organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3′-benzyl-4′-(2,4-di­chloro­phen­yl)-1′-methyl-2-oxo-1-propyl­spiro­[indoline-3,2′-pyrrolidine]-3′-carb­oxy­l­ate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 31 January 2014; accepted 5 February 2014; online 12 February 2014)

In the title compound, C30H30Cl2N2O3, the indole ring system is roughly planar, with a maximum deviation of 0.1039 (18) Å for the carbonyl C atom, and makes a dihedral angle of 86.61 (9)° with the mean plane of the pyrrolidine ring. This spiro pyrrolidine ring adopts an envelope conformation with the N atom at the flap position. The pyrrole ring of the indole ring system adopts a twisted conformation on the C—C(=O) bond. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif, and a ππ inter­action [centroid–centroid distance = 3.6577 (12) Å] involving the 2,4-di­chloro­phenyl ring and the benzyl ring. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming C(9) chains running parallel to [10-1].

Related literature

For the biological activity of spiro-pyrrolidine and oxindole derivatives, see: Peddi et al. (2004[Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279-2283.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B. & Cohen, L. A. (1999). J. Org. Chem. 64, 1369-1371.]). For a related crystal structure, see: Jagadeesan et al. (2013[Jagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.]). For graph-set motif notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length distortions in small rings, see: Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

[Scheme 1]

Experimental

Crystal data
  • C30H30Cl2N2O3

  • Mr = 537.46

  • Monoclinic, P 21 /n

  • a = 7.5563 (4) Å

  • b = 28.8497 (16) Å

  • c = 12.4274 (8) Å

  • β = 90.433 (3)°

  • V = 2709.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 31802 measured reflections

  • 7794 independent reflections

  • 4985 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.167

  • S = 1.00

  • 7794 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O1 0.97 2.39 3.073 (2) 127
C13—H13⋯O2i 0.93 2.46 3.132 (2) 129
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonists (Peddi et al., 2004). Oxindole derivatives help to treat and prevent diabetic complications arising from elevated levels of sorbitol and act as aldose reductase inhibitor (Rajeswaran et al., 1999).

The molecular structure of the title compound is illustrated in Fig 1. In the molecule, there is C-H···O hydrogen bond, forming an S(6) ring motif (Bernstein et al., 1995), and a ππ interaction present [Cg(1)···Cg(2) = 3.6577 (12) Å, where Cg1 and Cg2 are the centroids of rings C1-C6 and C19-C24, respectively]. The indole ring system is essentially planar with a maximum deviation of 0.1039 (18) Å for atom C10. The mean plane of the indole ring system forms a dihedral angle of 86.61 (9) ° with the mean plane of the pyrrolidine five membered ring. The latter forms a dihedral angle of 80.80 (11) ° with the benzyl ring which shows that they are almost orthogonal. Atom O1 deviates from the mean plane of the indole ring system by 0.2776 (15) Å. The molecular dimensions in the title compound are in excellent agreement with the corresponding dimensions reported in another closely related compound (Jagadeesan et al., 2013).

The spiro-pyrrolidine ring adopts an envelope conformation with atom N1 at the flap position. The distance to the flap position from the mean plane of the spiro carbon is 0.2524 (17) Å; the puckering parameters (Cremer & Pople, 1975) of the ring are Q2 = 0.4033 (18) Å and φ2 = 8.5 (3)°. The pyrrole ring system adopts a twisted conformation on bond C9-C10 with the deviation of -0.0559 (18) Å. The central spiro-pyrrolidine ring is perpendicular to the dichloro phenyl ring with a dihedral angle of 87.33 (10)°. The carbonyl group and the benzyl ring have a (+)anti-clinal conformation with torsion angle C18—C17—C25—O2 = 148.57 (17)°.

In the benzene ring (C11—C16) of the indole ring system, the expansion of the ipso angles at C11, C13 and C14 [121.37 (16), 121.56 (18) and 120.37 (18)°, respectively] and contraction of the apical angles at C12, C15 and C16 [117.81 (18), 118.82 (18) and 119.97 (18)°, respectively] are caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981). The carboxyl group and oxindole ring system are (-)syn-clinal to each other with the torsion angle C9—C17—C25—O2 = -89.82 (19)°.

The crystal packing (Fig. 2 and Table 1) is stabilized by a C-H···O hydrogen bond resulting in the formation of C(9) chains running parallel to [1 0 -1].

Related literature top

For the biological activity of spiro-pyrrolidine and oxindole derivatives, see: Peddi et al. (2004); Rajeswaran et al. (1999). For a related crystal structure, see: Jagadeesan et al. (2013). For graph-set motif notation, see: Bernstein et al. (1995). For ring puckering analysis, see: Cremer & Pople (1975). For bond-length distortions in small rings, see: Allen (1981).

Experimental top

A mixture of (E)-methyl 2-benzyl-3-(2,4-dichlorophenyl)acrylate (2 mmol), N-propyl isatin (2 mmol) and sarcosine (2 mmol) in acetonitrile (8 ml) was refluxed for 12 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. The resulting crude mass was diluted with water (10 ml) and extracted with ethyl acetate (3 × 10 ml). The combined organic layers were washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer was concentrated and the residue purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate:hexanes (2:8) to afford the title compound as a colourless solid in (62%) yield. Block-like colourless crystals were obtained by slow evaporation of a solution in CHCl3.

Refinement top

The H atoms could all be localed in difference electron-density maps. In the final cycles of refinement they were treated as riding atoms and their distances were geometrically constrained: C-H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5 Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing the formation of infinite C(9) chains. Dashed lines indicate C—H···O hydrogen bonds - see Table 1 for details.
Methyl 3'-benzyl-4'-(2,4-dichlorophenyl)-1'-methyl-2-oxo-1-propylspiro[indoline-3,2'-pyrrolidine]-3'-carboxylate top
Crystal data top
C30H30Cl2N2O3F(000) = 1128
Mr = 537.46Dx = 1.318 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7794 reflections
a = 7.5563 (4) Åθ = 2.2–29.9°
b = 28.8497 (16) ŵ = 0.27 mm1
c = 12.4274 (8) ÅT = 293 K
β = 90.433 (3)°Block, colourless
V = 2709.1 (3) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4985 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 29.9°, θmin = 2.2°
ω scansh = 107
31802 measured reflectionsk = 3740
7794 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0918P)2 + 0.3965P]
where P = (Fo2 + 2Fc2)/3
7794 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C30H30Cl2N2O3V = 2709.1 (3) Å3
Mr = 537.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5563 (4) ŵ = 0.27 mm1
b = 28.8497 (16) ÅT = 293 K
c = 12.4274 (8) Å0.35 × 0.30 × 0.25 mm
β = 90.433 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4985 reflections with I > 2σ(I)
31802 measured reflectionsRint = 0.029
7794 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.00Δρmax = 0.43 e Å3
7794 reflectionsΔρmin = 0.58 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3859 (2)0.04008 (6)0.32495 (15)0.0424 (4)
C20.3770 (3)0.00713 (7)0.34519 (18)0.0512 (5)
H20.37480.01830.41530.061*
C30.3714 (2)0.03682 (7)0.25925 (19)0.0520 (5)
C40.3773 (3)0.02096 (7)0.15521 (18)0.0509 (5)
H40.37620.04160.09770.061*
C50.3851 (2)0.02637 (6)0.13764 (16)0.0441 (4)
H50.38970.03730.06730.053*
C60.3861 (2)0.05816 (6)0.22188 (14)0.0361 (4)
C70.3906 (2)0.10974 (6)0.20185 (14)0.0349 (3)
H70.41410.12470.27130.042*
C80.5393 (2)0.12406 (6)0.12614 (17)0.0456 (4)
H8A0.65100.12680.16450.055*
H8B0.55240.10190.06800.055*
C90.2936 (2)0.16388 (5)0.05789 (13)0.0330 (3)
C100.2552 (2)0.13941 (6)0.05080 (14)0.0385 (4)
C110.1097 (2)0.20864 (6)0.05612 (13)0.0358 (4)
C120.0117 (2)0.24610 (7)0.09082 (16)0.0455 (4)
H120.05370.24480.15450.055*
C130.0137 (3)0.28541 (7)0.02830 (18)0.0519 (5)
H130.05370.31090.04940.062*
C140.1123 (3)0.28797 (7)0.06395 (18)0.0530 (5)
H140.11410.31530.10360.064*
C150.2100 (3)0.24996 (6)0.09897 (16)0.0454 (4)
H150.27780.25160.16160.054*
C160.2047 (2)0.20999 (5)0.03956 (13)0.0342 (3)
C170.21755 (19)0.13252 (5)0.15373 (12)0.0298 (3)
C180.0724 (2)0.09876 (6)0.11544 (14)0.0358 (4)
H18A0.02090.11690.08200.043*
H18B0.12270.07930.05980.043*
C190.0128 (2)0.06708 (6)0.19792 (15)0.0387 (4)
C200.0855 (3)0.02613 (7)0.1602 (2)0.0550 (5)
H200.08290.01970.08690.066*
C210.1623 (3)0.00549 (8)0.2298 (3)0.0697 (7)
H210.21070.03280.20280.084*
C220.1672 (3)0.00321 (9)0.3375 (2)0.0694 (7)
H220.21690.01830.38420.083*
C230.0990 (3)0.04354 (9)0.3761 (2)0.0653 (6)
H230.10330.04980.44940.078*
C240.0228 (3)0.07536 (7)0.30671 (17)0.0517 (5)
H240.02250.10290.33440.062*
C250.1402 (2)0.16665 (6)0.23502 (13)0.0357 (4)
C260.1178 (4)0.20778 (9)0.2834 (2)0.0752 (7)
H26A0.11240.19620.35580.113*
H26B0.23920.21100.26140.113*
H26C0.06050.23740.28020.113*
C270.5916 (3)0.18816 (9)0.0023 (2)0.0626 (6)
H27A0.70880.19300.03050.094*
H27B0.54300.21720.02140.094*
H27C0.59660.16710.05740.094*
C280.0617 (3)0.15200 (8)0.21054 (15)0.0505 (5)
H28A0.05880.16340.21500.061*
H28B0.05710.11840.21360.061*
C290.1629 (3)0.16950 (10)0.30642 (18)0.0690 (7)
H29A0.16160.20310.30650.083*
H29B0.28520.15950.30070.083*
C300.0850 (4)0.15207 (12)0.41017 (19)0.0840 (8)
H30A0.09140.11880.41180.126*
H30B0.15010.16460.46950.126*
H30C0.03650.16160.41560.126*
N10.48008 (18)0.16871 (5)0.08585 (13)0.0412 (3)
N20.1382 (2)0.16591 (5)0.10730 (11)0.0412 (3)
O10.3160 (2)0.10260 (5)0.08116 (11)0.0526 (3)
O20.21833 (19)0.18395 (5)0.30852 (11)0.0523 (3)
O30.02944 (16)0.17580 (4)0.21260 (10)0.0455 (3)
Cl10.39756 (9)0.07585 (2)0.43710 (4)0.06494 (18)
Cl20.36248 (10)0.09601 (2)0.28361 (7)0.0864 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (9)0.0406 (9)0.0438 (10)0.0073 (7)0.0002 (7)0.0091 (8)
C20.0486 (11)0.0475 (11)0.0574 (12)0.0055 (8)0.0043 (9)0.0206 (9)
C30.0426 (10)0.0336 (9)0.0799 (15)0.0030 (7)0.0064 (9)0.0123 (9)
C40.0512 (11)0.0383 (10)0.0631 (13)0.0060 (8)0.0058 (9)0.0036 (9)
C50.0458 (10)0.0399 (10)0.0467 (10)0.0081 (8)0.0065 (8)0.0042 (8)
C60.0334 (8)0.0331 (8)0.0419 (9)0.0061 (6)0.0006 (7)0.0072 (7)
C70.0353 (8)0.0329 (8)0.0363 (9)0.0024 (6)0.0057 (6)0.0058 (6)
C80.0335 (9)0.0448 (10)0.0586 (12)0.0027 (7)0.0015 (8)0.0143 (8)
C90.0354 (8)0.0310 (8)0.0324 (8)0.0005 (6)0.0035 (6)0.0026 (6)
C100.0463 (9)0.0366 (9)0.0328 (9)0.0014 (7)0.0035 (7)0.0020 (7)
C110.0383 (8)0.0363 (9)0.0328 (8)0.0024 (7)0.0006 (6)0.0044 (6)
C120.0428 (9)0.0507 (11)0.0429 (10)0.0034 (8)0.0064 (8)0.0115 (8)
C130.0530 (11)0.0409 (10)0.0617 (13)0.0120 (8)0.0024 (9)0.0129 (9)
C140.0661 (13)0.0320 (9)0.0607 (13)0.0036 (9)0.0033 (10)0.0016 (8)
C150.0566 (11)0.0331 (9)0.0462 (10)0.0008 (8)0.0112 (8)0.0003 (7)
C160.0383 (8)0.0300 (8)0.0344 (8)0.0008 (6)0.0033 (6)0.0054 (6)
C170.0314 (7)0.0287 (7)0.0292 (8)0.0016 (6)0.0038 (6)0.0016 (6)
C180.0356 (8)0.0346 (8)0.0373 (9)0.0021 (6)0.0042 (7)0.0016 (7)
C190.0296 (8)0.0363 (9)0.0500 (10)0.0000 (6)0.0019 (7)0.0034 (7)
C200.0485 (11)0.0447 (11)0.0719 (14)0.0079 (8)0.0065 (10)0.0063 (10)
C210.0538 (12)0.0422 (12)0.113 (2)0.0126 (9)0.0122 (13)0.0043 (13)
C220.0523 (12)0.0620 (14)0.094 (2)0.0061 (11)0.0183 (12)0.0274 (13)
C230.0617 (13)0.0741 (16)0.0603 (14)0.0106 (11)0.0110 (11)0.0193 (12)
C240.0517 (11)0.0534 (12)0.0499 (12)0.0129 (9)0.0014 (9)0.0072 (9)
C250.0415 (9)0.0326 (8)0.0329 (8)0.0021 (7)0.0021 (7)0.0020 (6)
C260.0779 (16)0.0790 (17)0.0689 (16)0.0340 (13)0.0173 (12)0.0145 (13)
C270.0469 (11)0.0669 (14)0.0742 (15)0.0074 (10)0.0080 (10)0.0274 (12)
C280.0590 (11)0.0574 (12)0.0349 (10)0.0063 (9)0.0075 (8)0.0045 (8)
C290.0680 (14)0.101 (2)0.0381 (11)0.0087 (13)0.0017 (10)0.0019 (11)
C300.0926 (19)0.124 (3)0.0351 (12)0.0123 (17)0.0002 (12)0.0111 (13)
N10.0341 (7)0.0395 (8)0.0498 (9)0.0018 (6)0.0025 (6)0.0130 (6)
N20.0517 (8)0.0428 (8)0.0289 (7)0.0006 (7)0.0058 (6)0.0009 (6)
O10.0706 (9)0.0416 (7)0.0459 (8)0.0095 (6)0.0077 (6)0.0063 (6)
O20.0649 (8)0.0495 (8)0.0424 (8)0.0023 (6)0.0125 (6)0.0131 (6)
O30.0418 (7)0.0473 (7)0.0473 (7)0.0131 (5)0.0022 (5)0.0050 (6)
Cl10.0957 (4)0.0589 (3)0.0401 (3)0.0111 (3)0.0062 (3)0.0068 (2)
Cl20.0968 (5)0.0375 (3)0.1251 (6)0.0044 (3)0.0081 (4)0.0214 (3)
Geometric parameters (Å, º) top
C1—C61.383 (2)C17—C181.539 (2)
C1—C21.387 (3)C18—C191.520 (2)
C1—Cl11.736 (2)C18—H18A0.9700
C2—C31.369 (3)C18—H18B0.9700
C2—H20.9300C19—C241.376 (3)
C3—C41.373 (3)C19—C201.384 (3)
C3—Cl21.7356 (19)C20—C211.388 (3)
C4—C51.384 (3)C20—H200.9300
C4—H40.9300C21—C221.362 (4)
C5—C61.392 (3)C21—H210.9300
C5—H50.9300C22—C231.359 (4)
C6—C71.509 (2)C22—H220.9300
C7—C81.527 (2)C23—C241.388 (3)
C7—C171.577 (2)C23—H230.9300
C7—H70.9800C24—H240.9300
C8—N11.451 (2)C25—O21.193 (2)
C8—H8A0.9700C25—O31.336 (2)
C8—H8B0.9700C26—O31.442 (2)
C9—N11.456 (2)C26—H26A0.9600
C9—C161.507 (2)C26—H26B0.9600
C9—C101.550 (2)C26—H26C0.9600
C9—C171.605 (2)C27—N11.455 (2)
C10—O11.218 (2)C27—H27A0.9600
C10—N21.360 (2)C27—H27B0.9600
C11—C121.378 (2)C27—H27C0.9600
C11—C161.385 (2)C28—N21.460 (2)
C11—N21.404 (2)C28—C291.508 (3)
C12—C131.375 (3)C28—H28A0.9700
C12—H120.9300C28—H28B0.9700
C13—C141.364 (3)C29—C301.500 (3)
C13—H130.9300C29—H29A0.9700
C14—C151.390 (3)C29—H29B0.9700
C14—H140.9300C30—H30A0.9600
C15—C161.370 (2)C30—H30B0.9600
C15—H150.9300C30—H30C0.9600
C17—C251.530 (2)
C6—C1—C2122.61 (19)C19—C18—H18A107.7
C6—C1—Cl1121.26 (14)C17—C18—H18A107.7
C2—C1—Cl1116.14 (15)C19—C18—H18B107.7
C3—C2—C1118.30 (18)C17—C18—H18B107.7
C3—C2—H2120.9H18A—C18—H18B107.1
C1—C2—H2120.9C24—C19—C20117.20 (18)
C2—C3—C4121.67 (18)C24—C19—C18125.81 (16)
C2—C3—Cl2118.71 (17)C20—C19—C18116.99 (17)
C4—C3—Cl2119.60 (18)C19—C20—C21121.1 (2)
C3—C4—C5118.64 (19)C19—C20—H20119.4
C3—C4—H4120.7C21—C20—H20119.4
C5—C4—H4120.7C22—C21—C20120.4 (2)
C4—C5—C6122.10 (18)C22—C21—H21119.8
C4—C5—H5118.9C20—C21—H21119.8
C6—C5—H5118.9C23—C22—C21119.5 (2)
C1—C6—C5116.61 (16)C23—C22—H22120.3
C1—C6—C7121.66 (16)C21—C22—H22120.3
C5—C6—C7121.72 (16)C22—C23—C24120.3 (2)
C6—C7—C8112.70 (14)C22—C23—H23119.8
C6—C7—C17116.98 (13)C24—C23—H23119.8
C8—C7—C17105.37 (13)C19—C24—C23121.5 (2)
C6—C7—H7107.1C19—C24—H24119.3
C8—C7—H7107.1C23—C24—H24119.3
C17—C7—H7107.1O2—C25—O3123.05 (16)
N1—C8—C7103.09 (14)O2—C25—C17125.83 (15)
N1—C8—H8A111.1O3—C25—C17111.11 (14)
C7—C8—H8A111.1O3—C26—H26A109.5
N1—C8—H8B111.1O3—C26—H26B109.5
C7—C8—H8B111.1H26A—C26—H26B109.5
H8A—C8—H8B109.1O3—C26—H26C109.5
N1—C9—C16112.40 (13)H26A—C26—H26C109.5
N1—C9—C10115.24 (14)H26B—C26—H26C109.5
C16—C9—C10100.96 (13)N1—C27—H27A109.5
N1—C9—C17103.19 (12)N1—C27—H27B109.5
C16—C9—C17116.61 (13)H27A—C27—H27B109.5
C10—C9—C17108.92 (12)N1—C27—H27C109.5
O1—C10—N2125.15 (17)H27A—C27—H27C109.5
O1—C10—C9126.75 (16)H27B—C27—H27C109.5
N2—C10—C9108.09 (14)N2—C28—C29113.74 (17)
C12—C11—C16121.37 (16)N2—C28—H28A108.8
C12—C11—N2129.12 (16)C29—C28—H28A108.8
C16—C11—N2109.46 (14)N2—C28—H28B108.8
C13—C12—C11117.81 (18)C29—C28—H28B108.8
C13—C12—H12121.1H28A—C28—H28B107.7
C11—C12—H12121.1C30—C29—C28111.6 (2)
C14—C13—C12121.56 (18)C30—C29—H29A109.3
C14—C13—H13119.2C28—C29—H29A109.3
C12—C13—H13119.2C30—C29—H29B109.3
C13—C14—C15120.37 (18)C28—C29—H29B109.3
C13—C14—H14119.8H29A—C29—H29B108.0
C15—C14—H14119.8C29—C30—H30A109.5
C16—C15—C14118.82 (18)C29—C30—H30B109.5
C16—C15—H15120.6H30A—C30—H30B109.5
C14—C15—H15120.6C29—C30—H30C109.5
C15—C16—C11119.97 (15)H30A—C30—H30C109.5
C15—C16—C9130.58 (16)H30B—C30—H30C109.5
C11—C16—C9109.42 (14)C8—N1—C27114.20 (15)
C25—C17—C18109.67 (13)C8—N1—C9107.01 (13)
C25—C17—C7109.73 (13)C27—N1—C9115.56 (15)
C18—C17—C7116.11 (13)C10—N2—C11111.17 (14)
C25—C17—C9105.54 (12)C10—N2—C28123.42 (16)
C18—C17—C9112.66 (13)C11—N2—C28125.32 (15)
C7—C17—C9102.46 (11)C25—O3—C26116.54 (17)
C19—C18—C17118.45 (14)
C6—C1—C2—C31.2 (3)C16—C9—C17—C2528.00 (17)
Cl1—C1—C2—C3178.64 (15)C10—C9—C17—C25141.37 (13)
C1—C2—C3—C41.1 (3)N1—C9—C17—C18144.62 (13)
C1—C2—C3—Cl2179.34 (14)C16—C9—C17—C1891.65 (16)
C2—C3—C4—C51.5 (3)C10—C9—C17—C1821.72 (17)
Cl2—C3—C4—C5179.75 (15)N1—C9—C17—C719.13 (15)
C3—C4—C5—C60.3 (3)C16—C9—C17—C7142.86 (14)
C2—C1—C6—C52.9 (3)C10—C9—C17—C7103.78 (14)
Cl1—C1—C6—C5176.96 (13)C25—C17—C18—C1962.32 (18)
C2—C1—C6—C7178.20 (16)C7—C17—C18—C1962.74 (19)
Cl1—C1—C6—C72.0 (2)C9—C17—C18—C19179.56 (13)
C4—C5—C6—C12.4 (3)C17—C18—C19—C2424.6 (3)
C4—C5—C6—C7178.66 (16)C17—C18—C19—C20154.86 (16)
C1—C6—C7—C8127.31 (18)C24—C19—C20—C211.1 (3)
C5—C6—C7—C851.6 (2)C18—C19—C20—C21178.42 (18)
C1—C6—C7—C17110.32 (18)C19—C20—C21—C220.1 (4)
C5—C6—C7—C1770.8 (2)C20—C21—C22—C231.1 (4)
C6—C7—C8—N1158.73 (15)C21—C22—C23—C240.8 (4)
C17—C7—C8—N130.04 (18)C20—C19—C24—C231.4 (3)
N1—C9—C10—O150.1 (2)C18—C19—C24—C23178.06 (18)
C16—C9—C10—O1171.47 (17)C22—C23—C24—C190.5 (4)
C17—C9—C10—O165.2 (2)C18—C17—C25—O2148.57 (17)
N1—C9—C10—N2130.73 (15)C7—C17—C25—O219.9 (2)
C16—C9—C10—N29.37 (17)C9—C17—C25—O289.82 (19)
C17—C9—C10—N2113.91 (14)C18—C17—C25—O332.52 (18)
C16—C11—C12—C131.2 (3)C7—C17—C25—O3161.18 (13)
N2—C11—C12—C13175.90 (17)C9—C17—C25—O389.09 (15)
C11—C12—C13—C141.5 (3)N2—C28—C29—C30176.8 (2)
C12—C13—C14—C151.9 (3)C7—C8—N1—C27174.07 (17)
C13—C14—C15—C160.3 (3)C7—C8—N1—C944.87 (18)
C14—C15—C16—C112.9 (3)C16—C9—N1—C8166.61 (15)
C14—C15—C16—C9179.25 (17)C10—C9—N1—C878.45 (18)
C12—C11—C16—C153.5 (3)C17—C9—N1—C840.15 (17)
N2—C11—C16—C15174.18 (16)C16—C9—N1—C2765.0 (2)
C12—C11—C16—C9178.32 (15)C10—C9—N1—C2750.0 (2)
N2—C11—C16—C94.06 (18)C17—C9—N1—C27168.57 (16)
N1—C9—C16—C1546.7 (2)O1—C10—N2—C11173.11 (16)
C10—C9—C16—C15170.01 (18)C9—C10—N2—C117.72 (19)
C17—C9—C16—C1572.2 (2)O1—C10—N2—C283.8 (3)
N1—C9—C16—C11131.31 (15)C9—C10—N2—C28175.39 (15)
C10—C9—C16—C117.97 (16)C12—C11—N2—C10174.91 (17)
C17—C9—C16—C11109.83 (16)C16—C11—N2—C102.48 (19)
C6—C7—C17—C25115.66 (16)C12—C11—N2—C281.9 (3)
C8—C7—C17—C25118.25 (15)C16—C11—N2—C28179.30 (16)
C6—C7—C17—C189.4 (2)C29—C28—N2—C1093.2 (2)
C8—C7—C17—C18116.72 (16)C29—C28—N2—C1183.2 (2)
C6—C7—C17—C9132.57 (14)O2—C25—O3—C260.9 (3)
C8—C7—C17—C96.48 (17)C17—C25—O3—C26179.80 (17)
N1—C9—C17—C2595.73 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O10.972.393.073 (2)127
C13—H13···O2i0.932.463.132 (2)129
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O10.972.393.073 (2)127
C13—H13···O2i0.932.463.132 (2)129
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

SK and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPeddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajeswaran, W. G., Labroo, R. B. & Cohen, L. A. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds