organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3′-benzyl-4′-(2,4-di­chloro­phen­yl)-1′-methyl-2-oxo­spiro­[indoline-3,2′-pyrrolidine]-3′-carboxyl­ate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 10 February 2014; accepted 17 February 2014; online 22 February 2014)

In the title compound, C27H24Cl2N2O3, the indole ring system is essentially planar, with a maximum deviation of 0.082 (2) Å for the carbonyl C atom. It makes a dihedral angle of 88.53 (6)° with the mean plane of the 4-methyl­pyrrolidine ring, which adopts an envelope conformation with the N atom at the flap position. The mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds, which generate S(6) and S(7) ring motifs, and an intra­molecular ππ inter­action involving the benzyl and di­chloro-substituted benzene rings [centroid–centroid distance = 3.6291 (11) Å]. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming C(7) chains running parallel to [10-1].

Related literature

For the biological activity of spiro-oxindole derivatives, see: Hilton et al. (2000[Hilton, S. T., Ho, T. C., Pljevalijcic, G. & Jones, K. (2000). Org. Lett. 2, 2639-2641.]). For a related crystal structure, see: Karthikeyan et al. (2014[Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2014). Acta Cryst. E70, o299-o300.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). Br. J. Pharmacol. 44, 561—576.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length distortions in small rings, see: Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

[Scheme 1]

Experimental

Crystal data
  • C27H24Cl2N2O3

  • Mr = 495.38

  • Monoclinic, P 21 /n

  • a = 12.7051 (5) Å

  • b = 14.1724 (6) Å

  • c = 14.0322 (6) Å

  • β = 109.424 (2)°

  • V = 2382.85 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 27865 measured reflections

  • 6466 independent reflections

  • 4356 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.00

  • 6466 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O1 0.97 2.31 3.046 (2) 132
C24—H24⋯O3 0.93 2.52 3.155 (2) 126
N2—H2A⋯O2i 0.86 2.07 2.924 (2) 170
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The derivatives of spiro-oxindole ring systems are used as antimicrobial, antitumor agents and as inhibitors of the human NKI receptor besides being found in a number of alkaloids like horsifiline, spirotryprostatin and (+)elacomine (Hilton et al., 2000).

The molecular structure of the title compound is illustrated in Fig 1. In the molecule, there are C—H···O hydrogen bonds forming S(6) and S(7) ring motifs (Bernstein et al., 1995), and a π···π interaction [Cg(1)···Cg(2) = 3.6291 (11) Å, where Cg1 and Cg2 are the centroids of rings C1—C6 and C19—C24, respectively]. The indole ring system is essentially planar with a maximum deviation of 0.082 (2) Å for atom C10. The mean plane of this indole ring system forms a dihedral angle of 88.53 (6)° with the 4-methylpyrrolidine ring mean plane. The latter forms a dihedral angle of 83.37 (9)° with the benzyl ring which shows that they are almost orthogonal. Atom O1 significantly deviates from the mean plane of the indole ring system by -0.2251 (15) Å. The molecular dimensions in the title compound are in excellent agreement with those reported for the 3-bromophenyl derivative (Karthikeyan et al., 2014).

The spiro-pyrrolidine ring (N1/C7-C9/C17) adopts an envelope conformation with atom N1 at the flap. The distance to the flap position from the mean plane of the four C atoms is 0.2476 (16) Å; the ring puckering parameters (Cremer & Pople, 1975) are Q2 = 0.3917 (18) Å and φ2 = 2.8 (3)°. The central spiro-pyrrolidine ring mean plane is perpendicular to the dichlorophenyl ring with a dihedral angle of 81.66 (9)°. The carbonyl group, C10O2, and the benzyl ring (C18-C24) ring have an (+)anti-clinal conformation with torsion angle (C18—C17—C25—O2) of 146.81 (16)°.

In the benzene ring (C11—C16) of the indole ring system, the expansion of the ipso angles at C11, C13 and C14 [121.71 (19), 121.1 (2) and 120.8 (2)°, respectively] and contraction of the apical angles at C12, C15 and C16 [117.9 (2), 119.13 (18) and 119.43 (16)°, respectively] are caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981). The carboxyl group and oxindole ring system are (-)anti-clinal to each other with torsion angle (C9—C17—C25—O2) of -92.85 (18)°.

In the crystal, molecules are linked via N-H···O hydrogen bonds forming C(7) chains running parallel to [1 0 -1]; see Fig. 2 and Table 1.

Related literature top

For the biological activity of spiro-oxindole derivatives, see: Hilton et al. (2000). For a related crystal structure, see: Karthikeyan et al. (2014). For puckering parameters, see: Cremer & Pople (1975). For graph-set motifs, see: Bernstein et al. (1995). For bond-length distortions in small rings, see: Allen (1981).

Experimental top

A mixture of (E)-methyl 2-benzyl-3-(2,4-dichlorophenyl)acrylate (2 mmol), isatin (2 mmol) and sarcosine (2 mmol) in acetonitrile (8 ml) was refluxed for 12 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated. The resulting crude mass was diluted with water (10 ml) and extracted with ethyl acetate (3 × 10 ml). The combined organic layers were washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer was concentrated and the residue purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate:hexanes (2:8) to afford the title compound as a colourless solid in (65%) yield. Block-like colourless crystals were obtained by slow evaporation of a solution in CHCl3.

Refinement top

The H atoms could all be located in difference electron-density maps. In the final cycles of refinement they were treated as riding atoms and their distances were geometrically constrained: N-H = 0.86 Å, C—H = 0.93 - 0.98 Å with Uiso(H) = 1.5 Ueq(C– methyl) and = 1.2Ueq(N/C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the formation of infinite C(7) chains. The dashed lines indicate N—H···O hydrogen bonds - see Table 1 for details.
Methyl 3'-benzyl-4'-(2,4-dichlorophenyl)-1'-methyl-2-oxospiro[indoline-3,2'-pyrrolidine]-3'-carboxylate top
Crystal data top
C27H24Cl2N2O3F(000) = 1032
Mr = 495.38Dx = 1.381 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 6466 reflections
a = 12.7051 (5) Åθ = 2.1–29.3°
b = 14.1724 (6) ŵ = 0.31 mm1
c = 14.0322 (6) ÅT = 293 K
β = 109.424 (2)°Block, colorless
V = 2382.85 (17) Å30.30 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4356 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 29.3°, θmin = 2.1°
ω scansh = 1617
27865 measured reflectionsk = 1913
6466 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.8129P]
where P = (Fo2 + 2Fc2)/3
6466 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C27H24Cl2N2O3V = 2382.85 (17) Å3
Mr = 495.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7051 (5) ŵ = 0.31 mm1
b = 14.1724 (6) ÅT = 293 K
c = 14.0322 (6) Å0.30 × 0.28 × 0.25 mm
β = 109.424 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4356 reflections with I > 2σ(I)
27865 measured reflectionsRint = 0.028
6466 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
6466 reflectionsΔρmin = 0.49 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58285 (14)0.31080 (12)0.42423 (13)0.0422 (4)
C20.66005 (15)0.33021 (13)0.37693 (14)0.0483 (4)
H20.73010.30190.39850.058*
C30.63062 (15)0.39240 (13)0.29724 (15)0.0484 (4)
C40.52940 (16)0.43704 (13)0.26718 (15)0.0507 (5)
H40.51180.48090.21490.061*
C50.45350 (15)0.41603 (13)0.31561 (14)0.0459 (4)
H50.38480.44650.29510.055*
C60.47685 (13)0.35069 (12)0.39402 (12)0.0393 (4)
C70.39119 (14)0.32433 (12)0.44254 (12)0.0389 (4)
H70.43200.29610.50820.047*
C80.32681 (16)0.40830 (13)0.46311 (15)0.0502 (4)
H8A0.36720.43740.52750.060*
H8B0.31370.45530.41020.060*
C90.18556 (13)0.30092 (11)0.38043 (11)0.0346 (3)
C100.12965 (15)0.34886 (13)0.27525 (12)0.0426 (4)
C110.00156 (14)0.24664 (13)0.29794 (14)0.0449 (4)
C120.09784 (16)0.19937 (16)0.28444 (19)0.0649 (6)
H120.15690.20360.22390.078*
C130.10630 (18)0.14611 (16)0.3634 (2)0.0670 (6)
H130.17220.11390.35620.080*
C140.01904 (18)0.13971 (14)0.45262 (18)0.0581 (5)
H140.02660.10330.50510.070*
C150.08044 (15)0.18687 (13)0.46545 (14)0.0446 (4)
H150.13910.18290.52630.054*
C160.09119 (13)0.23953 (12)0.38709 (12)0.0373 (4)
C170.29931 (12)0.25062 (11)0.38356 (11)0.0311 (3)
C180.29733 (13)0.22452 (11)0.27577 (11)0.0339 (3)
H18A0.23460.18240.24710.041*
H18B0.28120.28190.23580.041*
C190.39826 (12)0.17915 (11)0.25989 (11)0.0334 (3)
C200.42743 (15)0.21109 (13)0.17845 (13)0.0447 (4)
H200.38630.25950.13840.054*
C210.51556 (17)0.17291 (15)0.15552 (16)0.0561 (5)
H210.53340.19580.10070.067*
C220.57727 (16)0.10121 (14)0.21310 (15)0.0522 (5)
H220.63760.07590.19830.063*
C230.54893 (15)0.06731 (13)0.29259 (14)0.0464 (4)
H230.58970.01800.33130.056*
C240.46040 (14)0.10554 (12)0.31595 (12)0.0401 (4)
H240.44230.08140.37020.048*
C250.30887 (12)0.16134 (11)0.44713 (11)0.0331 (3)
C260.25651 (17)0.00191 (13)0.44542 (15)0.0532 (5)
H26A0.33250.01800.47650.080*
H26B0.21610.04550.39860.080*
H26C0.22260.01090.49650.080*
C270.13946 (19)0.43922 (15)0.46547 (17)0.0609 (5)
H27A0.16630.47510.52690.091*
H27B0.07060.40890.46160.091*
H27C0.12730.48060.40860.091*
N10.22212 (12)0.36773 (10)0.46454 (10)0.0426 (3)
N20.02779 (13)0.31006 (12)0.23303 (11)0.0521 (4)
H2A0.01600.32290.17300.063*
O10.16988 (12)0.41046 (10)0.23798 (10)0.0562 (4)
O20.35713 (10)0.15537 (9)0.53672 (8)0.0471 (3)
O30.25399 (9)0.08941 (8)0.39242 (8)0.0379 (3)
Cl10.62311 (4)0.23046 (4)0.52348 (4)0.06078 (16)
Cl20.72403 (5)0.41173 (4)0.23263 (5)0.07259 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (9)0.0436 (9)0.0367 (9)0.0069 (7)0.0025 (7)0.0008 (7)
C20.0367 (9)0.0496 (11)0.0534 (11)0.0066 (7)0.0082 (8)0.0034 (8)
C30.0468 (10)0.0445 (10)0.0570 (11)0.0149 (8)0.0214 (9)0.0047 (8)
C40.0542 (11)0.0432 (10)0.0550 (11)0.0088 (8)0.0185 (9)0.0090 (8)
C50.0411 (9)0.0446 (10)0.0488 (10)0.0032 (7)0.0106 (8)0.0072 (8)
C60.0371 (8)0.0400 (9)0.0355 (8)0.0079 (7)0.0052 (7)0.0000 (7)
C70.0380 (8)0.0435 (9)0.0300 (8)0.0073 (7)0.0044 (6)0.0007 (7)
C80.0594 (11)0.0451 (10)0.0478 (11)0.0102 (8)0.0201 (9)0.0114 (8)
C90.0356 (8)0.0392 (8)0.0281 (8)0.0044 (6)0.0094 (6)0.0030 (6)
C100.0469 (10)0.0471 (10)0.0342 (9)0.0186 (8)0.0141 (7)0.0067 (7)
C110.0382 (9)0.0475 (10)0.0444 (10)0.0092 (7)0.0076 (8)0.0071 (8)
C120.0387 (10)0.0653 (14)0.0781 (16)0.0025 (9)0.0025 (10)0.0212 (12)
C130.0462 (11)0.0567 (13)0.1007 (19)0.0084 (9)0.0278 (12)0.0159 (13)
C140.0586 (12)0.0504 (11)0.0786 (15)0.0027 (9)0.0406 (12)0.0035 (10)
C150.0450 (9)0.0482 (10)0.0463 (10)0.0033 (8)0.0229 (8)0.0004 (8)
C160.0338 (8)0.0415 (9)0.0371 (9)0.0057 (6)0.0125 (7)0.0040 (7)
C170.0290 (7)0.0365 (8)0.0245 (7)0.0008 (6)0.0043 (6)0.0029 (6)
C180.0326 (8)0.0417 (9)0.0248 (7)0.0037 (6)0.0060 (6)0.0039 (6)
C190.0315 (7)0.0379 (8)0.0286 (7)0.0015 (6)0.0071 (6)0.0019 (6)
C200.0495 (10)0.0466 (10)0.0420 (10)0.0084 (8)0.0205 (8)0.0100 (8)
C210.0635 (12)0.0614 (12)0.0562 (12)0.0072 (10)0.0369 (10)0.0125 (10)
C220.0440 (10)0.0588 (12)0.0603 (12)0.0069 (8)0.0263 (9)0.0008 (9)
C230.0416 (9)0.0478 (10)0.0469 (10)0.0102 (8)0.0110 (8)0.0038 (8)
C240.0414 (9)0.0454 (10)0.0338 (8)0.0041 (7)0.0128 (7)0.0053 (7)
C250.0282 (7)0.0409 (8)0.0272 (7)0.0022 (6)0.0053 (6)0.0019 (6)
C260.0685 (13)0.0385 (10)0.0508 (11)0.0036 (9)0.0175 (10)0.0076 (8)
C270.0754 (14)0.0522 (12)0.0647 (13)0.0093 (10)0.0362 (11)0.0085 (10)
N10.0498 (8)0.0424 (8)0.0365 (8)0.0002 (6)0.0156 (6)0.0062 (6)
N20.0453 (9)0.0654 (10)0.0348 (8)0.0157 (7)0.0012 (6)0.0029 (7)
O10.0649 (9)0.0567 (8)0.0516 (8)0.0211 (7)0.0253 (7)0.0221 (6)
O20.0499 (7)0.0546 (7)0.0272 (6)0.0063 (6)0.0000 (5)0.0084 (5)
O30.0422 (6)0.0362 (6)0.0320 (6)0.0011 (5)0.0079 (5)0.0016 (4)
Cl10.0510 (3)0.0749 (4)0.0453 (3)0.0069 (2)0.0010 (2)0.0180 (2)
Cl20.0699 (4)0.0693 (4)0.0948 (5)0.0121 (3)0.0490 (3)0.0052 (3)
Geometric parameters (Å, º) top
C1—C21.383 (3)C14—C151.388 (3)
C1—C61.390 (2)C14—H140.9300
C1—Cl11.7389 (18)C15—C161.373 (2)
C2—C31.374 (3)C15—H150.9300
C2—H20.9300C17—C251.530 (2)
C3—C41.368 (3)C17—C181.549 (2)
C3—Cl21.7381 (19)C18—C191.516 (2)
C4—C51.384 (2)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.393 (2)C19—C241.385 (2)
C5—H50.9300C19—C201.389 (2)
C6—C71.510 (2)C20—C211.375 (3)
C7—C81.525 (3)C20—H200.9300
C7—C171.580 (2)C21—C221.371 (3)
C7—H70.9800C21—H210.9300
C8—N11.455 (2)C22—C231.368 (3)
C8—H8A0.9700C22—H220.9300
C8—H8B0.9700C23—C241.382 (2)
C9—N11.463 (2)C23—H230.9300
C9—C161.509 (2)C24—H240.9300
C9—C101.564 (2)C25—O21.2045 (18)
C9—C171.599 (2)C25—O31.3262 (19)
C10—O11.214 (2)C26—O31.441 (2)
C10—N21.348 (2)C26—H26A0.9600
C11—C121.386 (3)C26—H26B0.9600
C11—C161.387 (2)C26—H26C0.9600
C11—N21.397 (3)C27—N11.462 (2)
C12—C131.374 (3)C27—H27A0.9600
C12—H120.9300C27—H27B0.9600
C13—C141.372 (3)C27—H27C0.9600
C13—H130.9300N2—H2A0.8600
C2—C1—C6122.86 (16)C15—C16—C9130.97 (15)
C2—C1—Cl1116.62 (14)C11—C16—C9109.45 (15)
C6—C1—Cl1120.50 (13)C25—C17—C18110.14 (12)
C3—C2—C1118.27 (17)C25—C17—C7109.87 (12)
C3—C2—H2120.9C18—C17—C7116.02 (13)
C1—C2—H2120.9C25—C17—C9106.29 (12)
C4—C3—C2121.40 (17)C18—C17—C9111.02 (11)
C4—C3—Cl2120.08 (15)C7—C17—C9102.90 (12)
C2—C3—Cl2118.51 (15)C19—C18—C17120.33 (12)
C3—C4—C5119.09 (17)C19—C18—H18A107.2
C3—C4—H4120.5C17—C18—H18A107.2
C5—C4—H4120.5C19—C18—H18B107.2
C4—C5—C6122.06 (17)C17—C18—H18B107.2
C4—C5—H5119.0H18A—C18—H18B106.9
C6—C5—H5119.0C24—C19—C20117.08 (15)
C1—C6—C5116.20 (16)C24—C19—C18125.91 (14)
C1—C6—C7122.15 (15)C20—C19—C18116.92 (14)
C5—C6—C7121.65 (15)C21—C20—C19121.67 (17)
C6—C7—C8113.87 (14)C21—C20—H20119.2
C6—C7—C17116.42 (13)C19—C20—H20119.2
C8—C7—C17105.41 (13)C22—C21—C20120.30 (17)
C6—C7—H7106.9C22—C21—H21119.8
C8—C7—H7106.9C20—C21—H21119.8
C17—C7—H7106.9C23—C22—C21119.14 (17)
N1—C8—C7104.15 (14)C23—C22—H22120.4
N1—C8—H8A110.9C21—C22—H22120.4
C7—C8—H8A110.9C22—C23—C24120.74 (17)
N1—C8—H8B110.9C22—C23—H23119.6
C7—C8—H8B110.9C24—C23—H23119.6
H8A—C8—H8B108.9C23—C24—C19121.04 (16)
N1—C9—C16111.63 (12)C23—C24—H24119.5
N1—C9—C10113.75 (13)C19—C24—H24119.5
C16—C9—C10100.84 (13)O2—C25—O3122.50 (14)
N1—C9—C17102.99 (12)O2—C25—C17125.52 (14)
C16—C9—C17118.08 (13)O3—C25—C17111.95 (12)
C10—C9—C17110.01 (12)O3—C26—H26A109.5
O1—C10—N2125.73 (16)O3—C26—H26B109.5
O1—C10—C9126.47 (17)H26A—C26—H26B109.5
N2—C10—C9107.80 (15)O3—C26—H26C109.5
C12—C11—C16121.71 (19)H26A—C26—H26C109.5
C12—C11—N2128.77 (18)H26B—C26—H26C109.5
C16—C11—N2109.43 (16)N1—C27—H27A109.5
C13—C12—C11117.9 (2)N1—C27—H27B109.5
C13—C12—H12121.1H27A—C27—H27B109.5
C11—C12—H12121.1N1—C27—H27C109.5
C14—C13—C12121.1 (2)H27A—C27—H27C109.5
C14—C13—H13119.5H27B—C27—H27C109.5
C12—C13—H13119.5C8—N1—C27112.88 (15)
C13—C14—C15120.8 (2)C8—N1—C9106.92 (13)
C13—C14—H14119.6C27—N1—C9114.79 (14)
C15—C14—H14119.6C10—N2—C11112.22 (14)
C16—C15—C14119.13 (18)C10—N2—H2A123.9
C16—C15—H15120.4C11—N2—H2A123.9
C14—C15—H15120.4C25—O3—C26116.46 (13)
C15—C16—C11119.43 (16)
C6—C1—C2—C30.7 (3)C8—C7—C17—C18118.92 (15)
Cl1—C1—C2—C3179.12 (14)C6—C7—C17—C9129.76 (14)
C1—C2—C3—C42.4 (3)C8—C7—C17—C92.49 (16)
C1—C2—C3—Cl2176.21 (14)N1—C9—C17—C2593.64 (13)
C2—C3—C4—C52.7 (3)C16—C9—C17—C2529.85 (17)
Cl2—C3—C4—C5175.91 (15)C10—C9—C17—C25144.76 (13)
C3—C4—C5—C60.1 (3)N1—C9—C17—C18146.58 (13)
C2—C1—C6—C53.2 (3)C16—C9—C17—C1889.92 (16)
Cl1—C1—C6—C5178.40 (13)C10—C9—C17—C1824.99 (18)
C2—C1—C6—C7176.31 (16)N1—C9—C17—C721.83 (14)
Cl1—C1—C6—C72.1 (2)C16—C9—C17—C7145.33 (13)
C4—C5—C6—C12.9 (3)C10—C9—C17—C799.76 (14)
C4—C5—C6—C7176.61 (17)C25—C17—C18—C1964.72 (18)
C1—C6—C7—C8137.44 (17)C7—C17—C18—C1960.85 (19)
C5—C6—C7—C843.1 (2)C9—C17—C18—C19177.83 (13)
C1—C6—C7—C1799.58 (18)C17—C18—C19—C2445.3 (2)
C5—C6—C7—C1779.9 (2)C17—C18—C19—C20138.30 (16)
C6—C7—C8—N1155.06 (14)C24—C19—C20—C211.4 (3)
C17—C7—C8—N126.25 (17)C18—C19—C20—C21178.13 (17)
N1—C9—C10—O154.9 (2)C19—C20—C21—C220.2 (3)
C16—C9—C10—O1174.51 (16)C20—C21—C22—C231.0 (3)
C17—C9—C10—O160.1 (2)C21—C22—C23—C241.0 (3)
N1—C9—C10—N2124.69 (15)C22—C23—C24—C190.2 (3)
C16—C9—C10—N25.07 (16)C20—C19—C24—C231.3 (2)
C17—C9—C10—N2120.37 (14)C18—C19—C24—C23177.76 (16)
C16—C11—C12—C131.3 (3)C18—C17—C25—O2146.81 (16)
N2—C11—C12—C13174.74 (19)C7—C17—C25—O217.8 (2)
C11—C12—C13—C140.2 (3)C9—C17—C25—O292.85 (18)
C12—C13—C14—C150.1 (3)C18—C17—C25—O335.14 (17)
C13—C14—C15—C160.7 (3)C7—C17—C25—O3164.13 (12)
C14—C15—C16—C111.8 (2)C9—C17—C25—O385.20 (14)
C14—C15—C16—C9176.90 (16)C7—C8—N1—C27169.79 (15)
C12—C11—C16—C152.2 (3)C7—C8—N1—C942.64 (17)
N2—C11—C16—C15174.60 (15)C16—C9—N1—C8167.99 (14)
C12—C11—C16—C9178.24 (16)C10—C9—N1—C878.71 (17)
N2—C11—C16—C91.49 (19)C17—C9—N1—C840.32 (16)
N1—C9—C16—C1550.5 (2)C16—C9—N1—C2765.99 (18)
C10—C9—C16—C15171.62 (17)C10—C9—N1—C2747.31 (19)
C17—C9—C16—C1568.6 (2)C17—C9—N1—C27166.33 (14)
N1—C9—C16—C11125.01 (14)O1—C10—N2—C11174.94 (16)
C10—C9—C16—C113.87 (16)C9—C10—N2—C114.64 (19)
C17—C9—C16—C11115.93 (15)C12—C11—N2—C10174.33 (18)
C6—C7—C17—C25117.36 (15)C16—C11—N2—C102.1 (2)
C8—C7—C17—C25115.37 (14)O2—C25—O3—C261.2 (2)
C6—C7—C17—C188.4 (2)C17—C25—O3—C26179.28 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O10.972.313.046 (2)132
C24—H24···O30.932.523.155 (2)126
N2—H2A···O2i0.862.072.924 (2)170
Symmetry code: (i) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O10.972.313.046 (2)132
C24—H24···O30.932.523.155 (2)126
N2—H2A···O2i0.862.072.924 (2)170.02
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). Br. J. Pharmacol. 44, 561—576.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHilton, S. T., Ho, T. C., Pljevalijcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2014). Acta Cryst. E70, o299–o300.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds