—C29—C301.0 (5)
C7—C11—C12—N1'163.6 (12)C28—C27—C29—C30173.9 (3)
O2'—N1'—C12—C132 (3)C27—C29—C30—C320.9 (5)
O1'—N1'—C12—C1162 (3)C27—C29—C30—C31179.7 (3)
O2'—N1'—C12—C11161 (3)C29—C30—C31—O10'73.5 (9)
O1'—N1'—C12—C115 (3)C32—C30—C31—O10'107.2 (9)
O4'—N4—C13—C24140.4 (9)C29—C30—C31—O9169.8 (4)
O3—N4—C13—C2415.0 (9)C32—C30—C31—O99.6 (6)
O3'—N4—C13—C2416.8 (13)C29—C30—C31—O1025.4 (5)
O4—N4—C13—C24156.7 (5)C32—C30—C31—O10155.2 (4)
O4'—N4—C13—C1439.1 (10)C29—C30—C31—O9'104.9 (6)
O3—N4—C13—C14164.6 (7)C32—C30—C31—O9'74.4 (7)
O3'—N4—C13—C14163.6 (13)C29—C30—C32—C340.4 (4)
O4—N4—C13—C1423.7 (6)C31—C30—C32—C34179.7 (3)
C24—C13—C14—C18179.0 (4)C29—C30—C32—C33178.5 (3)
N4—C13—C14—C181.5 (6)C31—C30—C32—C332.2 (5)
C24—C13—C14—C150.3 (5)C34—C32—C33—O129.3 (5)
N4—C13—C14—C15179.2 (3)C30—C32—C33—O12168.9 (4)
C16—N5—C15—C140.4 (5)C34—C32—C33—O11173.5 (3)
C16—N5—C15—C19179.7 (3)C30—C32—C33—O118.3 (5)
C18—C14—C15—N51.1 (5)C27—C26—C34—C320.0 (4)
C13—C14—C15—N5179.5 (3)C25—C26—C34—C32176.1 (3)
C18—C14—C15—C19179.0 (3)C30—C32—C34—C260.1 (5)
C13—C14—C15—C190.4 (5)C33—C32—C34—C26178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O80.831.362.031 (10)135
O6—H6O···O80.832.503.024 (4)123
O10—H10O···O5i0.831.922.724 (4)164
N2—H2N···O7ii0.872.163.012 (4)165
N3—H3N···O7ii0.871.862.695 (4)160
N2—H2N···O7ii0.872.213.078 (9)172
N3—H3N···O7ii0.871.842.678 (11)162
N6—H6N···O11iii0.871.852.712 (4)168
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O80.831.362.031 (10)135
O6—H6O···O8'0.832.503.024 (4)123
O10—H10O···O5i0.831.922.724 (4)164
N2—H2N'···O7'ii0.872.163.012 (4)165
N3—H3N···O7'ii0.871.862.695 (4)160
N2—H2N'···O7ii0.872.213.078 (9)172
N3—H3N···O7ii0.871.842.678 (11)162
N6—H6N···O11iii0.871.852.712 (4)168
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x+1, y+2, z.
 

Acknowledgements

This work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2013–10).

References

First citationFabelo, O., Pason, J., Lloret, F., Julve, M. & Ruiz-Perez, C. (2008). Inorg. Chem. 47, 3568–3576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGuo, H., Lu, D.-H. & Lu, X.-W. (2007). Z. Kristallogr. New Cryst. Struct. 222, 348–350.  CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLi, Y., Hao, N., Lu, Y. & Wang, E.-B. (2003). Inorg. Chem. 42, 3119–3124.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, K.-L. (2013). Acta Cryst. E69, o1782–o1783.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o256-o257
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds