organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o346-o347

(4,9-Di­methyl-9H-carbazol-3-yl)meth­anol

aDokuz Eylül University, Faculty of Arts and Sciences, Department of Chemistry, Tınaztepe, 35160 Buca, İzmir, Turkey, bAksaray University, Department of Physics, 68100, Aksaray, Turkey, and cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 13 February 2014; accepted 19 February 2014; online 22 February 2014)

In the title compound, C15H15NO, the carbazole skeleton includes a methanol group at the 3-position. The indole ring system is almost planar [maximum deviation = 0.045 (2) Å]. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the b-axis direction. There are weak C—H⋯π inter­actions within the chains and linking neighbouring chains forming sheets lying parallel to (001).

Related literature

For biological activity of carbazole alkaloids, see: Chakraborty (1977[Chakraborty, D. P. (1977). Progress in the Chemistry of Organic Natural Products, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, Vol. 34, pp. 299-371. Wien: Springer.]). For anti­biotic, anti­fungal and cytotoxic properties of carbazole alkaloids, see: Chakraborty et al. (1965[Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681-685.]); Chakraborty et al. (1978[Chakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834-835.]). For the use of carbazole derivatives as precursor compounds for the syntheses of pyridocarbazole alkaloids, see: Karmakar et al. (1991[Karmakar, A. C., Gandhi, K. K. & Jayanta, K. R. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1997-2002.]). For related structures, see: Hökelek et al. (1994[Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.]); Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239-1242.]); Öncüoğlu et al. (2014[Öncüoğlu, S., Dilek, N., Çaylak Delibaş, N., Ergün, Y. & Hökelek, T. (2014). Acta Cryst. E70, o240.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, P 21 /n

  • a = 14.4728 (4) Å

  • b = 5.4554 (3) Å

  • c = 15.0906 (4) Å

  • β = 95.453 (4)°

  • V = 1186.08 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.36 × 0.13 mm

Data collection
  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.990

  • 11615 measured reflections

  • 11615 independent reflections

  • 9784 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.214

  • S = 1.16

  • 11615 reflections

  • 161 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings 9a/C1-C4/C4a/ and C5a/C5-C8/C8a, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O1i 0.88 (3) 2.13 (3) 2.919 (2) 149 (3)
C10—H10ACg2ii 0.96 2.85 3.697 (2) 148
C10—H10BCg1iii 0.96 2.64 3.531 (2) 154
C11—H11ACg2iv 0.96 2.77 3.617 (2) 147
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole alkaloids, which have their richest source in species of the genus Murraya, are of great interest because of their unique structures and important biological activities (Chakraborty, 1977). They also exhibits antibiotic, antifungal and cytotoxic properties (Chakraborty et al., 1965; Chakraborty et al., 1978). Carbazole derivatives are also used as precursor compounds for the syntheses of pyridocarbazole alkaloids (Karmakar et al., 1991). The present study was undertaken to ascertain the crystal structure of the title compound which was first synthesized by (Karmakar et al., 1991).

The molecule of the title compound contains a carbazole skeleton with a methanol group at the 3 position, Fig. 1. The bond lengths are close to standard values (Allen et al., 1987) and generally agree with those in previously reported compounds (Hökelek et al., 1994; Patır et al., 1997; Öncüoğlu et al., 2014). In all structures atom N9 is substituted.

An examination of the deviations from the mean planes through individual rings shows that rings A (C1—C4/C4a/c9a), B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of 0.045 (2) Å for atom C7] with dihedral angles of A/B = 0.76 (5), A/C = 2.33 (4) and B/C = 1.57 (5) °. Atoms C10, C11 and C12 are displaced by 0.070 (2), 0.004 (2) and -0.025 (2) Å from the adjacent ring planes.

In the crystal, O—H···O hydrogen bonds link the molecules into zigzag chains along the b-axis direction (Table 1 and Fig. 2). There are weak C—H···π interactions within the chains and linking neighbouring chains forming two-dimensional networks lying parallel to (001); see Table 1.

Related literature top

For biological activities of carbazole alkaloids, see: Chakraborty (1977). For antibiotic, antifungal and cytotoxic properties of carbazole alkaloids, see: Chakraborty et al. (1965); Chakraborty et al. (1978). For the use of carbazole derivatives as precursor compounds for the syntheses of pyridocarbazole alkaloids, see: Karmakar et al. (1991). For related structures, see: Hökelek et al. (1994); Patır et al. (1997); Öncüoğlu et al. (2014). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to the literature method (Karmakar et al., 1991). A solution of ethyl 4,9-dimethyl-9H-carbazole-3 -carboxylate (4.00 g, 15 mmol) in anhydrous tetrahydrofurane (50 ml) was added drop wise to a stirred solution of lithium aluminium hydride (1.20 g, 31 mmol) in tetrahydrofurane at room temperature. The reaction mixture was refluxed for 5 h under a nitrogen atmosphere, and then cooled and the excess of lithium aluminium hydride was destroyed with water and extracted with ethyl acetate. The organic phase was dried with anhydrous magnesium sulfate, and the solvent was evaporated. The crude product was recrystallized from ether (Yield; 95%, M.p. 475 K), giving block-like colourless crystals suitable for X-ray diffraction analysis.

Refinement top

Atom H1A (for OH) was located in a difference Fourier map and freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound with the O-H···O hydrogen bonds shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity].
(4,9-Dimethyl-9H-carbazol-3-yl)methanol top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.262 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6741 reflections
a = 14.4728 (4) Åθ = 2.7–28.2°
b = 5.4554 (3) ŵ = 0.08 mm1
c = 15.0906 (4) ÅT = 296 K
β = 95.453 (4)°Block, colourless
V = 1186.08 (8) Å30.45 × 0.36 × 0.13 mm
Z = 4
Data collection top
Bruker SMART BREEZE CCD
diffractometer
11615 independent reflections
Radiation source: fine-focus sealed tube9784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1817
Tmin = 0.965, Tmax = 0.990k = 66
11615 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0293P)2 + 3.1387P]
where P = (Fo2 + 2Fc2)/3
11615 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H15NOV = 1186.08 (8) Å3
Mr = 225.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.4728 (4) ŵ = 0.08 mm1
b = 5.4554 (3) ÅT = 296 K
c = 15.0906 (4) Å0.45 × 0.36 × 0.13 mm
β = 95.453 (4)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
11615 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
9784 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.990Rint = 0.032
11615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.30 e Å3
11615 reflectionsΔρmin = 0.27 e Å3
161 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.23676 (10)1.1637 (3)0.78082 (11)0.0647 (4)
H1A1.262 (2)1.285 (6)0.7532 (18)0.115 (11)*
C11.00323 (13)0.7254 (3)0.89293 (11)0.0435 (4)
H10.99150.65310.94650.052*
C21.06557 (13)0.9145 (3)0.89012 (11)0.0449 (4)
H21.09660.96900.94330.054*
C31.08440 (12)1.0289 (3)0.81060 (11)0.0416 (4)
C41.03968 (12)0.9504 (3)0.72954 (11)0.0379 (4)
C4A0.97556 (12)0.7560 (3)0.73093 (10)0.0361 (4)
C50.90173 (14)0.6439 (4)0.56991 (11)0.0503 (5)
H50.93090.76560.53960.060*
C5A0.91717 (12)0.6257 (3)0.66236 (10)0.0377 (4)
C60.84282 (16)0.4795 (4)0.52398 (13)0.0604 (6)
H60.83320.48830.46220.072*
C70.79780 (15)0.3012 (4)0.56927 (13)0.0612 (6)
H70.75820.19240.53700.073*
C80.80997 (14)0.2801 (3)0.66092 (13)0.0510 (5)
H80.77930.16030.69080.061*
C8A0.86991 (12)0.4451 (3)0.70644 (11)0.0381 (4)
N90.89428 (10)0.4597 (3)0.79697 (9)0.0404 (4)
C9A0.95842 (12)0.6465 (3)0.81262 (10)0.0368 (4)
C100.86281 (14)0.2951 (3)0.86346 (12)0.0506 (5)
H10B0.90170.15240.86820.076*
H10A0.79990.24700.84620.076*
H10C0.86600.37720.91990.076*
C111.05756 (14)1.0659 (3)0.64152 (11)0.0507 (5)
H11B1.08280.94510.60430.076*
H11C1.10091.19840.65190.076*
H11A1.00031.12730.61250.076*
C121.15214 (14)1.2370 (3)0.81458 (13)0.0532 (5)
H12A1.12541.37340.77980.064*
H12B1.16481.29130.87570.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0439 (9)0.0484 (9)0.1046 (12)0.0001 (7)0.0218 (8)0.0003 (8)
C10.0526 (12)0.0403 (10)0.0373 (9)0.0063 (9)0.0031 (8)0.0124 (7)
C20.0461 (11)0.0471 (11)0.0405 (10)0.0013 (9)0.0008 (8)0.0021 (7)
C30.0398 (11)0.0368 (10)0.0490 (10)0.0027 (8)0.0091 (8)0.0026 (7)
C40.0374 (10)0.0329 (9)0.0441 (9)0.0073 (7)0.0081 (7)0.0061 (7)
C4A0.0376 (10)0.0352 (9)0.0360 (8)0.0067 (7)0.0059 (7)0.0068 (6)
C50.0604 (13)0.0480 (11)0.0433 (10)0.0013 (10)0.0085 (9)0.0067 (8)
C5A0.0364 (10)0.0342 (9)0.0431 (9)0.0068 (7)0.0063 (7)0.0037 (7)
C60.0760 (16)0.0627 (14)0.0408 (10)0.0055 (12)0.0029 (10)0.0011 (9)
C70.0618 (14)0.0605 (14)0.0599 (13)0.0065 (11)0.0013 (10)0.0118 (10)
C80.0517 (13)0.0423 (11)0.0597 (12)0.0045 (9)0.0100 (9)0.0060 (8)
C8A0.0349 (10)0.0352 (9)0.0445 (9)0.0034 (7)0.0064 (7)0.0042 (7)
N90.0416 (9)0.0389 (8)0.0417 (8)0.0001 (7)0.0086 (6)0.0118 (6)
C9A0.0387 (10)0.0335 (9)0.0394 (9)0.0071 (8)0.0097 (7)0.0085 (7)
C100.0524 (12)0.0474 (11)0.0537 (11)0.0000 (9)0.0136 (9)0.0207 (8)
C110.0563 (13)0.0472 (11)0.0502 (11)0.0036 (9)0.0135 (9)0.0081 (8)
C120.0525 (13)0.0382 (11)0.0697 (13)0.0006 (9)0.0107 (10)0.0037 (9)
Geometric parameters (Å, º) top
O1—C121.427 (2)C7—H70.9300
O1—H1A0.88 (3)C8—C71.382 (3)
C1—C21.374 (3)C8—H80.9300
C1—H10.9300C8A—C81.386 (3)
C2—C31.402 (2)N9—C8A1.380 (2)
C2—H20.9300N9—C9A1.383 (2)
C3—C121.497 (3)N9—C101.4517 (19)
C4—C31.396 (2)C9A—C11.387 (2)
C4—C4A1.411 (2)C9A—C4A1.413 (2)
C4—C111.514 (2)C10—H10A0.9600
C5—C61.378 (3)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
C5A—C4A1.457 (2)C11—H11A0.9600
C5A—C51.395 (2)C11—H11B0.9600
C5A—C8A1.403 (2)C11—H11C0.9600
C6—C71.387 (3)C12—H12A0.9700
C6—H60.9300C12—H12B0.9700
C12—O1—H1A111.3 (19)C7—C8—H8121.4
C2—C1—C9A117.38 (15)C8A—C8—H8121.4
C2—C1—H1121.3N9—C8A—C8128.11 (15)
C9A—C1—H1121.3N9—C8A—C5A109.77 (15)
C1—C2—C3122.84 (16)C8—C8A—C5A122.11 (16)
C1—C2—H2118.6C8A—N9—C9A108.42 (12)
C3—C2—H2118.6C8A—N9—C10125.50 (15)
C2—C3—C12118.88 (17)C9A—N9—C10125.95 (14)
C4—C3—C2120.12 (16)N9—C9A—C1128.90 (14)
C4—C3—C12121.00 (15)N9—C9A—C4A109.46 (14)
C3—C4—C4A117.94 (14)C1—C9A—C4A121.64 (16)
C3—C4—C11122.51 (16)N9—C10—H10A109.5
C4A—C4—C11119.55 (15)N9—C10—H10B109.5
C4—C4A—C5A133.96 (14)N9—C10—H10C109.5
C4—C4A—C9A120.08 (15)H10A—C10—H10C109.5
C9A—C4A—C5A105.96 (15)H10B—C10—H10A109.5
C5A—C5—H5120.4H10B—C10—H10C109.5
C6—C5—C5A119.29 (18)C4—C11—H11A109.5
C6—C5—H5120.4C4—C11—H11B109.5
C5—C5A—C4A134.60 (16)C4—C11—H11C109.5
C5—C5A—C8A119.02 (16)H11B—C11—H11A109.5
C8A—C5A—C4A106.38 (14)H11B—C11—H11C109.5
C5—C6—C7120.39 (18)H11C—C11—H11A109.5
C5—C6—H6119.8O1—C12—C3110.74 (15)
C7—C6—H6119.8O1—C12—H12A109.5
C6—C7—H7119.0O1—C12—H12B109.5
C8—C7—C6122.03 (19)C3—C12—H12A109.5
C8—C7—H7119.0C3—C12—H12B109.5
C7—C8—C8A117.13 (17)H12A—C12—H12B108.1
C9A—C1—C2—C30.5 (3)C4A—C5A—C8A—C8177.86 (16)
C1—C2—C3—C40.6 (3)C5—C5A—C8A—N9179.48 (15)
C1—C2—C3—C12178.80 (17)C5—C5A—C8A—C81.6 (3)
C2—C3—C12—O1107.98 (19)C5—C6—C7—C80.2 (3)
C4—C3—C12—O172.7 (2)C8A—C8—C7—C60.3 (3)
C4A—C4—C3—C20.4 (2)N9—C8A—C8—C7179.16 (17)
C4A—C4—C3—C12178.98 (16)C5A—C8A—C8—C70.4 (3)
C11—C4—C3—C2179.65 (16)C9A—N9—C8A—C5A0.94 (18)
C11—C4—C3—C121.0 (3)C9A—N9—C8A—C8177.93 (18)
C3—C4—C4A—C5A179.64 (17)C10—N9—C8A—C5A176.86 (16)
C3—C4—C4A—C9A0.1 (2)C10—N9—C8A—C82.0 (3)
C11—C4—C4A—C5A0.4 (3)C8A—N9—C9A—C1178.98 (17)
C11—C4—C4A—C9A179.87 (15)C8A—N9—C9A—C4A0.39 (18)
C5A—C5—C6—C71.4 (3)C10—N9—C9A—C13.1 (3)
C5—C5A—C4A—C40.6 (3)C10—N9—C9A—C4A176.28 (15)
C5—C5A—C4A—C9A179.88 (19)N9—C9A—C1—C2179.05 (17)
C8A—C5A—C4A—C4178.71 (17)C4A—C9A—C1—C20.2 (3)
C8A—C5A—C4A—C9A0.83 (18)N9—C9A—C4A—C4179.33 (14)
C4A—C5A—C5—C6177.21 (19)N9—C9A—C4A—C5A0.29 (18)
C8A—C5A—C5—C62.0 (3)C1—C9A—C4A—C40.1 (2)
C4A—C5A—C8A—N91.10 (18)C1—C9A—C4A—C5A179.70 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings 9a/C1-C4/C4a/ and C5a/C5-C8/C8a, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i0.88 (3)2.13 (3)2.919 (2)149 (3)
C10—H10A···Cg2ii0.962.853.697 (2)148
C10—H10B···Cg1iii0.962.643.531 (2)154
C11—H11A···Cg2iv0.962.773.617 (2)147
Symmetry codes: (i) x+5/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings 9a/C1-C4/C4a/ and C5a/C5-C8/C8a, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i0.88 (3)2.13 (3)2.919 (2)149 (3)
C10—H10A···Cg2ii0.962.853.697 (2)148
C10—H10B···Cg1iii0.962.643.531 (2)154
C11—H11A···Cg2iv0.962.773.617 (2)147
Symmetry codes: (i) x+5/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y1, z.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, D. P. (1977). Progress in the Chemistry of Organic Natural Products, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, Vol. 34, pp. 299–371. Wien: Springer.  Google Scholar
First citationChakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.  CrossRef CAS Web of Science Google Scholar
First citationChakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834–835.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKarmakar, A. C., Gandhi, K. K. & Jayanta, K. R. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1997–2002.  CrossRef Web of Science Google Scholar
First citationÖncüoğlu, S., Dilek, N., Çaylak Delibaş, N., Ergün, Y. & Hökelek, T. (2014). Acta Cryst. E70, o240.  CSD CrossRef IUCr Journals Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o346-o347
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds