organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o248-o249

N-(12-Amino-9,10-di­hydro-9,10-ethano­anthracen-11-yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Pharmaceutical Chemistry, College of, Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and dDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
*Correspondence e-mail: joelt@tulane.edu

(Received 28 January 2014; accepted 29 January 2014; online 5 February 2014)

The title compound, C23H22N2O2S, crystallizes with the 4-methyl­benzene­sulfonamide entity oriented towards the center of the bridgehead C atoms with a C—N—S—C torsion angle of −61.3 (2)°. The mol­ecule features an intra­molecular N—H⋯N hydrogen bond. Weak C—H⋯O and C—H⋯π inter­actions aid in forming the three-dimensional supra­molecular structure.

Related literature

For chiral ligand devlopment, see: Abdel-Aziz et al. (2000[Abdel-Aziz, A. A.-M., Okuno, J., Tanaka, S., Ishizuka, T., Matsunaga, H. & Kunieda, T. (2000). Tetrahedron Lett. 41, 8533-8537.], 2001[Abdel-Aziz, A. A.-M., Matsunaga, H. & Kunieda, T. (2001). Tetrahedron Lett. 42, 6565-6567.], 2004[Abdel-Aziz, A. A.-M., El Bialy, S. A. A., Goda, F. E. & Kunieda, T. (2004). Tetrahedron Lett. 45, 8073-8077.]); Matsunaga et al. (2005[Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645-3648.]); Seo et al. (2001[Seo, R., Ishizuka, T., Abdel-Aziz, A. A.-M. & Kunieda, T. (2001). Tetrahedron Lett. 42, 6353-6355.]). For similar compounds and applications, see: Yamakuchi et al. (2005[Yamakuchi, M., Matsunaga, H., Tokuda, R., Ishizuka, T., Nakajima, M. & Kuniedab, T. (2005). Tetrahedron Lett. 46, 4019-4022.]); Matsunaga et al. (2005[Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645-3648.]); Abdel-Aziz et al. (2004[Abdel-Aziz, A. A.-M., El Bialy, S. A. A., Goda, F. E. & Kunieda, T. (2004). Tetrahedron Lett. 45, 8073-8077.]). For the synthesis of the title compound, see: Matsunaga et al. (2005[Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645-3648.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22N2O2S

  • Mr = 390.49

  • Monoclinic, P 21

  • a = 8.9362 (2) Å

  • b = 6.8766 (2) Å

  • c = 15.5039 (4) Å

  • β = 91.540 (1)°

  • V = 952.38 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.68 mm−1

  • T = 100 K

  • 0.25 × 0.13 × 0.03 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.83, Tmax = 0.95

  • 16018 measured reflections

  • 3531 independent reflections

  • 3255 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 1.07

  • 3531 reflections

  • 282 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1582 Friedel pairs

  • Absolute structure parameter: 0.036 (13)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2 0.90 (2) 2.04 (2) 2.592 (2) 117.9 (17)
C11—H11⋯Cg1i 0.95 2.87 3.712 (2) 149
C5—H5⋯O1ii 0.95 2.58 3.269 (2) 129
C12—H12⋯O1iii 0.95 2.52 3.446 (2) 166
C23—H23A⋯O1iv 0.98 2.51 3.259 (3) 133
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Bruker, 2012[Bruker (2012). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Experimental top

Synthesis and crystallization top

The title compound was prepared by the literature method (Matsunaga et al., 2005) and recrystallized from CH2Cl2/EtOH as colourless plates.

Refinement top

H-atoms attached to the bridgehead carbon atoms and to nitro­gen were located and refined. The remainder were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached carbon atoms.

Results and discussion top

The development of chiral ligands for asymmetric catalytic reactions is a subject of considerable inter­est in the field of asymmetric synthesis (Abdel-Aziz et al., 2000, 2001, 2004; Matsunaga et al., 2005; Seo et al., 2001). As part of our onging program of drug design and discovery we report the structure of the title compound. Some applications of related compounds have been reported (Yamakuchi et al., 2005; Matsunaga et al., 2005; Abdel-Aziz et al., 2004). The 4-methyl­benzene­sulfonamide entity is oriented towards the center of the bridgehead carbon atoms (C1, C16), partly due to the N1—H1N···N2 inter­action, as indicated by the C1—N1—S1—C17 torsion angle of -61.3 (2)°. The dihedral angle between the benzene ring (C17–C22) and the mean plane of the C1/C2/C9/C16 unit is 87.78 (7)°. The packing of the molecules is aided by weak C—H···O hydrogen bonds as well as a C—H···π inter­action between C11—H11 and the centroid of the C3–C8 ring at -x, -0.5 + y, 1 - z forming the three-dimensional supra­molecular structure (Table 1 and Fig. 2).

Related literature top

For chiral ligand devlopment, see: Abdel-Aziz et al. (2000, 2001, 2004); Matsunaga et al. (2005); Seo et al. (2001). For similar compounds and applications, see: Yamakuchi et al. (2005); Matsunaga et al. (2005); Abdel-Aziz et al. (2004). For the synthesis of the title compound, see: Matsunaga et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2012).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule showing the intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed down b with intermolecular interactions shown as dotted lines (C—H···O, purple; C—H···π, green).
N-(12-Amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4-methylbenzenesulfonamide top
Crystal data top
C23H22N2O2SF(000) = 412
Mr = 390.49Dx = 1.362 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 8.9362 (2) ÅCell parameters from 9974 reflections
b = 6.8766 (2) Åθ = 2.9–69.8°
c = 15.5039 (4) ŵ = 1.68 mm1
β = 91.540 (1)°T = 100 K
V = 952.38 (4) Å3Plate, colourless
Z = 20.25 × 0.13 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3531 independent reflections
Radiation source: INCOATEC IµS micro-focus source3255 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4167 pixels mm-1θmax = 69.8°, θmin = 2.9°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 88
Tmin = 0.83, Tmax = 0.95l = 1818
16018 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.1321P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3531 reflectionsΔρmax = 0.17 e Å3
282 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1582 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.036 (13)
Crystal data top
C23H22N2O2SV = 952.38 (4) Å3
Mr = 390.49Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.9362 (2) ŵ = 1.68 mm1
b = 6.8766 (2) ÅT = 100 K
c = 15.5039 (4) Å0.25 × 0.13 × 0.03 mm
β = 91.540 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3255 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.95Rint = 0.035
16018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.17 e Å3
S = 1.07Δρmin = 0.21 e Å3
3531 reflectionsAbsolute structure: Flack (1983), 1582 Friedel pairs
282 parametersAbsolute structure parameter: 0.036 (13)
1 restraint
Special details top

Experimental. The diffraction data were obtained from 8 sets of 340 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00, 180.00 and 270.00° and at 2θ = -50.00 and -90.00° and 4 sets of 340 frames, each of width 0.5° in ω collected at 2θ = -90.00° and φ = 45.00, 135.00, 225.00 and 315.00°. The scan time was 20 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to the bridgehead carbon atoms and to nitrogen were located and refined. The remainder were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47223 (4)0.59364 (7)0.19075 (3)0.02581 (11)
O10.60539 (14)0.4887 (2)0.21492 (8)0.0344 (3)
O20.48013 (14)0.79099 (19)0.16197 (8)0.0314 (3)
N10.36963 (15)0.5913 (3)0.27530 (9)0.0254 (3)
H1N0.370 (2)0.473 (3)0.3000 (13)0.036 (6)*
N20.19878 (19)0.4067 (2)0.38013 (13)0.0310 (4)
H2A0.149 (3)0.296 (4)0.3825 (16)0.053 (7)*
H2B0.228 (2)0.440 (3)0.4308 (15)0.036 (6)*
C10.21944 (19)0.6768 (3)0.27202 (12)0.0239 (4)
H10.1753 (18)0.667 (3)0.2111 (11)0.020 (5)*
C20.22327 (19)0.8966 (3)0.29742 (11)0.0223 (4)
H20.295 (2)0.963 (3)0.2608 (12)0.024 (5)*
C30.06161 (19)0.9626 (2)0.28635 (11)0.0213 (4)
C40.00777 (18)1.1038 (3)0.22989 (10)0.0253 (4)
H40.07421.17480.19490.03*
C50.1461 (2)1.1400 (3)0.22537 (11)0.0276 (4)
H50.18421.23990.18860.033*
C60.2433 (2)1.0319 (3)0.27387 (12)0.0280 (4)
H60.3481.05440.26830.034*
C70.18973 (19)0.8909 (3)0.33066 (12)0.0252 (4)
H70.2570.81720.3640.03*
C80.03595 (19)0.8586 (2)0.33827 (11)0.0224 (4)
C90.04146 (19)0.7098 (3)0.39548 (12)0.0229 (4)
H90.0255 (19)0.644 (3)0.4339 (11)0.021 (5)*
C100.16898 (18)0.8096 (2)0.44541 (11)0.0208 (4)
C110.1950 (2)0.8058 (3)0.53355 (11)0.0246 (4)
H110.13010.73540.56970.03*
C120.3175 (2)0.9060 (3)0.56923 (11)0.0254 (4)
H120.33570.90470.62990.03*
C130.41273 (19)1.0076 (3)0.51641 (12)0.0254 (4)
H130.49471.07790.54120.03*
C140.38929 (19)1.0075 (3)0.42748 (12)0.0232 (4)
H140.45651.07440.39140.028*
C150.26676 (18)0.9089 (2)0.39163 (11)0.0208 (4)
C160.1156 (2)0.5601 (3)0.33479 (12)0.0258 (4)
H160.0421 (19)0.500 (3)0.2966 (11)0.016 (4)*
C170.37770 (19)0.4609 (3)0.10866 (11)0.0242 (4)
C180.4012 (2)0.2615 (3)0.10068 (12)0.0299 (4)
H180.470.19580.13830.036*
C190.3221 (2)0.1610 (3)0.03665 (13)0.0366 (5)
H190.3380.02510.03060.044*
C200.2202 (2)0.2533 (3)0.01897 (12)0.0346 (5)
C210.1995 (2)0.4513 (3)0.00981 (12)0.0352 (5)
H210.13020.51670.04720.042*
C220.2777 (2)0.5561 (3)0.05282 (12)0.0315 (4)
H220.26320.69250.05770.038*
C230.1345 (3)0.1440 (4)0.08860 (15)0.0525 (7)
H23A0.18360.16150.14380.079*
H23B0.03190.19410.09320.079*
H23C0.13220.00540.0740.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0225 (2)0.0273 (2)0.0275 (2)0.0056 (2)0.00269 (16)0.0029 (2)
O10.0248 (7)0.0437 (8)0.0345 (7)0.0115 (6)0.0042 (5)0.0040 (6)
O20.0285 (7)0.0281 (7)0.0377 (7)0.0004 (6)0.0011 (6)0.0022 (6)
N10.0255 (7)0.0255 (8)0.0250 (7)0.0081 (8)0.0050 (6)0.0017 (8)
N20.0301 (9)0.0185 (8)0.0440 (11)0.0015 (7)0.0045 (8)0.0020 (8)
C10.0222 (9)0.0221 (8)0.0270 (10)0.0063 (8)0.0060 (8)0.0029 (8)
C20.0213 (9)0.0206 (9)0.0249 (9)0.0007 (7)0.0010 (7)0.0006 (7)
C30.0229 (9)0.0188 (9)0.0221 (9)0.0036 (7)0.0037 (7)0.0054 (7)
C40.0286 (9)0.0226 (8)0.0244 (8)0.0038 (9)0.0022 (7)0.0028 (9)
C50.0338 (10)0.0244 (10)0.0241 (9)0.0094 (8)0.0068 (8)0.0024 (7)
C60.0243 (9)0.0288 (10)0.0304 (10)0.0078 (8)0.0058 (8)0.0068 (8)
C70.0233 (9)0.0224 (9)0.0298 (10)0.0002 (7)0.0024 (7)0.0058 (8)
C80.0230 (9)0.0195 (9)0.0242 (9)0.0003 (7)0.0053 (7)0.0051 (7)
C90.0211 (9)0.0194 (9)0.0283 (10)0.0017 (7)0.0001 (8)0.0016 (7)
C100.0199 (8)0.0152 (8)0.0271 (10)0.0028 (7)0.0019 (7)0.0003 (7)
C110.0262 (9)0.0194 (9)0.0283 (10)0.0053 (7)0.0023 (7)0.0032 (7)
C120.0302 (10)0.0229 (9)0.0226 (9)0.0070 (8)0.0061 (7)0.0026 (7)
C130.0227 (9)0.0187 (8)0.0343 (10)0.0034 (7)0.0078 (8)0.0058 (8)
C140.0208 (9)0.0175 (8)0.0311 (9)0.0022 (7)0.0012 (7)0.0003 (7)
C150.0198 (8)0.0154 (8)0.0270 (9)0.0050 (7)0.0014 (7)0.0013 (7)
C160.0229 (9)0.0193 (10)0.0347 (10)0.0000 (7)0.0070 (7)0.0028 (8)
C170.0237 (9)0.0275 (10)0.0216 (9)0.0007 (8)0.0027 (7)0.0010 (8)
C180.0323 (11)0.0269 (10)0.0305 (10)0.0032 (8)0.0039 (8)0.0019 (9)
C190.0434 (12)0.0263 (10)0.0407 (12)0.0041 (9)0.0135 (10)0.0067 (9)
C200.0315 (11)0.0439 (12)0.0287 (10)0.0074 (9)0.0082 (8)0.0082 (9)
C210.0342 (11)0.0448 (13)0.0265 (10)0.0002 (10)0.0030 (8)0.0008 (9)
C220.0343 (10)0.0309 (11)0.0291 (10)0.0044 (8)0.0022 (8)0.0010 (8)
C230.0447 (12)0.0670 (19)0.0459 (13)0.0138 (12)0.0058 (10)0.0235 (12)
Geometric parameters (Å, º) top
S1—O21.4309 (14)C9—C161.555 (3)
S1—O11.4328 (13)C9—H90.968 (18)
S1—N11.6197 (15)C10—C111.380 (2)
S1—C171.7631 (18)C10—C151.401 (2)
N1—C11.465 (2)C11—C121.395 (3)
N1—H1N0.90 (2)C11—H110.95
N2—C161.460 (2)C12—C131.386 (3)
N2—H2A0.88 (3)C12—H120.95
N2—H2B0.85 (2)C13—C141.389 (2)
C1—C21.562 (2)C13—H130.95
C1—C161.581 (3)C14—C151.391 (2)
C1—H11.015 (17)C14—H140.95
C2—C151.504 (2)C16—H160.967 (17)
C2—C31.520 (2)C17—C221.391 (2)
C2—H20.982 (19)C17—C181.393 (3)
C3—C41.385 (3)C18—C191.388 (3)
C3—C81.399 (3)C18—H180.95
C4—C51.397 (2)C19—C201.390 (3)
C4—H40.95C19—H190.95
C5—C61.381 (3)C20—C211.382 (3)
C5—H50.95C20—C231.508 (3)
C6—C71.386 (3)C21—C221.384 (3)
C6—H60.95C21—H210.95
C7—C81.394 (2)C22—H220.95
C7—H70.95C23—H23A0.98
C8—C91.510 (2)C23—H23B0.98
C9—C101.524 (2)C23—H23C0.98
O2—S1—O1120.76 (9)C11—C10—C15120.47 (16)
O2—S1—N1107.20 (9)C11—C10—C9126.75 (16)
O1—S1—N1105.51 (8)C15—C10—C9112.76 (15)
O2—S1—C17107.00 (8)C10—C11—C12119.52 (17)
O1—S1—C17107.86 (8)C10—C11—H11120.2
N1—S1—C17107.96 (8)C12—C11—H11120.2
C1—N1—S1120.39 (12)C13—C12—C11120.17 (16)
C1—N1—H1N111.6 (13)C13—C12—H12119.9
S1—N1—H1N111.1 (13)C11—C12—H12119.9
C16—N2—H2A113.1 (16)C12—C13—C14120.51 (16)
C16—N2—H2B113.2 (16)C12—C13—H13119.7
H2A—N2—H2B109 (2)C14—C13—H13119.7
N1—C1—C2111.46 (14)C13—C14—C15119.52 (17)
N1—C1—C16109.09 (14)C13—C14—H14120.2
C2—C1—C16110.19 (15)C15—C14—H14120.2
N1—C1—H1109.8 (10)C14—C15—C10119.77 (16)
C2—C1—H1107.7 (10)C14—C15—C2126.55 (16)
C16—C1—H1108.6 (10)C10—C15—C2113.69 (15)
C15—C2—C3108.25 (14)N2—C16—C9113.99 (15)
C15—C2—C1107.61 (14)N2—C16—C1111.32 (14)
C3—C2—C1104.26 (14)C9—C16—C1107.66 (14)
C15—C2—H2112.3 (11)N2—C16—H16108.2 (11)
C3—C2—H2115.5 (11)C9—C16—H16111.2 (10)
C1—C2—H2108.3 (11)C1—C16—H16104.0 (10)
C4—C3—C8120.72 (16)C22—C17—C18120.25 (17)
C4—C3—C2126.44 (16)C22—C17—S1119.53 (14)
C8—C3—C2112.80 (15)C18—C17—S1120.20 (14)
C3—C4—C5118.77 (17)C19—C18—C17118.60 (18)
C3—C4—H4120.6C19—C18—H18120.7
C5—C4—H4120.6C17—C18—H18120.7
C6—C5—C4120.62 (16)C18—C19—C20121.91 (18)
C6—C5—H5119.7C18—C19—H19119.0
C4—C5—H5119.7C20—C19—H19119.0
C5—C6—C7120.72 (17)C21—C20—C19118.26 (18)
C5—C6—H6119.6C21—C20—C23119.9 (2)
C7—C6—H6119.6C19—C20—C23121.9 (2)
C6—C7—C8119.20 (17)C20—C21—C22121.26 (19)
C6—C7—H7120.4C20—C21—H21119.4
C8—C7—H7120.4C22—C21—H21119.4
C7—C8—C3119.86 (16)C21—C22—C17119.70 (18)
C7—C8—C9126.36 (16)C21—C22—H22120.2
C3—C8—C9113.69 (15)C17—C22—H22120.2
C8—C9—C10108.52 (14)C20—C23—H23A109.5
C8—C9—C16106.81 (14)C20—C23—H23B109.5
C10—C9—C16106.30 (14)H23A—C23—H23B109.5
C8—C9—H9113.4 (10)C20—C23—H23C109.5
C10—C9—H9111.4 (10)H23A—C23—H23C109.5
C16—C9—H9110.0 (11)H23B—C23—H23C109.5
O2—S1—N1—C153.66 (16)C12—C13—C14—C151.8 (3)
O1—S1—N1—C1176.43 (14)C13—C14—C15—C100.4 (2)
C17—S1—N1—C161.31 (17)C13—C14—C15—C2178.89 (16)
S1—N1—C1—C290.01 (17)C11—C10—C15—C141.3 (2)
S1—N1—C1—C16148.09 (14)C9—C10—C15—C14179.93 (15)
N1—C1—C2—C1567.85 (18)C11—C10—C15—C2179.27 (15)
C16—C1—C2—C1553.41 (18)C9—C10—C15—C20.7 (2)
N1—C1—C2—C3177.35 (14)C3—C2—C15—C14126.01 (18)
C16—C1—C2—C361.39 (17)C1—C2—C15—C14121.86 (18)
C15—C2—C3—C4127.49 (18)C3—C2—C15—C1053.35 (19)
C1—C2—C3—C4118.15 (18)C1—C2—C15—C1058.78 (18)
C15—C2—C3—C854.95 (19)C8—C9—C16—N2178.79 (14)
C1—C2—C3—C859.40 (18)C10—C9—C16—N263.07 (19)
C8—C3—C4—C50.3 (2)C8—C9—C16—C154.78 (16)
C2—C3—C4—C5177.07 (16)C10—C9—C16—C160.94 (17)
C3—C4—C5—C62.4 (3)N1—C1—C16—N22.1 (2)
C4—C5—C6—C72.7 (3)C2—C1—C16—N2120.58 (16)
C5—C6—C7—C80.2 (3)N1—C1—C16—C9127.70 (15)
C6—C7—C8—C32.6 (3)C2—C1—C16—C95.03 (18)
C6—C7—C8—C9178.97 (16)O2—S1—C17—C2225.90 (17)
C4—C3—C8—C72.8 (3)O1—S1—C17—C22157.23 (14)
C2—C3—C8—C7174.90 (15)N1—S1—C17—C2289.20 (16)
C4—C3—C8—C9179.66 (15)O2—S1—C17—C18155.12 (14)
C2—C3—C8—C91.9 (2)O1—S1—C17—C1823.79 (17)
C7—C8—C9—C10131.40 (18)N1—S1—C17—C1889.78 (16)
C3—C8—C9—C1052.0 (2)C22—C17—C18—C190.5 (3)
C7—C8—C9—C16114.37 (19)S1—C17—C18—C19178.43 (13)
C3—C8—C9—C1662.23 (18)C17—C18—C19—C200.3 (3)
C8—C9—C10—C11127.94 (18)C18—C19—C20—C210.6 (3)
C16—C9—C10—C11117.50 (18)C18—C19—C20—C23179.92 (19)
C8—C9—C10—C1553.57 (19)C19—C20—C21—C220.1 (3)
C16—C9—C10—C1560.99 (18)C23—C20—C21—C22179.28 (19)
C15—C10—C11—C121.8 (2)C20—C21—C22—C170.9 (3)
C9—C10—C11—C12179.86 (16)C18—C17—C22—C211.2 (3)
C10—C11—C12—C130.4 (3)S1—C17—C22—C21177.80 (15)
C11—C12—C13—C141.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.90 (2)2.04 (2)2.592 (2)117.9 (17)
C11—H11···Cg1i0.952.873.712 (2)149
C5—H5···O1ii0.952.583.269 (2)129
C12—H12···O1iii0.952.523.446 (2)166
C23—H23A···O1iv0.982.513.259 (3)133
Symmetry codes: (i) x, y1/2, z+1; (ii) x1, y+1, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C3–C8 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.90 (2)2.04 (2)2.592 (2)117.9 (17)
C11—H11···Cg1i0.952.873.712 (2)149
C5—H5···O1ii0.952.583.269 (2)129
C12—H12···O1iii0.952.523.446 (2)166
C23—H23A···O1iv0.982.513.259 (3)133
Symmetry codes: (i) x, y1/2, z+1; (ii) x1, y+1, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Research Center of Pharmacy, King Saud University, for funding this work. JTM thanks the Tulane Chemistry Department for support of the Tulane Crystallography Laboratory and NSF–MRI grant No. 1228232 for the purchase of the diffractometer.

References

First citationAbdel-Aziz, A. A.-M., El Bialy, S. A. A., Goda, F. E. & Kunieda, T. (2004). Tetrahedron Lett. 45, 8073–8077.  CAS Google Scholar
First citationAbdel-Aziz, A. A.-M., Matsunaga, H. & Kunieda, T. (2001). Tetrahedron Lett. 42, 6565–6567.  CAS Google Scholar
First citationAbdel-Aziz, A. A.-M., Okuno, J., Tanaka, S., Ishizuka, T., Matsunaga, H. & Kunieda, T. (2000). Tetrahedron Lett. 41, 8533–8537.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645–3648.  Web of Science CrossRef CAS Google Scholar
First citationSeo, R., Ishizuka, T., Abdel-Aziz, A. A.-M. & Kunieda, T. (2001). Tetrahedron Lett. 42, 6353–6355.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamakuchi, M., Matsunaga, H., Tokuda, R., Ishizuka, T., Nakajima, M. & Kuniedab, T. (2005). Tetrahedron Lett. 46, 4019–4022.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o248-o249
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds