organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o299-o300

Methyl 4′-(3-bromo­phen­yl)-3′-(2,5-di­methyl­benz­yl)-1′-methyl-2-oxo­spiro­[indo­line-3,2′-pyrrolidine]-3′-carboxyl­ate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 6 February 2014; accepted 10 February 2014; online 15 February 2014)

In the title compound, C29H29BrN2O3, the indole ring system is essentially planar (r.m.s. deviation = 0.079 Å) and makes a dihedral angle of 85.23 (10)° with the mean plane of the 4-methyl­pyrrolidine ring. This ring adopts an envelope conformation with the N atom at the flap. The pyrrolidine ring of the indole ring system adopts a twisted conformation on the C—C(=O) bond. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif. These dimers are further linked by N—H⋯O and C—H⋯O hydrogen bonds, forming two-dimensional networks lying parallel to (10-1).

Related literature

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2002[Obniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209-213.]); Saito et al. (1991[Saito, M., Hashimoto, M., Kawaguchi, N., Shibata, H., Fukami, H., Tanaka, T. & Higuchi, N. (1991). J. Enzyme Inhib. 5, 51-75.]); Hilton et al. (2000[Hilton, S. T., Ho, T. C., Pljevalijcic, G. & Jones, K. (2000). Org. Lett. 2, 2639-2641.]). For related crystal structures, see: Jagadeesan et al. (2013[Jagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). Br. J. Pharmacol. 44, 561—576.]). For graph-set motif notations, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length distortions in small rings, see: Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

[Scheme 1]

Experimental

Crystal data
  • C29H29BrN2O3

  • Mr = 533.45

  • Monoclinic, P 21 /n

  • a = 12.0673 (4) Å

  • b = 9.4109 (3) Å

  • c = 22.5852 (7) Å

  • β = 103.660 (2)°

  • V = 2492.32 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.564, Tmax = 0.657

  • 23085 measured reflections

  • 4898 independent reflections

  • 3487 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.01

  • 4898 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.93 2.39 3.253 (3) 155
N2—H2⋯O3i 0.86 2.24 3.085 (2) 166
C1—H1⋯O2ii 0.93 2.42 3.321 (2) 163
C26—H26B⋯O1iii 0.96 2.52 3.315 (3) 140
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+1; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro-compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties. Pyrrolidine derivatives posses anti-influenza virus and anti-convulsant activities (Obniska et al., 2002; Hilton et al., 2000). They also show inhibitory activity towards post-proline cleaving enzymes and show strong anti-amensic activities (Saito et al., 1991).

The molecular structure of the title compound is illustrated in Fig 1. In the molecule, there is a C—H···O hydrogen bond, forming an S(6) ring motif (Table 1; Bernstein et al., 1995). The indole ring system (N2/C9-C16) is essentially planar with a maximum deviation of -0.136 (2) Å for atom C10. Atom O1 deviates significantly from the mean plane of the indole ring system by -0.393 (2) Å. The mean plane of the indole ring system forms a dihedral angle of 85.23 (10)° with mean plane of the 4-methyl pyrrolidine ring (N1/C7-C9/C17). The mean plane of the 4-methyl pyrrolidine ring forms a dihedral angle of 52.81 (11)° with the benzyl ring. The molecular dimensions in the title compound are in excellent agreement with the corresponding values reported for a closely related compound (Jagadeesan et al., 2013).

The spiro-pyrrolidine ring (N1/C7-C9/C17) adopts an envelope conformation with atom N1 at the flap. The distance to the flap position from the mean plane of the spiro carbon is 0.2455 (19) Å. The puckering parameters (Cremer & Pople, 1975) of the ring are Q2 = 0.390 (2) Å and φ2 = 174.9 (3)°. The pyrrolidine ring of the indole ring system adopts a twisted conformation on bond C9-C10, with deviations of -0.0621 (2) and 0.059 (2) Å, respectively, for the two atoms. The central spiro-pyrrolidine ring (N1/C7-C9/C17) is perpendicular to the bromophenyl ring with a dihedral angle of 88.32 (11)°. The carbonyl group and the benzyl ring have an (-)anti-periplanar conformation with torsion angle (C18—C17—C25—O2) being -154.57 (19)°.

In benzene ring (C11—C16) of the indole ring system, the expansion of the ipso angles at C11, C13 and C14 [121.8 (2), 121.3 (2) and 120.2 (2)°, respectively] and contraction of the apical angles at C12, C15 and C16 [117.9 (2), 119.1 (2) and 119.56 (19)°, respectively] are caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981). The carboxyl group and oxindole ring system are (+)syn-clinal to each other with the torsion angle (C9—C17—C25—O2) of 84.5 (2)°.

The crystal packing (Fig. 2 and Table 1) is stabilized by the N2—H2···O3i [symmetry code: (i) - x-1/2, + y-1/2, - z+1/2] hydrogen bond that generates C(7) chains, running parallel to the b axis. A second chain, C(8), running parallel to the same axis is formed by the C26—H26B···O1iii [symmetry code: (iii) x, y+1, z] hydrogen bond. The molecules are further linked via C1—H1···O2ii [symmetry code: (ii) -x, - y+2, - z+1] hydrogen bonds to form inversion dimers, resulting in R22(14) graph-set motifs (Bernstein et al., 1995). The combination of these various hydrogen bonds resuts in the formation of two-dimensional networks lying parallel to (101).

Related literature top

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2002); Saito et al. (1991); Hilton et al. (2000). For related crystal structures, see: Jagadeesan et al. (2013). For puckering parameters, see: Cremer & Pople (1975). For graph-set motif notations, see: Bernstein et al. (1995). For bond-length distortions in small rings, see: Allen (1981).

Experimental top

A mixture of (E)-methyl 3-(3-bromophenyl)-2-(2,5-dimethylbenzyl)acrylate (2 mmol), isatin (2 mmol) and sarcosine (2 mmol) in acetonitrile (8 ml) was refluxed for 12 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. The resulting crude mass was diluted with water (10 ml) and extracted with ethyl acetate (3 × 10 ml). The combined organic layers were washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer was concentrated and the residue purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate:hexanes (2:8) to afford the title compound as a colourless solid (Yield 71%). Block-like colourless crystals were obtained by slow evaporation of a solution in CHCl3.

Refinement top

The H atoms could all be located in difference electron-density maps. In the final cycles of refinement they were treated as riding atoms and their distances were geometrically constrained: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5 Ueq(C–methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title comolecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Aview of the crystal packing of the title compound, showing the formation of infinite chains C(7) and C(8) and R22(14) graph-set motifs. The dashed lines indicate hydrogen bonds (see Table 1 for details).
Methyl 4'-(3-bromophenyl)-3'-(2,5-dimethylbenzyl)-1'-methyl-2-oxospiro[indoline-3,2'-pyrrolidine]-3'-carboxylate top
Crystal data top
C29H29BrN2O3F(000) = 1104
Mr = 533.45Dx = 1.422 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 4898 reflections
a = 12.0673 (4) Åθ = 2.2–26.0°
b = 9.4109 (3) ŵ = 1.68 mm1
c = 22.5852 (7) ÅT = 293 K
β = 103.660 (2)°Block, colorless
V = 2492.32 (14) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4898 independent reflections
Radiation source: fine-focus sealed tube3487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker 2008)
h = 1414
Tmin = 0.564, Tmax = 0.657k = 1111
23085 measured reflectionsl = 2723
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.049P)2 + 0.846P]
where P = (Fo2 + 2Fc2)/3
4898 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C29H29BrN2O3V = 2492.32 (14) Å3
Mr = 533.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0673 (4) ŵ = 1.68 mm1
b = 9.4109 (3) ÅT = 293 K
c = 22.5852 (7) Å0.35 × 0.30 × 0.25 mm
β = 103.660 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2008)
3487 reflections with I > 2σ(I)
Tmin = 0.564, Tmax = 0.657Rint = 0.032
23085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
4898 reflectionsΔρmin = 0.37 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19054 (18)0.7464 (2)0.45559 (9)0.0337 (5)
H10.18900.81970.48300.040*
C20.29340 (19)0.6963 (3)0.44773 (10)0.0406 (5)
C30.2988 (2)0.5886 (3)0.40750 (11)0.0480 (6)
H30.36870.55640.40220.058*
C40.1991 (2)0.5298 (3)0.37549 (10)0.0469 (6)
H40.20150.45630.34830.056*
C50.09473 (19)0.5775 (2)0.38276 (10)0.0376 (5)
H50.02780.53560.36080.045*
C60.08958 (17)0.6878 (2)0.42272 (9)0.0309 (5)
C70.02180 (17)0.7436 (2)0.43366 (9)0.0291 (5)
H70.00190.80940.46820.035*
C80.09576 (17)0.6270 (2)0.45184 (10)0.0355 (5)
H8A0.08500.53750.43270.043*
H8B0.07720.61410.49570.043*
C90.22078 (17)0.7398 (2)0.37089 (9)0.0269 (4)
C100.23087 (17)0.6300 (2)0.31808 (9)0.0317 (5)
C110.38171 (18)0.7809 (2)0.29012 (9)0.0333 (5)
C120.48250 (19)0.8392 (3)0.25872 (11)0.0466 (6)
H120.51520.81250.21880.056*
C130.5336 (2)0.9379 (3)0.28800 (12)0.0574 (7)
H130.60170.97960.26740.069*
C140.4859 (2)0.9770 (3)0.34747 (12)0.0541 (7)
H140.52301.04260.36680.065*
C150.38347 (18)0.9189 (2)0.37835 (10)0.0399 (5)
H150.35140.94440.41850.048*
C160.32970 (16)0.8232 (2)0.34905 (9)0.0297 (5)
C170.10458 (16)0.8266 (2)0.38018 (8)0.0258 (4)
C180.06611 (16)0.8413 (2)0.32054 (9)0.0288 (4)
H18A0.04650.74730.30870.035*
H18B0.13100.87370.28940.035*
C190.03291 (16)0.9389 (2)0.31960 (9)0.0300 (5)
C200.09418 (17)1.0100 (2)0.37079 (9)0.0337 (5)
H200.07200.99910.40720.040*
C210.18680 (17)1.0964 (2)0.37017 (10)0.0388 (5)
C220.21530 (19)1.1154 (3)0.31553 (12)0.0463 (6)
H220.27561.17510.31340.056*
C230.15609 (19)1.0475 (3)0.26388 (11)0.0476 (6)
H230.17721.06260.22740.057*
C240.06569 (18)0.9570 (2)0.26467 (10)0.0373 (5)
C250.13018 (16)0.9724 (2)0.40407 (9)0.0283 (4)
C260.1905 (3)1.2069 (2)0.37822 (12)0.0588 (8)
H26A0.25651.20100.39490.088*
H26B0.20581.26990.34380.088*
H26C0.12721.24260.40870.088*
C270.2983 (2)0.5739 (3)0.43525 (11)0.0453 (6)
H27A0.37250.61390.41910.068*
H27B0.29060.54930.47730.068*
H27C0.28920.49020.41260.068*
C280.2541 (2)1.1619 (3)0.42803 (12)0.0599 (7)
H28A0.20291.19570.45160.090*
H28B0.29801.24000.41850.090*
H28C0.30441.09210.45100.090*
C290.0049 (2)0.8811 (3)0.20775 (11)0.0535 (7)
H29A0.03990.90500.17500.080*
H29B0.07370.90950.19720.080*
H29C0.00980.78040.21460.080*
N10.21158 (14)0.67732 (18)0.43036 (7)0.0313 (4)
N20.31885 (15)0.67136 (19)0.27236 (8)0.0379 (4)
H20.33430.63440.23650.045*
O10.17294 (13)0.52493 (16)0.31804 (7)0.0436 (4)
O20.12565 (12)0.99948 (15)0.45631 (6)0.0369 (4)
O30.16324 (12)1.06736 (14)0.35912 (6)0.0355 (3)
Br10.43004 (2)0.77598 (4)0.494958 (15)0.07456 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (11)0.0362 (12)0.0262 (11)0.0051 (9)0.0051 (9)0.0006 (9)
C20.0361 (11)0.0516 (15)0.0331 (12)0.0029 (10)0.0063 (10)0.0019 (11)
C30.0414 (13)0.0620 (17)0.0441 (14)0.0161 (11)0.0170 (11)0.0023 (12)
C40.0540 (14)0.0501 (15)0.0366 (13)0.0154 (12)0.0109 (11)0.0081 (11)
C50.0406 (12)0.0369 (13)0.0325 (12)0.0075 (10)0.0030 (9)0.0042 (10)
C60.0358 (11)0.0312 (12)0.0245 (11)0.0081 (9)0.0050 (9)0.0050 (9)
C70.0332 (10)0.0304 (12)0.0222 (10)0.0068 (8)0.0033 (8)0.0008 (8)
C80.0415 (12)0.0361 (12)0.0278 (11)0.0097 (10)0.0059 (9)0.0098 (9)
C90.0327 (10)0.0252 (11)0.0225 (10)0.0022 (8)0.0058 (8)0.0001 (8)
C100.0385 (11)0.0259 (11)0.0317 (11)0.0047 (9)0.0102 (9)0.0002 (9)
C110.0373 (11)0.0323 (12)0.0290 (11)0.0044 (9)0.0050 (9)0.0034 (9)
C120.0398 (12)0.0566 (16)0.0360 (13)0.0027 (11)0.0060 (10)0.0053 (12)
C130.0387 (13)0.0726 (19)0.0536 (17)0.0163 (13)0.0033 (12)0.0064 (14)
C140.0442 (13)0.0628 (17)0.0547 (16)0.0201 (12)0.0105 (12)0.0009 (13)
C150.0373 (11)0.0454 (14)0.0359 (12)0.0070 (10)0.0068 (10)0.0032 (11)
C160.0306 (10)0.0305 (11)0.0273 (11)0.0007 (9)0.0052 (8)0.0027 (9)
C170.0309 (10)0.0249 (10)0.0202 (10)0.0025 (8)0.0032 (8)0.0009 (8)
C180.0346 (10)0.0287 (11)0.0228 (10)0.0019 (9)0.0064 (8)0.0005 (8)
C190.0318 (10)0.0288 (11)0.0292 (11)0.0054 (9)0.0068 (9)0.0048 (9)
C200.0358 (11)0.0343 (12)0.0303 (11)0.0025 (9)0.0066 (9)0.0027 (10)
C210.0315 (11)0.0390 (13)0.0438 (13)0.0021 (9)0.0049 (10)0.0065 (11)
C220.0309 (11)0.0473 (15)0.0623 (16)0.0012 (10)0.0142 (11)0.0078 (13)
C230.0432 (13)0.0630 (17)0.0424 (14)0.0029 (12)0.0220 (11)0.0072 (12)
C240.0365 (11)0.0448 (13)0.0323 (12)0.0083 (10)0.0114 (9)0.0018 (10)
C250.0286 (10)0.0273 (11)0.0278 (12)0.0012 (8)0.0043 (8)0.0003 (9)
C260.097 (2)0.0291 (14)0.0526 (16)0.0220 (14)0.0221 (15)0.0055 (12)
C270.0494 (13)0.0448 (14)0.0441 (14)0.0038 (11)0.0158 (11)0.0099 (11)
C280.0589 (16)0.0549 (17)0.0590 (17)0.0165 (13)0.0001 (13)0.0031 (13)
C290.0605 (15)0.0702 (19)0.0335 (13)0.0021 (14)0.0187 (12)0.0041 (12)
N10.0363 (9)0.0324 (10)0.0255 (9)0.0027 (8)0.0082 (7)0.0065 (7)
N20.0466 (10)0.0388 (11)0.0244 (9)0.0049 (9)0.0009 (8)0.0063 (8)
O10.0519 (9)0.0305 (9)0.0476 (10)0.0035 (7)0.0101 (8)0.0076 (7)
O20.0509 (9)0.0340 (8)0.0241 (8)0.0075 (7)0.0058 (6)0.0052 (6)
O30.0515 (9)0.0246 (8)0.0305 (8)0.0110 (7)0.0098 (7)0.0047 (6)
Br10.03672 (15)0.1020 (3)0.0809 (2)0.00654 (14)0.00577 (14)0.02329 (18)
Geometric parameters (Å, º) top
C1—C21.378 (3)C15—H150.9300
C1—C61.383 (3)C17—C181.531 (3)
C1—H10.9300C17—C251.532 (3)
C2—C31.373 (3)C18—C191.511 (3)
C2—Br11.895 (2)C18—H18A0.9700
C3—C41.366 (3)C18—H18B0.9700
C3—H30.9300C19—C201.388 (3)
C4—C51.383 (3)C19—C241.399 (3)
C4—H40.9300C20—C211.385 (3)
C5—C61.386 (3)C20—H200.9300
C5—H50.9300C21—C221.369 (3)
C6—C71.517 (3)C21—C281.499 (3)
C7—C81.531 (3)C22—C231.373 (3)
C7—C171.580 (3)C22—H220.9300
C7—H70.9800C23—C241.387 (3)
C8—N11.447 (3)C23—H230.9300
C8—H8A0.9700C24—C291.502 (3)
C8—H8B0.9700C25—O21.196 (2)
C9—N11.446 (2)C25—O31.341 (2)
C9—C161.510 (3)C26—O31.444 (3)
C9—C101.561 (3)C26—H26A0.9600
C9—C171.593 (3)C26—H26B0.9600
C10—O11.211 (2)C26—H26C0.9600
C10—N21.352 (3)C27—N11.452 (3)
C11—C121.370 (3)C27—H27A0.9600
C11—C161.389 (3)C27—H27B0.9600
C11—N21.394 (3)C27—H27C0.9600
C12—C131.369 (4)C28—H28A0.9600
C12—H120.9300C28—H28B0.9600
C13—C141.380 (4)C28—H28C0.9600
C13—H130.9300C29—H29A0.9600
C14—C151.381 (3)C29—H29B0.9600
C14—H140.9300C29—H29C0.9600
C15—C161.368 (3)N2—H20.8600
C2—C1—C6120.0 (2)C25—C17—C9105.13 (15)
C2—C1—H1120.0C7—C17—C9103.01 (15)
C6—C1—H1120.0C19—C18—C17118.18 (16)
C3—C2—C1121.5 (2)C19—C18—H18A107.8
C3—C2—Br1119.58 (17)C17—C18—H18A107.8
C1—C2—Br1118.86 (17)C19—C18—H18B107.8
C4—C3—C2118.4 (2)C17—C18—H18B107.8
C4—C3—H3120.8H18A—C18—H18B107.1
C2—C3—H3120.8C20—C19—C24118.23 (19)
C3—C4—C5121.2 (2)C20—C19—C18123.28 (18)
C3—C4—H4119.4C24—C19—C18118.48 (18)
C5—C4—H4119.4C21—C20—C19123.2 (2)
C4—C5—C6120.2 (2)C21—C20—H20118.4
C4—C5—H5119.9C19—C20—H20118.4
C6—C5—H5119.9C22—C21—C20117.5 (2)
C1—C6—C5118.60 (19)C22—C21—C28122.2 (2)
C1—C6—C7118.46 (18)C20—C21—C28120.3 (2)
C5—C6—C7122.91 (19)C21—C22—C23120.9 (2)
C6—C7—C8112.97 (17)C21—C22—H22119.5
C6—C7—C17118.13 (16)C23—C22—H22119.5
C8—C7—C17104.84 (16)C22—C23—C24121.8 (2)
C6—C7—H7106.8C22—C23—H23119.1
C8—C7—H7106.8C24—C23—H23119.1
C17—C7—H7106.8C23—C24—C19118.3 (2)
N1—C8—C7104.69 (16)C23—C24—C29120.5 (2)
N1—C8—H8A110.8C19—C24—C29121.2 (2)
C7—C8—H8A110.8O2—C25—O3122.75 (18)
N1—C8—H8B110.8O2—C25—C17124.94 (18)
C7—C8—H8B110.8O3—C25—C17112.27 (16)
H8A—C8—H8B108.9O3—C26—H26A109.5
N1—C9—C16112.63 (16)O3—C26—H26B109.5
N1—C9—C10114.52 (16)H26A—C26—H26B109.5
C16—C9—C10100.93 (15)O3—C26—H26C109.5
N1—C9—C17102.36 (15)H26A—C26—H26C109.5
C16—C9—C17116.60 (16)H26B—C26—H26C109.5
C10—C9—C17110.34 (15)N1—C27—H27A109.5
O1—C10—N2125.7 (2)N1—C27—H27B109.5
O1—C10—C9126.89 (18)H27A—C27—H27B109.5
N2—C10—C9107.35 (17)N1—C27—H27C109.5
C12—C11—C16121.8 (2)H27A—C27—H27C109.5
C12—C11—N2128.6 (2)H27B—C27—H27C109.5
C16—C11—N2109.52 (18)C21—C28—H28A109.5
C13—C12—C11117.9 (2)C21—C28—H28B109.5
C13—C12—H12121.1H28A—C28—H28B109.5
C11—C12—H12121.1C21—C28—H28C109.5
C12—C13—C14121.3 (2)H28A—C28—H28C109.5
C12—C13—H13119.4H28B—C28—H28C109.5
C14—C13—H13119.4C24—C29—H29A109.5
C13—C14—C15120.2 (2)C24—C29—H29B109.5
C13—C14—H14119.9H29A—C29—H29B109.5
C15—C14—H14119.9C24—C29—H29C109.5
C16—C15—C14119.1 (2)H29A—C29—H29C109.5
C16—C15—H15120.4H29B—C29—H29C109.5
C14—C15—H15120.4C8—N1—C9107.51 (16)
C15—C16—C11119.56 (19)C8—N1—C27114.32 (17)
C15—C16—C9131.25 (18)C9—N1—C27116.39 (16)
C11—C16—C9109.01 (18)C10—N2—C11112.08 (17)
C18—C17—C25110.94 (16)C10—N2—H2124.0
C18—C17—C7116.66 (16)C11—N2—H2124.0
C25—C17—C7108.48 (15)C25—O3—C26115.35 (17)
C18—C17—C9111.76 (15)
C6—C1—C2—C30.2 (3)C16—C9—C17—C1884.5 (2)
C6—C1—C2—Br1178.49 (16)C10—C9—C17—C1829.8 (2)
C1—C2—C3—C40.8 (4)N1—C9—C17—C2587.50 (17)
Br1—C2—C3—C4177.86 (19)C16—C9—C17—C2535.9 (2)
C2—C3—C4—C50.5 (4)C10—C9—C17—C25150.20 (16)
C3—C4—C5—C60.5 (4)N1—C9—C17—C726.04 (18)
C2—C1—C6—C50.8 (3)C16—C9—C17—C7149.43 (17)
C2—C1—C6—C7178.69 (19)C10—C9—C17—C796.25 (17)
C4—C5—C6—C11.1 (3)C25—C17—C18—C1954.2 (2)
C4—C5—C6—C7179.0 (2)C7—C17—C18—C1970.7 (2)
C1—C6—C7—C8123.9 (2)C9—C17—C18—C19171.14 (16)
C5—C6—C7—C853.9 (3)C17—C18—C19—C203.4 (3)
C1—C6—C7—C17113.3 (2)C17—C18—C19—C24177.57 (18)
C5—C6—C7—C1768.9 (3)C24—C19—C20—C210.8 (3)
C6—C7—C8—N1151.54 (17)C18—C19—C20—C21178.23 (19)
C17—C7—C8—N121.6 (2)C19—C20—C21—C222.5 (3)
N1—C9—C10—O146.8 (3)C19—C20—C21—C28175.7 (2)
C16—C9—C10—O1168.0 (2)C20—C21—C22—C231.9 (3)
C17—C9—C10—O168.0 (3)C28—C21—C22—C23176.2 (2)
N1—C9—C10—N2131.64 (18)C21—C22—C23—C240.2 (4)
C16—C9—C10—N210.4 (2)C22—C23—C24—C191.9 (3)
C17—C9—C10—N2113.53 (18)C22—C23—C24—C29178.2 (2)
C16—C11—C12—C132.3 (4)C20—C19—C24—C231.4 (3)
N2—C11—C12—C13174.2 (2)C18—C19—C24—C23179.52 (19)
C11—C12—C13—C140.6 (4)C20—C19—C24—C29178.7 (2)
C12—C13—C14—C151.5 (4)C18—C19—C24—C290.4 (3)
C13—C14—C15—C160.5 (4)C18—C17—C25—O2154.57 (19)
C14—C15—C16—C113.3 (3)C7—C17—C25—O225.2 (3)
C14—C15—C16—C9177.9 (2)C9—C17—C25—O284.5 (2)
C12—C11—C16—C154.3 (3)C18—C17—C25—O327.9 (2)
N2—C11—C16—C15172.80 (19)C7—C17—C25—O3157.27 (16)
C12—C11—C16—C9180.0 (2)C9—C17—C25—O393.08 (18)
N2—C11—C16—C92.9 (2)C7—C8—N1—C941.1 (2)
N1—C9—C16—C1544.6 (3)C7—C8—N1—C27171.93 (17)
C10—C9—C16—C15167.2 (2)C16—C9—N1—C8168.11 (17)
C17—C9—C16—C1573.3 (3)C10—C9—N1—C877.3 (2)
N1—C9—C16—C11130.45 (18)C17—C9—N1—C842.09 (19)
C10—C9—C16—C117.9 (2)C16—C9—N1—C2762.2 (2)
C17—C9—C16—C11111.63 (19)C10—C9—N1—C2752.4 (2)
C6—C7—C17—C181.2 (3)C17—C9—N1—C27171.78 (17)
C8—C7—C17—C18125.60 (18)O1—C10—N2—C11168.9 (2)
C6—C7—C17—C25124.90 (19)C9—C10—N2—C119.6 (2)
C8—C7—C17—C25108.28 (18)C12—C11—N2—C10172.4 (2)
C6—C7—C17—C9124.02 (18)C16—C11—N2—C104.5 (3)
C8—C7—C17—C92.80 (19)O2—C25—O3—C261.5 (3)
N1—C9—C17—C18152.06 (16)C17—C25—O3—C26179.14 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.393.253 (3)155
N2—H2···O3i0.862.243.085 (2)166
C1—H1···O2ii0.932.423.321 (2)163
C26—H26B···O1iii0.962.523.315 (3)140
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.393.253 (3)155
N2—H2···O3i0.862.243.085 (2)166
C1—H1···O2ii0.932.423.321 (2)163
C26—H26B···O1iii0.962.523.315 (3)140
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x, y+2, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). Br. J. Pharmacol. 44, 561—576.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHilton, S. T., Ho, T. C., Pljevalijcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJagadeesan, G., Sethusankar, K., Kathirvelan, D., Haribabu, J. & Reddy, B. S. R. (2013). Acta Cryst. E69, o317.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationObniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209–213.  PubMed CAS Google Scholar
First citationSaito, M., Hashimoto, M., Kawaguchi, N., Shibata, H., Fukami, H., Tanaka, T. & Higuchi, N. (1991). J. Enzyme Inhib. 5, 51–75.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o299-o300
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds