organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o377-o378

Methyl 3′-(2,5-di­methyl­benz­yl)-1′-methyl-2-oxo-4′-phenyl­spiro­[indoline-3,2′-pyrrolidine]-3′-carboxyl­ate chloro­form monosolvate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 19 February 2014; accepted 21 February 2014; online 28 February 2014)

In the title solvate, C29H30N2O3·CHCl3, the dihedral angle between the indole ring system (r.m.s. deviation = 0.050 Å) and the 4-methyl­pyrrolidine ring is 88.88 (8)°. The latter ring adopts an envelope conformation with the N atom as the flap. Its mean plane makes dihedral angles of 86.94 (11) and 42.08 (9)° with the phenyl and di­methyl­benzene rings, respectively. The mol­ecular conformation is stabilized by intra­molecular C—H⋯O hydrogen bonds, which generate S(6) and S(9) ring motifs. The chloro­form solvent mol­ecule is linked to the organic mol­ecule by a C—H⋯O hydrogen bond involving the carbonyl O atom of the carboxyl­ate group. In the crystal, mol­ecules are linked via bifurcated N—H⋯(N,O) and C—H⋯O hydrogen bonds, forming chains propagating along [001].

Related literature

For the biological activity of spiro compounds and oxindole derivatives, see: Bhattacharya et al. (1982[Bhattacharya, S. K., Glover, V., McIntyre, I., Oxenkrug, G. & Sandler, M. (1982). Neurosci. Lett. 92, 218-221.]); Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Glover et al. (1998[Glover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1998). J. Neurochem. 51, 656-659.]). For a related crystal structure, see: Karthikeyan et al. (2014[Karthikeyan, S., Narayanan, P., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2014). Acta Cryst. E70, o335.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set motif notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length distortions in small rings, see: Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]).

[Scheme 1]

Experimental

Crystal data
  • C29H30N2O3·CHCl3

  • Mr = 573.92

  • Monoclinic, P 21 /c

  • a = 12.9164 (4) Å

  • b = 17.6167 (5) Å

  • c = 12.4548 (5) Å

  • β = 98.135 (2)°

  • V = 2805.50 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 32563 measured reflections

  • 8093 independent reflections

  • 4986 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.161

  • S = 1.01

  • 8093 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.93 2.45 3.292 (2) 151
C18—H18B⋯O1 0.97 2.52 3.127 (2) 120
C30—H30⋯O2 0.98 2.47 3.319 (3) 144
N2—H2A⋯O2i 0.86 2.65 3.252 (2) 128
N2—H2A⋯N1i 0.86 2.20 2.936 (2) 143
C7—H7⋯O1ii 0.98 2.57 3.359 (2) 138
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Synthesis of spiro compounds has drawn considerable attention from chemists, in view of their very good antimycobacterial activity (Chande et al., 2005). Oxindole derivatives are known to be potent inhibitors of monoamine oxidase (MAO) in human urine and rat tissues (Glover et al., 1998) and potent antagonists of in vitro receptor binding by atrial natriuretic peptide besides possessing a wide range of central nervous system activities (Bhattacharya et al., 1982).

The molecular structure of the title compound is illustrated in Fig 1. In the molecule, there is C—H···O hydrogen bond, forming an S(6) and S(9) ring motif (Bernstein et al., 1995). The indole ring system is essentially planar with a maximum deviation of 0.0782 (17) Å for the atom C10. The mean plane of the indole ring system forms dihedral angle of 88.88 (8)° with central mean plane of pyrrolidine five membered ring. The latter forms a dihedral angle of 42.08 (10)° with the benzyl ring. Atom O1 significantly deviates from the mean plane of the indole ring system by 0.1965 (12) Å. The molecular dimensions in the title compound are in excellent agreement with the those reported for a related compound (Karthikeyan et al., 2014).

The spiro-pyrrolidine ring adopts an envelope conformation with atom N1 at the flap position. The distance to the flap position from the mean plane of the spiro carbon is 0.2628 (15) Å. The puckering parameters (Cremer & Pople, 1975) of the ring are Q2 = 0.4155 (17) Å and φ2 = 0.5 (2)°. The central spiro-pyrrolidine ring is perpendicular to the phenyl ring (C1—C6) with a dihedral angle of 86.94 (11)°. The carbonyl group and the benzyl ring have an (+)anti-periplanar conformation with the torsion angle (C18—C17—C25—O2) of 152.45 (17)°.

In the benzene ring (C11—C16) of the indole ring system, the expansion of the ipso angles at C11, C13 and C14 [122.20 (17), 120.82 (19) and 120.86 (19)°, respectively] and contraction of the apical angles at C12, C15 and C16 [117.80 (19), 118.99 (18) and 119.24 (16)°, respectively] are caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981). The carboxyl group and oxindole ring system are (-)syn-clinal to each other with the torsion angle (C9—C17—C25—O2) of -87.22 (9)°.

In the crystal, (Fig. 2 and Table 1), molecules are linked by N2—H2A···N1(i) [x,-y + 1/2,z + 1/2] and N2—H2A···O2(i) [x,-y + 1/2,z + 1/2] bifurcated hydrogen bonds which together generate C21[R21(6)] chains (Bernstein et al., 1995), running parallel to [001]. The intermolecular C7—H7···O1(ii) [x,-y + 1/2,z - 1/2] interaction forms C(6) chains running parallel to the same [001] axis. The CHCl3 solvent molecule is involved in an intramolecular hydrogen bond with the C O atom, O2, of the carboxylate group.

Related literature top

For the biological activity of spiro compounds and oxindole derivatives, see: Bhattacharya et al. (1982); Chande et al. (2005); Glover et al. (1998). For a related crystal structure, see: Karthikeyan et al. (2014). For puckering parameters, see: Cremer & Pople (1975). For graph-set motif notation, see: Bernstein et al. (1995). For bond-length distortions in small rings, see: Allen (1981).

Experimental top

A mixture of (E)-methyl 2-(2,5-dimethylbenzyl)-3-phenylacrylate (2 mmol), isatin (2 mmol) and sarcosine (2 mmol) in acetonitrile (8 ml) was refluxed for 12 h. After completion of the reaction, as indicated by TLC, the mixture was concentrated. The resulting crude mass was diluted with water (10 ml) and extracted with ethyl acetate (3 × 10 ml). The combined organic layers were washed with brine (2 × 10 ml) and dried over anhydrous Na2SO4. The organic layer was concentrated and the residue purified by column chromatography on silica gel (Acme 100–200 mesh), using ethyl acetate:hexanes (2:8) to afford the title compound as a colourless crystals in 67% yield.

Refinement top

The H atoms could all be located in difference electron-density maps. In the final cycles of refinement they were treated as riding atoms and their distances were geometrically constrained: C—H = 0.93 and 0.96 Å for CH and CH3H atoms, respectively, with Uiso(H) = 1.5 Ueq(C– methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. The N—H···N, N-H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
Methyl 3'-(2,5-dimethylbenzyl)-1'-methyl-2-oxo-4'-phenylspiro[indoline-3,2'-pyrrolidine]-3'-carboxylate chloroform monosolvate top
Crystal data top
C29H30N2O3·CHCl3F(000) = 1200
Mr = 573.92Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8093 reflections
a = 12.9164 (4) Åθ = 2.0–30.0°
b = 17.6167 (5) ŵ = 0.36 mm1
c = 12.4548 (5) ÅT = 293 K
β = 98.135 (2)°Block, colourless
V = 2805.50 (16) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4986 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 30.0°, θmin = 2.0°
ω scansh = 1815
32563 measured reflectionsk = 2417
8093 independent reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0743P)2 + 0.8771P]
where P = (Fo2 + 2Fc2)/3
8093 reflections(Δ/σ)max = 0.029
347 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C29H30N2O3·CHCl3V = 2805.50 (16) Å3
Mr = 573.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9164 (4) ŵ = 0.36 mm1
b = 17.6167 (5) ÅT = 293 K
c = 12.4548 (5) Å0.35 × 0.30 × 0.25 mm
β = 98.135 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4986 reflections with I > 2σ(I)
32563 measured reflectionsRint = 0.032
8093 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
8093 reflectionsΔρmin = 0.46 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52972 (18)0.16392 (14)0.1611 (2)0.0606 (6)
H10.56160.14460.10450.073*
C20.4214 (2)0.16690 (18)0.1514 (3)0.0870 (10)
H20.38130.14920.08840.104*
C30.3732 (2)0.19554 (17)0.2334 (3)0.0844 (10)
H30.30060.19690.22650.101*
C40.43157 (18)0.22214 (14)0.3255 (3)0.0670 (7)
H40.39870.24170.38130.080*
C50.54030 (15)0.22008 (11)0.33620 (19)0.0473 (5)
H50.57960.23930.39860.057*
C60.59068 (14)0.18961 (10)0.25467 (16)0.0391 (4)
C70.70826 (13)0.19113 (9)0.25662 (13)0.0300 (3)
H70.72200.16780.18860.036*
C80.74566 (13)0.27309 (9)0.25403 (14)0.0319 (3)
H8A0.73550.29280.18050.038*
H8B0.70860.30530.29910.038*
C90.86380 (12)0.21922 (9)0.39155 (12)0.0269 (3)
C100.82724 (13)0.25825 (9)0.49252 (13)0.0309 (3)
C110.99571 (13)0.21963 (10)0.54390 (14)0.0347 (4)
C121.09263 (16)0.20958 (12)0.60490 (17)0.0482 (5)
H121.10430.22240.67800.058*
C131.17168 (16)0.17983 (13)0.5537 (2)0.0540 (5)
H131.23740.17150.59320.065*
C141.15450 (15)0.16239 (12)0.44510 (19)0.0497 (5)
H141.20910.14340.41170.060*
C151.05653 (14)0.17275 (10)0.38447 (16)0.0391 (4)
H151.04560.16160.31080.047*
C160.97590 (13)0.19984 (9)0.43528 (13)0.0301 (3)
C170.78538 (12)0.15185 (9)0.35030 (12)0.0272 (3)
C180.73755 (13)0.11476 (9)0.44370 (14)0.0324 (4)
H18A0.79360.10580.50280.039*
H18B0.69030.15110.46930.039*
C190.67848 (13)0.04089 (9)0.42034 (15)0.0356 (4)
C200.64281 (14)0.01636 (10)0.31604 (17)0.0418 (4)
H200.66020.04460.25810.050*
C210.58202 (15)0.04865 (11)0.2939 (2)0.0506 (5)
C220.56029 (16)0.09077 (12)0.3815 (2)0.0592 (6)
H220.52080.13490.36980.071*
C230.59634 (16)0.06826 (12)0.4854 (2)0.0573 (6)
H230.58060.09780.54290.069*
C240.65561 (14)0.00280 (11)0.50774 (18)0.0443 (5)
C250.85308 (13)0.09330 (9)0.30117 (14)0.0314 (3)
C260.96441 (19)0.01230 (12)0.3421 (2)0.0563 (6)
H26A0.92590.04530.28960.084*
H26B0.99450.04140.40390.084*
H26C1.01910.01230.31030.084*
C270.90549 (16)0.34317 (11)0.31638 (17)0.0454 (5)
H27A0.86900.37150.36510.068*
H27B0.90240.37010.24900.068*
H27C0.97720.33680.34790.068*
C280.5391 (2)0.06896 (15)0.1793 (2)0.0740 (8)
H28A0.47520.09690.17850.111*
H28B0.58910.09950.14870.111*
H28C0.52560.02340.13730.111*
C290.69211 (19)0.01897 (14)0.6230 (2)0.0604 (6)
H29A0.66380.01580.67060.091*
H29B0.66890.06950.63580.091*
H29C0.76710.01720.63660.091*
C300.8351 (2)0.03717 (16)0.0148 (2)0.0727 (7)
H300.87750.00350.06600.087*
N10.85668 (11)0.26899 (7)0.29684 (11)0.0297 (3)
N20.90658 (11)0.25256 (9)0.57607 (12)0.0391 (4)
H2A0.90250.26740.64110.047*
O10.74367 (10)0.28839 (7)0.49619 (10)0.0406 (3)
O20.87103 (11)0.09300 (8)0.20917 (10)0.0470 (3)
O30.89518 (10)0.04398 (7)0.37572 (10)0.0376 (3)
Cl10.80296 (6)0.11741 (5)0.08605 (8)0.0992 (3)
Cl20.72435 (8)0.01165 (5)0.03976 (10)0.1107 (3)
Cl30.91063 (9)0.06436 (6)0.08484 (8)0.1116 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0494 (12)0.0582 (13)0.0670 (15)0.0072 (10)0.0171 (11)0.0041 (11)
C20.0539 (16)0.086 (2)0.108 (3)0.0188 (15)0.0341 (16)0.0200 (18)
C30.0336 (12)0.0785 (19)0.137 (3)0.0047 (12)0.0028 (16)0.0423 (19)
C40.0418 (12)0.0548 (13)0.108 (2)0.0071 (10)0.0222 (13)0.0316 (14)
C50.0376 (10)0.0399 (10)0.0651 (14)0.0012 (8)0.0102 (9)0.0142 (9)
C60.0340 (9)0.0296 (8)0.0517 (11)0.0008 (7)0.0013 (8)0.0098 (8)
C70.0339 (8)0.0287 (8)0.0267 (8)0.0002 (6)0.0018 (6)0.0003 (6)
C80.0367 (9)0.0299 (8)0.0287 (8)0.0003 (7)0.0039 (7)0.0051 (6)
C90.0298 (8)0.0286 (7)0.0228 (7)0.0004 (6)0.0055 (6)0.0013 (6)
C100.0341 (9)0.0312 (8)0.0283 (8)0.0014 (7)0.0072 (7)0.0031 (6)
C110.0317 (8)0.0382 (9)0.0341 (9)0.0009 (7)0.0044 (7)0.0018 (7)
C120.0415 (11)0.0599 (13)0.0399 (11)0.0017 (9)0.0056 (8)0.0038 (9)
C130.0344 (10)0.0611 (13)0.0632 (14)0.0037 (9)0.0046 (9)0.0019 (11)
C140.0335 (10)0.0517 (12)0.0653 (14)0.0056 (8)0.0119 (9)0.0041 (10)
C150.0374 (9)0.0410 (10)0.0402 (10)0.0003 (8)0.0100 (8)0.0042 (8)
C160.0306 (8)0.0298 (8)0.0301 (8)0.0030 (6)0.0055 (6)0.0002 (6)
C170.0314 (8)0.0250 (7)0.0253 (8)0.0013 (6)0.0046 (6)0.0003 (6)
C180.0356 (9)0.0304 (8)0.0324 (9)0.0007 (7)0.0090 (7)0.0043 (6)
C190.0292 (8)0.0284 (8)0.0502 (11)0.0026 (6)0.0093 (7)0.0089 (7)
C200.0380 (10)0.0307 (9)0.0562 (12)0.0020 (7)0.0049 (8)0.0039 (8)
C210.0340 (10)0.0314 (9)0.0848 (16)0.0004 (8)0.0029 (10)0.0025 (10)
C220.0367 (10)0.0332 (10)0.107 (2)0.0054 (8)0.0098 (12)0.0091 (12)
C230.0420 (11)0.0420 (11)0.0911 (19)0.0000 (9)0.0208 (12)0.0279 (11)
C240.0349 (9)0.0375 (9)0.0637 (13)0.0059 (8)0.0178 (9)0.0191 (9)
C250.0345 (8)0.0276 (8)0.0318 (9)0.0022 (7)0.0036 (7)0.0021 (6)
C260.0637 (14)0.0415 (11)0.0639 (14)0.0206 (10)0.0101 (11)0.0004 (10)
C270.0527 (11)0.0331 (9)0.0501 (12)0.0124 (8)0.0055 (9)0.0033 (8)
C280.0675 (16)0.0518 (14)0.097 (2)0.0107 (12)0.0083 (14)0.0168 (13)
C290.0594 (14)0.0661 (14)0.0595 (14)0.0025 (11)0.0219 (11)0.0265 (11)
C300.0636 (16)0.0764 (17)0.0758 (18)0.0125 (13)0.0022 (13)0.0162 (14)
N10.0347 (7)0.0274 (7)0.0272 (7)0.0048 (5)0.0050 (5)0.0023 (5)
N20.0374 (8)0.0554 (9)0.0243 (7)0.0019 (7)0.0037 (6)0.0096 (6)
O10.0380 (7)0.0472 (7)0.0373 (7)0.0077 (6)0.0084 (5)0.0086 (5)
O20.0607 (9)0.0490 (8)0.0330 (7)0.0132 (7)0.0124 (6)0.0031 (6)
O30.0426 (7)0.0309 (6)0.0394 (7)0.0085 (5)0.0064 (5)0.0036 (5)
Cl10.0716 (5)0.1114 (6)0.1077 (7)0.0031 (4)0.0107 (4)0.0367 (5)
Cl20.0970 (6)0.0791 (5)0.1532 (9)0.0107 (4)0.0078 (6)0.0290 (5)
Cl30.1246 (8)0.1139 (7)0.1039 (7)0.0108 (6)0.0420 (6)0.0332 (5)
Geometric parameters (Å, º) top
C1—C61.386 (3)C17—C181.538 (2)
C1—C21.388 (4)C18—C191.516 (2)
C1—H10.9300C18—H18A0.9700
C2—C31.366 (5)C18—H18B0.9700
C2—H20.9300C19—C201.385 (3)
C3—C41.363 (5)C19—C241.398 (3)
C3—H30.9300C20—C211.394 (3)
C4—C51.392 (3)C20—H200.9300
C4—H40.9300C21—C221.380 (3)
C5—C61.389 (3)C21—C281.500 (4)
C5—H50.9300C22—C231.371 (4)
C6—C71.516 (2)C22—H220.9300
C7—C81.524 (2)C23—C241.390 (3)
C7—C171.582 (2)C23—H230.9300
C7—H70.9800C24—C291.497 (3)
C8—N11.459 (2)C25—O21.201 (2)
C8—H8A0.9700C25—O31.330 (2)
C8—H8B0.9700C26—O31.437 (2)
C9—N11.462 (2)C26—H26A0.9600
C9—C161.512 (2)C26—H26B0.9600
C9—C101.564 (2)C26—H26C0.9600
C9—C171.597 (2)C27—N11.456 (2)
C10—O11.210 (2)C27—H27A0.9600
C10—N21.357 (2)C27—H27B0.9600
C11—C121.381 (3)C27—H27C0.9600
C11—C161.385 (2)C28—H28A0.9600
C11—N21.397 (2)C28—H28B0.9600
C12—C131.382 (3)C28—H28C0.9600
C12—H120.9300C29—H29A0.9600
C13—C141.374 (3)C29—H29B0.9600
C13—H130.9300C29—H29C0.9600
C14—C151.391 (3)C30—Cl21.724 (3)
C14—H140.9300C30—Cl11.750 (3)
C15—C161.378 (2)C30—Cl31.751 (3)
C15—H150.9300C30—H300.9800
C17—C251.534 (2)N2—H2A0.8600
C6—C1—C2120.4 (3)C19—C18—H18A107.9
C6—C1—H1119.8C17—C18—H18A107.9
C2—C1—H1119.8C19—C18—H18B107.9
C3—C2—C1120.6 (3)C17—C18—H18B107.9
C3—C2—H2119.7H18A—C18—H18B107.2
C1—C2—H2119.7C20—C19—C24118.66 (17)
C4—C3—C2120.0 (2)C20—C19—C18122.66 (16)
C4—C3—H3120.0C24—C19—C18118.63 (17)
C2—C3—H3120.0C19—C20—C21123.04 (19)
C3—C4—C5120.1 (3)C19—C20—H20118.5
C3—C4—H4120.0C21—C20—H20118.5
C5—C4—H4120.0C22—C21—C20117.2 (2)
C6—C5—C4120.7 (2)C22—C21—C28122.3 (2)
C6—C5—H5119.6C20—C21—C28120.4 (2)
C4—C5—H5119.6C23—C22—C21120.71 (19)
C1—C6—C5118.11 (19)C23—C22—H22119.6
C1—C6—C7117.89 (19)C21—C22—H22119.6
C5—C6—C7123.60 (17)C22—C23—C24122.2 (2)
C6—C7—C8109.65 (14)C22—C23—H23118.9
C6—C7—C17121.93 (14)C24—C23—H23118.9
C8—C7—C17105.16 (13)C23—C24—C19118.2 (2)
C6—C7—H7106.4C23—C24—C29119.59 (19)
C8—C7—H7106.4C19—C24—C29122.23 (18)
C17—C7—H7106.4O2—C25—O3123.23 (16)
N1—C8—C7104.09 (13)O2—C25—C17125.55 (15)
N1—C8—H8A110.9O3—C25—C17111.12 (14)
C7—C8—H8A110.9O3—C26—H26A109.5
N1—C8—H8B110.9O3—C26—H26B109.5
C7—C8—H8B110.9H26A—C26—H26B109.5
H8A—C8—H8B109.0O3—C26—H26C109.5
N1—C9—C16111.94 (13)H26A—C26—H26C109.5
N1—C9—C10113.17 (13)H26B—C26—H26C109.5
C16—C9—C10101.09 (12)N1—C27—H27A109.5
N1—C9—C17102.79 (12)N1—C27—H27B109.5
C16—C9—C17118.65 (13)H27A—C27—H27B109.5
C10—C9—C17109.60 (12)N1—C27—H27C109.5
O1—C10—N2125.77 (16)H27A—C27—H27C109.5
O1—C10—C9126.59 (15)H27B—C27—H27C109.5
N2—C10—C9107.64 (14)C21—C28—H28A109.5
C12—C11—C16122.20 (17)C21—C28—H28B109.5
C12—C11—N2127.95 (17)H28A—C28—H28B109.5
C16—C11—N2109.79 (15)C21—C28—H28C109.5
C11—C12—C13117.80 (19)H28A—C28—H28C109.5
C11—C12—H12121.1H28B—C28—H28C109.5
C13—C12—H12121.1C24—C29—H29A109.5
C14—C13—C12120.82 (19)C24—C29—H29B109.5
C14—C13—H13119.6H29A—C29—H29B109.5
C12—C13—H13119.6C24—C29—H29C109.5
C13—C14—C15120.86 (19)H29A—C29—H29C109.5
C13—C14—H14119.6H29B—C29—H29C109.5
C15—C14—H14119.6Cl2—C30—Cl1111.11 (15)
C16—C15—C14118.99 (18)Cl2—C30—Cl3111.84 (17)
C16—C15—H15120.5Cl1—C30—Cl3109.54 (16)
C14—C15—H15120.5Cl2—C30—H30108.1
C15—C16—C11119.24 (16)Cl1—C30—H30108.1
C15—C16—C9131.30 (15)Cl3—C30—H30108.1
C11—C16—C9109.27 (14)C27—N1—C8113.35 (14)
C25—C17—C18109.19 (13)C27—N1—C9115.28 (14)
C25—C17—C7109.56 (13)C8—N1—C9105.71 (12)
C18—C17—C7117.73 (13)C10—N2—C11111.97 (14)
C25—C17—C9104.86 (12)C10—N2—H2A124.0
C18—C17—C9112.13 (13)C11—N2—H2A124.0
C7—C17—C9102.51 (12)C25—O3—C26117.19 (15)
C19—C18—C17117.69 (15)
C6—C1—C2—C30.4 (4)C10—C9—C17—C25149.46 (13)
C1—C2—C3—C40.6 (4)N1—C9—C17—C18151.71 (13)
C2—C3—C4—C50.1 (4)C16—C9—C17—C1884.19 (17)
C3—C4—C5—C61.4 (3)C10—C9—C17—C1831.11 (17)
C2—C1—C6—C51.8 (3)N1—C9—C17—C724.50 (14)
C2—C1—C6—C7174.9 (2)C16—C9—C17—C7148.60 (14)
C4—C5—C6—C12.3 (3)C10—C9—C17—C796.10 (14)
C4—C5—C6—C7174.93 (18)C25—C17—C18—C1952.72 (19)
C1—C6—C7—C8109.52 (19)C7—C17—C18—C1972.97 (19)
C5—C6—C7—C863.2 (2)C9—C17—C18—C19168.48 (14)
C1—C6—C7—C17127.14 (19)C17—C18—C19—C2017.2 (2)
C5—C6—C7—C1760.2 (2)C17—C18—C19—C24165.28 (15)
C6—C7—C8—N1159.17 (14)C24—C19—C20—C212.2 (3)
C17—C7—C8—N126.43 (16)C18—C19—C20—C21175.26 (17)
N1—C9—C10—O155.2 (2)C19—C20—C21—C222.1 (3)
C16—C9—C10—O1175.02 (17)C19—C20—C21—C28175.4 (2)
C17—C9—C10—O158.9 (2)C20—C21—C22—C230.9 (3)
N1—C9—C10—N2124.66 (15)C28—C21—C22—C23176.5 (2)
C16—C9—C10—N24.79 (17)C21—C22—C23—C240.1 (3)
C17—C9—C10—N2121.26 (15)C22—C23—C24—C190.0 (3)
C16—C11—C12—C131.1 (3)C22—C23—C24—C29179.6 (2)
N2—C11—C12—C13175.89 (19)C20—C19—C24—C231.1 (3)
C11—C12—C13—C141.3 (3)C18—C19—C24—C23176.45 (16)
C12—C13—C14—C151.3 (3)C20—C19—C24—C29179.27 (18)
C13—C14—C15—C161.0 (3)C18—C19—C24—C293.1 (3)
C14—C15—C16—C113.2 (3)C18—C17—C25—O2152.45 (17)
C14—C15—C16—C9177.68 (17)C7—C17—C25—O222.2 (2)
C12—C11—C16—C153.3 (3)C9—C17—C25—O287.22 (19)
N2—C11—C16—C15174.10 (16)C18—C17—C25—O330.95 (18)
C12—C11—C16—C9178.93 (17)C7—C17—C25—O3161.22 (13)
N2—C11—C16—C91.49 (19)C9—C17—C25—O389.38 (15)
N1—C9—C16—C1550.4 (2)C7—C8—N1—C27171.60 (14)
C10—C9—C16—C15171.15 (18)C7—C8—N1—C944.41 (16)
C17—C9—C16—C1569.1 (2)C16—C9—N1—C2762.53 (18)
N1—C9—C16—C11124.47 (15)C10—C9—N1—C2750.92 (19)
C10—C9—C16—C113.73 (16)C17—C9—N1—C27169.04 (14)
C17—C9—C16—C11116.06 (15)C16—C9—N1—C8171.44 (13)
C6—C7—C17—C25122.61 (16)C10—C9—N1—C875.11 (15)
C8—C7—C17—C25111.99 (14)C17—C9—N1—C843.01 (15)
C6—C7—C17—C182.9 (2)O1—C10—N2—C11175.49 (17)
C8—C7—C17—C18122.51 (15)C9—C10—N2—C114.3 (2)
C6—C7—C17—C9126.44 (15)C12—C11—N2—C10175.34 (19)
C8—C7—C17—C91.03 (16)C16—C11—N2—C101.9 (2)
N1—C9—C17—C2589.93 (14)O2—C25—O3—C260.7 (3)
C16—C9—C17—C2534.17 (17)C17—C25—O3—C26177.36 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.453.292 (2)151
C18—H18B···O10.972.523.127 (2)120
C30—H30···O20.982.473.319 (3)144
N2—H2A···O2i0.862.653.252 (2)128
N2—H2A···N1i0.862.202.936 (2)143
C7—H7···O1ii0.982.573.359 (2)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.453.292 (2)151
C18—H18B···O10.972.523.127 (2)120
C30—H30···O20.982.473.319 (3)144
N2—H2A···O2i0.862.653.252 (2)128
N2—H2A···N1i0.862.202.936 (2)143
C7—H7···O1ii0.982.573.359 (2)138
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhattacharya, S. K., Glover, V., McIntyre, I., Oxenkrug, G. & Sandler, M. (1982). Neurosci. Lett. 92, 218–221.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlover, V., Halket, J. M., Watkins, P. J., Clow, A., Goodwin, B. L. & Sandler, M. (1998). J. Neurochem. 51, 656–659.  CrossRef Web of Science Google Scholar
First citationKarthikeyan, S., Narayanan, P., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2014). Acta Cryst. E70, o335.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o377-o378
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds