organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o291-o292

4-[(1,3-Dioxoisoindolin-2-yl)meth­yl]benzene­sulfonamide

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and dDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
*Correspondence e-mail: joelt@tulane.edu

(Received 5 February 2014; accepted 6 February 2014; online 12 February 2014)

The title compound, C15H12N2O4S, is V-shaped with the isoindoline ring system (r.m.s. deviation = 0.006 Å) inclined to the benzene ring by 84.27 (13)°. In the crystal, inversion dimers are formed via pairwise N—H⋯O hydrogen bonds. These dimers associate further into corrugated ribbons, via pairwise N—H⋯O and C—H⋯O hydrogen bonds, propagating along the a-axis direction and lying parallel to (001).

Related literature

For the biological activity of cyclic imides, see: Abdel-Aziz et al. (2011a[Abdel-Aziz, A. A.-M., El-Azab, A. S., Attia, S. M., Al-Obaid, A. M., Al-Omar, M. A. & El-Subbagh, H. I. (2011a). Eur. J. Med. Chem. 46, 4324-4329.],b[Abdel-Aziz, A. A.-M., ElTahir, K. E. H. & Asiri, Y. A. (2011b). Eur. J. Med. Chem. 46, 1648-1655.]); Abdel-Aziz (2007[Abdel-Aziz, A. A.-M. (2007). Eur. J. Med. Chem. 42, 614-626.]). For related crystal structures, see: Jiang et al. (2008[Jiang, Z., Wang, J.-D., Chen, N.-S. & Huang, J.-L. (2008). Acta Cryst. E64, o324.]); Li (2007[Li, J. (2007). Acta Cryst. E63, o3515.]); Warzecha et al. (2006[Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o2367-o2368.]). For the preparation of the title compound, see: Abdel-Aziz et al. (2011a[Abdel-Aziz, A. A.-M., El-Azab, A. S., Attia, S. M., Al-Obaid, A. M., Al-Omar, M. A. & El-Subbagh, H. I. (2011a). Eur. J. Med. Chem. 46, 4324-4329.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N2O4S

  • Mr = 316.33

  • Monoclinic, P 21 /n

  • a = 4.9803 (1) Å

  • b = 26.5291 (7) Å

  • c = 10.2740 (3) Å

  • β = 90.804 (1)°

  • V = 1357.30 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.33 mm−1

  • T = 100 K

  • 0.27 × 0.07 × 0.02 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.95

  • 22413 measured reflections

  • 2533 independent reflections

  • 2277 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 1.17

  • 2533 reflections

  • 207 parameters

  • 60 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.89 (4) 2.11 (4) 2.963 (3) 162 (3)
N2—H2B⋯O4ii 0.88 (3) 2.36 (3) 3.105 (3) 142 (3)
C15—H15⋯O1iii 0.95 2.38 3.307 (3) 166
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Cyclic imides are an interesting class of compounds possessing important biological functions including anti-hyperlipidemic, anti-diabetic, anti-tumor and anti-inflammatory activities (Abdel-Aziz et al., 2011a,b; Abdel-Aziz, 2007). As part of our ongoing studies in drug design and discovery, we report herein on the crystal structure of the title compound.

The title molecule, Fig. 1, is V-shaped with the mean plane of the isoindoline ring system (N1/C1-C8; r.m.s. deviation 0.006 Å) being inclined to the benzene ring (C10-C15) by 84.27 (13)°. The entire isoindoline-1,3-dione moiety is planar with the exception of atoms O1 and O2 which lie 0.013 (2) and 0.030 (2) Å, respectively, out of the mean plane of the carbon and nitrogen atoms.

In the crystal, inversion dimers are formed via N2—H2A···O3 hydrogen bonds (Table 1). These units associate further into corrugated ribbons via pairwise N2—H2B···O4 and C15—H15···O1 hydrogen bonds (Table 1 and Fig. 2). The ribbons run in the a direction and are parallel to (001).

Related literature top

For the biological activity of cyclic imides, see: Abdel-Aziz et al. (2011a,b); Abdel-Aziz (2007). For related crystal structures, see: Jiang et al. (2008); Li (2007); Warzecha et al. (2006). For the preparation of the title compound, see: Abdel-Aziz et al. (2011a).

Experimental top

The synthesis of the title compound has been reported previously (Abdel-Aziz et al., 2011a). A solution of 4-(aminomethyl)benzene-1-sulfonamide (10 mmol) and phthalic anhydride (10 mmol) in glacial acetic acid (10 ml) was heated under reflux for 6 h. After evaporation of the reaction mixture to dryness under reduced pressure, the residue was neutralized using aqueous sodium bicarbonate solution (4%) until effervescence ceased. The precipitate obtained was washed with water, dried in vacuo and recrystallized from methanol yielding colourless plate-like crystals.

Refinement top

The NH2 H atoms were located in a difference electron-density map and freely refined. The C bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 and 0.99 Å for CH and CH2H atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (N—H···O purple; C—H···O green; see Table 1 for details).
4-[(1,3-Dioxoisoindolin-2-yl)methyl]benzenesulfonamide top
Crystal data top
C15H12N2O4SF(000) = 656
Mr = 316.33Dx = 1.548 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 4.9803 (1) ÅCell parameters from 9982 reflections
b = 26.5291 (7) Åθ = 3.3–69.7°
c = 10.2740 (3) ŵ = 2.33 mm1
β = 90.804 (1)°T = 100 K
V = 1357.30 (6) Å3Plate, colourless
Z = 40.27 × 0.07 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2533 independent reflections
Radiation source: INCOATEC IµS micro–focus source2277 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4167 pixels mm-1θmax = 69.7°, θmin = 3.3°
ω scansh = 65
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 3232
Tmin = 0.85, Tmax = 0.95l = 1212
22413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.007P)2 + 2.7892P]
where P = (Fo2 + 2Fc2)/3
2533 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.35 e Å3
60 restraintsΔρmin = 0.48 e Å3
Crystal data top
C15H12N2O4SV = 1357.30 (6) Å3
Mr = 316.33Z = 4
Monoclinic, P21/nCu Kα radiation
a = 4.9803 (1) ŵ = 2.33 mm1
b = 26.5291 (7) ÅT = 100 K
c = 10.2740 (3) Å0.27 × 0.07 × 0.02 mm
β = 90.804 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2533 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2277 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.95Rint = 0.036
22413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04260 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.35 e Å3
2533 reflectionsΔρmin = 0.48 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34446 (12)0.06815 (2)0.37785 (6)0.01772 (16)
O10.8787 (4)0.29938 (7)0.42647 (19)0.0289 (5)
O20.2038 (4)0.33953 (7)0.70508 (18)0.0270 (4)
O30.2231 (4)0.03320 (7)0.46699 (18)0.0234 (4)
O40.1931 (4)0.08113 (7)0.26280 (17)0.0228 (4)
N10.5522 (4)0.30797 (8)0.5821 (2)0.0196 (5)
N20.6245 (5)0.04320 (9)0.3351 (2)0.0213 (5)
H2A0.699 (7)0.0253 (13)0.399 (3)0.036 (9)*
H2B0.734 (7)0.0629 (13)0.291 (3)0.035 (9)*
C10.6940 (5)0.32243 (10)0.4720 (2)0.0203 (5)
C20.5700 (5)0.37076 (10)0.4278 (2)0.0195 (5)
C30.6315 (5)0.40119 (10)0.3228 (3)0.0250 (6)
H30.77240.39280.26530.030*
C40.4774 (6)0.44466 (10)0.3052 (3)0.0277 (6)
H40.51410.46650.23440.033*
C50.2713 (6)0.45654 (10)0.3897 (3)0.0291 (6)
H50.16950.48640.37540.035*
C60.2107 (6)0.42563 (10)0.4950 (3)0.0254 (6)
H60.07000.43370.55280.030*
C70.3644 (5)0.38266 (9)0.5114 (2)0.0194 (5)
C80.3516 (5)0.34265 (10)0.6129 (2)0.0195 (5)
C90.6122 (6)0.26288 (10)0.6576 (3)0.0224 (6)
H9A0.51150.26430.74000.027*
H9B0.80600.26270.68030.027*
C100.5424 (5)0.21422 (10)0.5873 (2)0.0200 (5)
C110.6909 (5)0.17103 (10)0.6137 (3)0.0229 (6)
H110.83430.17230.67570.027*
C120.6324 (5)0.12619 (10)0.5508 (3)0.0222 (6)
H120.73630.09690.56820.027*
C130.4197 (5)0.12451 (9)0.4619 (2)0.0179 (5)
C140.2657 (5)0.16688 (10)0.4370 (3)0.0212 (6)
H140.11910.16530.37690.025*
C150.3270 (5)0.21161 (10)0.5003 (3)0.0229 (6)
H150.22080.24070.48410.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0184 (3)0.0157 (3)0.0191 (3)0.0011 (2)0.0001 (2)0.0007 (2)
O10.0278 (11)0.0321 (11)0.0269 (10)0.0094 (9)0.0047 (8)0.0021 (9)
O20.0296 (10)0.0318 (11)0.0197 (10)0.0032 (8)0.0056 (8)0.0010 (8)
O30.0224 (10)0.0206 (9)0.0272 (10)0.0019 (7)0.0032 (8)0.0046 (8)
O40.0249 (10)0.0214 (9)0.0219 (9)0.0009 (7)0.0054 (7)0.0002 (8)
N10.0235 (11)0.0175 (11)0.0177 (11)0.0008 (9)0.0002 (9)0.0004 (9)
N20.0221 (12)0.0201 (12)0.0218 (12)0.0002 (9)0.0009 (10)0.0003 (10)
C10.0221 (13)0.0216 (13)0.0171 (13)0.0005 (10)0.0007 (10)0.0004 (10)
C20.0197 (13)0.0201 (13)0.0185 (13)0.0024 (10)0.0027 (10)0.0014 (10)
C30.0240 (14)0.0282 (15)0.0228 (14)0.0051 (11)0.0005 (11)0.0029 (12)
C40.0346 (16)0.0235 (14)0.0249 (14)0.0083 (12)0.0063 (12)0.0068 (12)
C50.0393 (17)0.0173 (13)0.0303 (15)0.0034 (12)0.0098 (13)0.0008 (12)
C60.0302 (15)0.0219 (14)0.0239 (14)0.0061 (11)0.0043 (11)0.0042 (11)
C70.0223 (13)0.0176 (12)0.0183 (13)0.0009 (10)0.0044 (10)0.0008 (10)
C80.0220 (13)0.0185 (13)0.0178 (13)0.0001 (10)0.0026 (10)0.0043 (10)
C90.0288 (14)0.0195 (13)0.0189 (13)0.0029 (11)0.0031 (11)0.0021 (10)
C100.0243 (13)0.0204 (13)0.0155 (12)0.0008 (10)0.0022 (10)0.0006 (10)
C110.0269 (14)0.0226 (13)0.0189 (13)0.0022 (11)0.0058 (11)0.0024 (11)
C120.0247 (14)0.0186 (13)0.0232 (14)0.0037 (11)0.0035 (11)0.0018 (11)
C130.0196 (13)0.0176 (12)0.0165 (12)0.0015 (10)0.0029 (10)0.0023 (10)
C140.0213 (13)0.0223 (13)0.0199 (13)0.0006 (10)0.0027 (10)0.0016 (11)
C150.0258 (14)0.0192 (13)0.0237 (14)0.0044 (11)0.0028 (11)0.0005 (11)
Geometric parameters (Å, º) top
S1—O41.4350 (18)C5—C61.394 (4)
S1—O31.4419 (18)C5—H50.9500
S1—N21.610 (2)C6—C71.382 (4)
S1—C131.764 (3)C6—H60.9500
O1—C11.205 (3)C7—C81.490 (4)
O2—C81.211 (3)C9—C101.517 (4)
N1—C11.396 (3)C9—H9A0.9900
N1—C81.397 (3)C9—H9B0.9900
N1—C91.454 (3)C10—C151.388 (4)
N2—H2A0.89 (4)C10—C111.389 (4)
N2—H2B0.88 (3)C11—C121.383 (4)
C1—C21.491 (4)C11—H110.9500
C2—C71.382 (4)C12—C131.390 (4)
C2—C31.385 (4)C12—H120.9500
C3—C41.396 (4)C13—C141.382 (4)
C3—H30.9500C14—C151.386 (4)
C4—C51.390 (4)C14—H140.9500
C4—H40.9500C15—H150.9500
O4—S1—O3117.22 (11)C6—C7—C2121.7 (2)
O4—S1—N2108.72 (12)C6—C7—C8130.1 (2)
O3—S1—N2106.35 (12)C2—C7—C8108.1 (2)
O4—S1—C13107.77 (11)O2—C8—N1125.2 (2)
O3—S1—C13108.78 (11)O2—C8—C7128.9 (2)
N2—S1—C13107.65 (12)N1—C8—C7105.9 (2)
C1—N1—C8111.9 (2)N1—C9—C10113.7 (2)
C1—N1—C9123.8 (2)N1—C9—H9A108.8
C8—N1—C9124.3 (2)C10—C9—H9A108.8
S1—N2—H2A112 (2)N1—C9—H9B108.8
S1—N2—H2B116 (2)C10—C9—H9B108.8
H2A—N2—H2B116 (3)H9A—C9—H9B107.7
O1—C1—N1125.0 (2)C15—C10—C11119.3 (2)
O1—C1—C2129.3 (2)C15—C10—C9121.2 (2)
N1—C1—C2105.7 (2)C11—C10—C9119.4 (2)
C7—C2—C3121.7 (2)C12—C11—C10120.7 (2)
C7—C2—C1108.3 (2)C12—C11—H11119.7
C3—C2—C1130.0 (2)C10—C11—H11119.7
C2—C3—C4117.1 (3)C11—C12—C13119.3 (2)
C2—C3—H3121.5C11—C12—H12120.4
C4—C3—H3121.5C13—C12—H12120.4
C5—C4—C3121.1 (3)C14—C13—C12120.8 (2)
C5—C4—H4119.5C14—C13—S1119.0 (2)
C3—C4—H4119.5C12—C13—S1120.22 (19)
C4—C5—C6121.4 (3)C13—C14—C15119.4 (2)
C4—C5—H5119.3C13—C14—H14120.3
C6—C5—H5119.3C15—C14—H14120.3
C7—C6—C5117.0 (3)C14—C15—C10120.6 (2)
C7—C6—H6121.5C14—C15—H15119.7
C5—C6—H6121.5C10—C15—H15119.7
C8—N1—C1—O1179.0 (3)C2—C7—C8—O2178.4 (3)
C9—N1—C1—O10.7 (4)C6—C7—C8—N1179.6 (3)
C8—N1—C1—C20.5 (3)C2—C7—C8—N10.9 (3)
C9—N1—C1—C2178.9 (2)C1—N1—C9—C1070.0 (3)
O1—C1—C2—C7179.6 (3)C8—N1—C9—C10111.9 (3)
N1—C1—C2—C70.1 (3)N1—C9—C10—C1532.3 (4)
O1—C1—C2—C31.0 (5)N1—C9—C10—C11149.9 (2)
N1—C1—C2—C3179.5 (3)C15—C10—C11—C122.4 (4)
C7—C2—C3—C40.3 (4)C9—C10—C11—C12179.8 (2)
C1—C2—C3—C4179.7 (3)C10—C11—C12—C131.0 (4)
C2—C3—C4—C50.1 (4)C11—C12—C13—C140.6 (4)
C3—C4—C5—C60.1 (4)C11—C12—C13—S1178.8 (2)
C4—C5—C6—C70.1 (4)O4—S1—C13—C1420.6 (2)
C5—C6—C7—C20.2 (4)O3—S1—C13—C14107.4 (2)
C5—C6—C7—C8179.7 (3)N2—S1—C13—C14137.7 (2)
C3—C2—C7—C60.3 (4)O4—S1—C13—C12158.8 (2)
C1—C2—C7—C6179.8 (2)O3—S1—C13—C1273.2 (2)
C3—C2—C7—C8179.9 (2)N2—S1—C13—C1241.7 (2)
C1—C2—C7—C80.6 (3)C12—C13—C14—C150.8 (4)
C1—N1—C8—O2178.4 (2)S1—C13—C14—C15178.5 (2)
C9—N1—C8—O20.1 (4)C13—C14—C15—C100.5 (4)
C1—N1—C8—C70.9 (3)C11—C10—C15—C142.1 (4)
C9—N1—C8—C7179.2 (2)C9—C10—C15—C14179.9 (2)
C6—C7—C8—O21.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.89 (4)2.11 (4)2.963 (3)162 (3)
N2—H2B···O4ii0.88 (3)2.36 (3)3.105 (3)142 (3)
C15—H15···O1iii0.952.383.307 (3)166
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.89 (4)2.11 (4)2.963 (3)162 (3)
N2—H2B···O4ii0.88 (3)2.36 (3)3.105 (3)142 (3)
C15—H15···O1iii0.952.383.307 (3)166
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for financial support. The support of the NSF–MRI [grant No. 1228232] for the purchase of the diffractometer is gratefully acknowledged, as is the Chemistry Department of Tulane University for the ongoing support of the Tulane Crystallography Laboratory.

References

First citationAbdel-Aziz, A. A.-M. (2007). Eur. J. Med. Chem. 42, 614–626.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., Attia, S. M., Al-Obaid, A. M., Al-Omar, M. A. & El-Subbagh, H. I. (2011a). Eur. J. Med. Chem. 46, 4324–4329.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Aziz, A. A.-M., ElTahir, K. E. H. & Asiri, Y. A. (2011b). Eur. J. Med. Chem. 46, 1648–1655.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Z., Wang, J.-D., Chen, N.-S. & Huang, J.-L. (2008). Acta Cryst. E64, o324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. (2007). Acta Cryst. E63, o3515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o2367–o2368.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o291-o292
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds