organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o276-o277

9-(2,4-Di­fluoro­phen­yl)-3,3,6,6-tetra­methyl-3,4,5,6,7,9-hexa­hydro-2H-xanthene-1,8-dione

aDepartment of Physics, Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli 620 002, India, bDepartment of Physics, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli 621 112, India, cDepartment of Chemistry, Sri Krishna Engineering College, Panapakkam, Thambaram 601 301, India, dDepartment of Chemistry, Chemistry Wing DDE, Annamalai University, Annamalainagar 608 002, India, and eDepartment of Chemistry, S.K.P. Engineering College, Thiruvanamalai 606 611, India
*Correspondence e-mail: raghema2000@yahoo.co.in

(Received 3 February 2014; accepted 6 February 2014; online 12 February 2014)

In the title compound, C23H24F2O3, the central pyran ring has a flat-boat conformation, whereas the two fused cyclo­hexenone rings adopt envelope conformations, with the C atom bearing the dimethyl substituent being the flap atom in each case. The pyran ring mean plane and the di­fluoro­phenyl ring are almost normal to each other, making a dihedral angle of 87.55 (4)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The F atom at position 2 on the di­fluoro­phenyl ring is disordered over the 2- and 6-positions, and has a refined occupancy ratio of 0.932 (3):0.068 (3).

Related literature

For the synthesis of xanthenes, see: Vanag & Stankevich (1960[Vanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287-3290.]); Hilderbrand & Weissleder (2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]). For their pharmaceutical properties, see: Jonathan et al. (1988[Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117.]); Lambert et al. (1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.]); Poupelin et al. (1978[Poupelin, J. P., Rut, G. S., Blanpin, O. F., Narcisse, G., Ernouf, G. U. & Lacroise, R. (1978). Eur. J. Med. Chem. 13, 67-71.]); Hideo (1981[Hideo, T. (1981). Jpn Kokai Tokkyo Koho JP, 56, 005480.]); Selvanayagam et al. (1996[Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664-667.]). For related structures, see: Sughanya & Sureshbabu (2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o1060.]); Sureshbabu & Sughanya (2013[Sureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bonding graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24F2O3

  • Mr = 386.42

  • Triclinic, [P \overline 1]

  • a = 9.6810 (4) Å

  • b = 10.4290 (4) Å

  • c = 11.8840 (5) Å

  • α = 69.288 (2)°

  • β = 74.895 (2)°

  • γ = 63.406 (2)°

  • V = 996.03 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.981

  • 23107 measured reflections

  • 6738 independent reflections

  • 4248 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.03

  • 6738 reflections

  • 267 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O1i 0.93 2.38 3.3075 (15) 177
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Xanthene is the parent compound of a number of naturally occurring substances and some synthetic dyes. Xanthene derivatives are used as dyes (Hilderbrand & Weissleder, 2007) and are used in medicine as they possess biological properties like antibacterial, antiviral and anti-inflammatory activities (Jonathan et al., 1988). Ehretianone, a quinonoid xanthene was reported to possess anti-snake venom activity (Selvanayagam et al., 1996; Lambert et al., 1997; Poupelin et al., 1978; Hideo, 1981). In view of the importance of the Xanthene derivatives we have synthesized the title compound and report herein on its crystal structure.

In the title molecule, Fig. 1, the pyran ring (O2/C5-C8/C13) has a flat boat conformation [Q = 0.1721 (13) Å, θ = 75.4 (4)° and φ = 186.9 (5)°] with a deviation for atoms O2 [0.1999 (12) Å] and C7 [0.0898 (9) Å] from the mean plane of the other four atoms. The two fused cyclohexenone rings adopt envelope conformations with puckering parameter (Cremer & Pople, 1975) Q = 0.4417 (15) Å, θ = 55.22 (19)° and φ = 116.4 (2)° for ring (C1-C6) and Q = 0.4715 (16) Å, θ = 59.08 (19)° and φ = 179.5 (2)° for ring (C8-C13). Atoms C3 and C11 are the flap atoms being situated out of the mean plane of the respective ring by 0.3118 (9) and 0.3324 (10) Å. The dihedral angle between the mean plane of the central pyran ring (O2/C5-C8/C13) and the difluorophenyl ring (C18-C23) is 87.55 (4)°.

In the crystal, molecules are linked by a pair of C-H···O hydrogen bonds (Fig. 2 and Table 1) forming inversion dimers with an R22(8) ring motif (Bernstein et al., 1995).

Related literature top

For the synthesis of xanthenes, see: Vanag & Stankevich (1960); Hilderbrand & Weissleder (2007). For their pharmaceutical properties, see: Jonathan et al. (1988); Lambert et al. (1997); Poupelin et al. (1978); Hideo (1981); Selvanayagam et al. (1996). For related structures, see: Sughanya & Sureshbabu (2012); Sureshbabu & Sughanya (2013). For ring conformation analysis, see: Cremer & Pople (1975). For hydrogen bonding graph-set motifs, see: Bernstein et al. (1995).

Experimental top

5,5-dimethylcyclohexane-1,3-dione (1.15 g, 16 mmol) was treated with 2,4-difluorobenzaldehyde (0.6 g, 8 mmol) in ethanol (10 ml). The reaction mixture was heated for 5 min. After cooling to room temperature, a solid started to separate out. This solid was filtered, dried and then recrystallized from ethanol to yield colourless block-like crystals of the title compound [Yield 0.95 g; 80%].

Refinement top

Atom F1 on the difluorophenyl ring is slightly disordered, being attached to atoms C23 and C19 with a refined occupancy ratio of 0.932 (3):0.068 (3), for atoms F1:F1' and H19:H23. The H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.98, 0.97 and 0.96 Å for CH(aromatic), CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The C-H···O hydrogen bonds are shown as dashed lines - see Table 1 for details.
9-(2,4-Difluorophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-2H-xanthene-1,8-dione top
Crystal data top
C23H24F2O3Z = 2
Mr = 386.42F(000) = 408
Triclinic, P1Dx = 1.288 Mg m3
a = 9.6810 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4290 (4) ÅCell parameters from 8029 reflections
c = 11.8840 (5) Åθ = 2.8–30.5°
α = 69.288 (2)°µ = 0.10 mm1
β = 74.895 (2)°T = 293 K
γ = 63.406 (2)°Block, colourless
V = 996.03 (7) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6738 independent reflections
Radiation source: fine-focus sealed tube4248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scanθmax = 31.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 914
Tmin = 0.972, Tmax = 0.981k = 1015
23107 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1104P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6738 reflectionsΔρmax = 0.24 e Å3
267 parametersΔρmin = 0.18 e Å3
Crystal data top
C23H24F2O3γ = 63.406 (2)°
Mr = 386.42V = 996.03 (7) Å3
Triclinic, P1Z = 2
a = 9.6810 (4) ÅMo Kα radiation
b = 10.4290 (4) ŵ = 0.10 mm1
c = 11.8840 (5) ÅT = 293 K
α = 69.288 (2)°0.30 × 0.20 × 0.20 mm
β = 74.895 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6738 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4248 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.026
23107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
6738 reflectionsΔρmin = 0.18 e Å3
267 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.58177 (9)0.33825 (10)0.21213 (9)0.0634 (3)0.932 (3)
F1'1.0560 (15)0.0461 (17)0.3554 (14)0.078 (5)0.068 (3)
F20.72300 (13)0.44738 (12)0.50286 (9)0.0828 (3)
O10.84119 (12)0.15460 (12)0.39286 (9)0.0627 (3)
O20.65242 (9)0.17594 (9)0.02533 (7)0.0434 (2)
O31.11867 (11)0.17515 (13)0.07618 (10)0.0686 (3)
C10.74840 (14)0.10446 (13)0.32037 (11)0.0420 (3)
C20.63396 (15)0.17246 (15)0.33580 (11)0.0473 (3)
H2A0.60410.20870.42180.057*
H2B0.68560.25780.30290.057*
C30.48605 (14)0.06656 (14)0.27502 (11)0.0435 (3)
C40.53389 (14)0.00773 (14)0.14367 (11)0.0430 (3)
H4A0.57500.06430.09710.052*
H4B0.44240.08910.10940.052*
C50.65262 (13)0.06655 (12)0.13208 (10)0.0373 (2)
C60.75128 (12)0.01894 (12)0.21271 (10)0.0371 (2)
C70.86725 (12)0.08662 (13)0.19491 (10)0.0381 (2)
H70.96920.00510.20970.046*
C80.87933 (12)0.17859 (13)0.06498 (10)0.0380 (2)
C91.01106 (13)0.22456 (14)0.01719 (12)0.0465 (3)
C101.01073 (15)0.32985 (16)0.10760 (13)0.0549 (3)
H10A1.07360.27190.16460.066*
H10B1.06050.39350.10990.066*
C110.85044 (15)0.42923 (14)0.15076 (12)0.0476 (3)
C120.76661 (16)0.32723 (14)0.13191 (11)0.0467 (3)
H12A0.65870.38800.14540.056*
H12B0.81430.27030.19110.056*
C130.77272 (13)0.22295 (13)0.00826 (10)0.0386 (2)
C140.38365 (17)0.05031 (19)0.34291 (15)0.0644 (4)
H14A0.44060.10520.34370.097*
H14B0.35320.00200.42460.097*
H14C0.29250.11740.30320.097*
C150.39565 (18)0.15434 (18)0.27371 (14)0.0616 (4)
H15A0.36230.19990.35550.092*
H15B0.46160.23020.23330.092*
H15C0.30640.08800.23160.092*
C160.75801 (18)0.54296 (16)0.07819 (15)0.0622 (4)
H16A0.65540.60020.10240.093*
H16B0.80980.60830.09310.093*
H16C0.75060.49200.00660.093*
C170.8681 (2)0.51037 (19)0.28546 (14)0.0716 (4)
H17A0.76710.56820.31250.107*
H17B0.92870.43870.33080.107*
H17C0.91960.57520.29760.107*
C180.82627 (12)0.18056 (13)0.28097 (10)0.0375 (2)
C190.92946 (14)0.15185 (14)0.35771 (11)0.0431 (3)
H191.02390.06990.35890.052*0.932 (3)
C200.89720 (16)0.24020 (16)0.43221 (12)0.0514 (3)
H200.96830.21900.48250.062*
C210.75792 (18)0.35938 (16)0.42986 (12)0.0528 (3)
C220.64974 (16)0.39404 (15)0.35770 (13)0.0540 (3)
H220.55490.47530.35800.065*
C230.68774 (14)0.30316 (14)0.28486 (11)0.0454 (3)
H230.61570.32550.23500.054*0.068 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0438 (5)0.0656 (6)0.0797 (7)0.0015 (4)0.0322 (4)0.0315 (5)
F1'0.058 (8)0.079 (10)0.093 (11)0.011 (7)0.035 (7)0.023 (8)
F20.1159 (8)0.0833 (7)0.0739 (6)0.0448 (6)0.0094 (6)0.0435 (5)
O10.0698 (6)0.0637 (6)0.0568 (6)0.0285 (5)0.0337 (5)0.0026 (5)
O20.0467 (4)0.0482 (5)0.0423 (4)0.0277 (4)0.0157 (4)0.0010 (4)
O30.0419 (5)0.0823 (7)0.0837 (7)0.0312 (5)0.0171 (5)0.0095 (6)
C10.0434 (6)0.0413 (6)0.0406 (6)0.0136 (5)0.0113 (5)0.0101 (5)
C20.0513 (7)0.0478 (7)0.0417 (6)0.0244 (6)0.0080 (5)0.0031 (5)
C30.0430 (6)0.0481 (7)0.0434 (6)0.0237 (5)0.0058 (5)0.0090 (5)
C40.0473 (6)0.0493 (7)0.0423 (6)0.0274 (5)0.0126 (5)0.0076 (5)
C50.0407 (6)0.0386 (6)0.0369 (6)0.0189 (5)0.0086 (4)0.0081 (5)
C60.0359 (5)0.0389 (6)0.0401 (6)0.0151 (5)0.0085 (4)0.0116 (5)
C70.0308 (5)0.0386 (6)0.0460 (6)0.0105 (4)0.0119 (4)0.0121 (5)
C80.0329 (5)0.0390 (6)0.0450 (6)0.0139 (4)0.0050 (4)0.0149 (5)
C90.0343 (5)0.0485 (7)0.0593 (8)0.0164 (5)0.0029 (5)0.0197 (6)
C100.0447 (7)0.0595 (8)0.0625 (8)0.0281 (6)0.0038 (6)0.0163 (7)
C110.0523 (7)0.0446 (7)0.0515 (7)0.0272 (6)0.0044 (6)0.0101 (6)
C120.0575 (7)0.0482 (7)0.0432 (7)0.0290 (6)0.0103 (5)0.0086 (5)
C130.0394 (6)0.0396 (6)0.0425 (6)0.0192 (5)0.0056 (5)0.0124 (5)
C140.0524 (8)0.0734 (10)0.0679 (9)0.0223 (7)0.0030 (7)0.0303 (8)
C150.0641 (9)0.0684 (9)0.0636 (9)0.0449 (8)0.0104 (7)0.0041 (7)
C160.0664 (9)0.0459 (7)0.0798 (10)0.0208 (7)0.0154 (8)0.0208 (7)
C170.0896 (12)0.0714 (10)0.0602 (9)0.0517 (10)0.0078 (8)0.0005 (8)
C180.0352 (5)0.0392 (6)0.0417 (6)0.0159 (5)0.0115 (4)0.0085 (5)
C190.0396 (6)0.0474 (7)0.0462 (6)0.0201 (5)0.0148 (5)0.0065 (5)
C200.0622 (8)0.0639 (8)0.0438 (7)0.0379 (7)0.0165 (6)0.0080 (6)
C210.0731 (9)0.0549 (8)0.0443 (7)0.0352 (7)0.0045 (6)0.0180 (6)
C220.0556 (8)0.0455 (7)0.0578 (8)0.0127 (6)0.0085 (6)0.0191 (6)
C230.0411 (6)0.0476 (7)0.0489 (7)0.0130 (5)0.0157 (5)0.0136 (5)
Geometric parameters (Å, º) top
F1—C231.3549 (13)C11—C161.5239 (19)
F1'—C191.230 (14)C11—C171.5287 (19)
F2—C211.3571 (15)C11—C121.5330 (16)
O1—C11.2193 (14)C12—C131.4843 (17)
O2—C51.3735 (13)C12—H12A0.9700
O2—C131.3736 (13)C12—H12B0.9700
O3—C91.2193 (15)C14—H14A0.9600
C1—C61.4638 (16)C14—H14B0.9600
C1—C21.5065 (17)C14—H14C0.9600
C2—C31.5332 (17)C15—H15A0.9600
C2—H2A0.9700C15—H15B0.9600
C2—H2B0.9700C15—H15C0.9600
C3—C141.522 (2)C16—H16A0.9600
C3—C151.5292 (17)C16—H16B0.9600
C3—C41.5299 (17)C16—H16C0.9600
C4—C51.4851 (15)C17—H17A0.9600
C4—H4A0.9700C17—H17B0.9600
C4—H4B0.9700C17—H17C0.9600
C5—C61.3389 (14)C18—C231.3819 (17)
C6—C71.5112 (14)C18—C191.3904 (14)
C7—C81.5089 (16)C19—C201.3804 (18)
C7—C181.5207 (16)C19—H190.9300
C7—H70.9800C20—C211.363 (2)
C8—C131.3388 (15)C20—H200.9300
C8—C91.4684 (15)C21—C221.3685 (19)
C9—C101.5009 (19)C22—C231.3730 (18)
C10—C111.5310 (19)C22—H220.9300
C10—H10A0.9700C23—H230.9300
C10—H10B0.9700
C5—O2—C13118.21 (8)C11—C12—H12A109.2
O1—C1—C6120.42 (11)C13—C12—H12B109.2
O1—C1—C2121.07 (11)C11—C12—H12B109.2
C6—C1—C2118.44 (9)H12A—C12—H12B107.9
C1—C2—C3114.85 (10)C8—C13—O2122.43 (10)
C1—C2—H2A108.6C8—C13—C12125.78 (10)
C3—C2—H2A108.6O2—C13—C12111.79 (9)
C1—C2—H2B108.6C3—C14—H14A109.5
C3—C2—H2B108.6C3—C14—H14B109.5
H2A—C2—H2B107.5H14A—C14—H14B109.5
C14—C3—C15109.58 (11)C3—C14—H14C109.5
C14—C3—C4110.53 (11)H14A—C14—H14C109.5
C15—C3—C4108.14 (10)H14B—C14—H14C109.5
C14—C3—C2110.07 (11)C3—C15—H15A109.5
C15—C3—C2110.10 (11)C3—C15—H15B109.5
C4—C3—C2108.39 (10)H15A—C15—H15B109.5
C5—C4—C3113.01 (9)C3—C15—H15C109.5
C5—C4—H4A109.0H15A—C15—H15C109.5
C3—C4—H4A109.0H15B—C15—H15C109.5
C5—C4—H4B109.0C11—C16—H16A109.5
C3—C4—H4B109.0C11—C16—H16B109.5
H4A—C4—H4B107.8H16A—C16—H16B109.5
C6—C5—O2123.04 (9)C11—C16—H16C109.5
C6—C5—C4125.44 (10)H16A—C16—H16C109.5
O2—C5—C4111.51 (9)H16B—C16—H16C109.5
C5—C6—C1118.82 (10)C11—C17—H17A109.5
C5—C6—C7122.11 (10)C11—C17—H17B109.5
C1—C6—C7119.06 (9)H17A—C17—H17B109.5
C8—C7—C6108.90 (9)C11—C17—H17C109.5
C8—C7—C18110.47 (9)H17A—C17—H17C109.5
C6—C7—C18113.06 (9)H17B—C17—H17C109.5
C8—C7—H7108.1C23—C18—C19115.53 (11)
C6—C7—H7108.1C23—C18—C7122.63 (9)
C18—C7—H7108.1C19—C18—C7121.79 (10)
C13—C8—C9118.38 (11)F1'—C19—C20119.4 (6)
C13—C8—C7122.62 (10)F1'—C19—C18118.0 (7)
C9—C8—C7118.98 (10)C20—C19—C18122.57 (12)
O3—C9—C8120.69 (12)C20—C19—H19118.7
O3—C9—C10121.52 (11)C18—C19—H19118.7
C8—C9—C10117.76 (10)C21—C20—C19117.98 (11)
C9—C10—C11115.71 (10)C21—C20—H20121.0
C9—C10—H10A108.4C19—C20—H20121.0
C11—C10—H10A108.4F2—C21—C20119.12 (12)
C9—C10—H10B108.4F2—C21—C22118.00 (13)
C11—C10—H10B108.4C20—C21—C22122.88 (12)
H10A—C10—H10B107.4C21—C22—C23116.87 (12)
C16—C11—C17109.55 (12)C21—C22—H22121.6
C16—C11—C10110.27 (11)C23—C22—H22121.6
C17—C11—C10110.20 (12)F1—C23—C22117.04 (11)
C16—C11—C12110.34 (11)F1—C23—C18118.79 (11)
C17—C11—C12109.15 (11)C22—C23—C18124.17 (11)
C10—C11—C12107.29 (10)C22—C23—H23117.9
C13—C12—C11112.16 (10)C18—C23—H23117.9
C13—C12—H12A109.2
O1—C1—C2—C3155.46 (12)C9—C10—C11—C1668.74 (15)
C6—C1—C2—C327.60 (16)C9—C10—C11—C17170.19 (12)
C1—C2—C3—C1470.82 (14)C9—C10—C11—C1251.47 (15)
C1—C2—C3—C15168.27 (11)C16—C11—C12—C1370.88 (14)
C1—C2—C3—C450.17 (14)C17—C11—C12—C13168.68 (12)
C14—C3—C4—C573.46 (13)C10—C11—C12—C1349.28 (14)
C15—C3—C4—C5166.59 (11)C9—C8—C13—O2174.81 (10)
C2—C3—C4—C547.24 (14)C7—C8—C13—O26.63 (17)
C13—O2—C5—C69.76 (16)C9—C8—C13—C125.94 (18)
C13—O2—C5—C4168.91 (10)C7—C8—C13—C12172.62 (11)
C3—C4—C5—C623.38 (17)C5—O2—C13—C87.66 (16)
C3—C4—C5—O2157.99 (10)C5—O2—C13—C12173.00 (10)
O2—C5—C6—C1176.36 (10)C11—C12—C13—C823.44 (18)
C4—C5—C6—C12.12 (18)C11—C12—C13—O2155.88 (10)
O2—C5—C6—C72.50 (18)C8—C7—C18—C2363.24 (14)
C4—C5—C6—C7179.02 (11)C6—C7—C18—C2359.07 (15)
O1—C1—C6—C5176.86 (12)C8—C7—C18—C19114.03 (11)
C2—C1—C6—C50.10 (17)C6—C7—C18—C19123.66 (11)
O1—C1—C6—C72.04 (17)C23—C18—C19—F1'178.2 (9)
C2—C1—C6—C7179.00 (10)C7—C18—C19—F1'0.8 (9)
C5—C6—C7—C814.60 (15)C23—C18—C19—C200.60 (18)
C1—C6—C7—C8164.25 (10)C7—C18—C19—C20176.85 (11)
C5—C6—C7—C18108.58 (12)F1'—C19—C20—C21177.9 (9)
C1—C6—C7—C1872.56 (13)C18—C19—C20—C210.34 (19)
C6—C7—C8—C1316.67 (15)C19—C20—C21—F2179.57 (11)
C18—C7—C8—C13108.05 (12)C19—C20—C21—C220.3 (2)
C6—C7—C8—C9164.77 (10)F2—C21—C22—C23179.89 (12)
C18—C7—C8—C970.50 (12)C20—C21—C22—C230.6 (2)
C13—C8—C9—O3172.78 (12)C21—C22—C23—F1179.17 (12)
C7—C8—C9—O38.60 (18)C21—C22—C23—C180.3 (2)
C13—C8—C9—C105.27 (17)C19—C18—C23—F1179.75 (11)
C7—C8—C9—C10173.35 (11)C7—C18—C23—F12.32 (18)
O3—C9—C10—C11156.79 (13)C19—C18—C23—C220.26 (19)
C8—C9—C10—C1125.18 (17)C7—C18—C23—C22177.17 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.932.383.3075 (15)177
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O1i0.932.383.3075 (15)177
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

SR thanks the University Grants Commission for financial support of this work (grant MRP– 4335/12). The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHideo, T. (1981). Jpn Kokai Tokkyo Koho JP, 56, 005480.  Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.  Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.  Google Scholar
First citationPoupelin, J. P., Rut, G. S., Blanpin, O. F., Narcisse, G., Ernouf, G. U. & Lacroise, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationSelvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664–667.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o1060.  CSD CrossRef IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281.  CSD CrossRef IUCr Journals Google Scholar
First citationVanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287–3290.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o276-o277
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds