organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o307-o308

Ethyl 3-[7-(N-acetyl-4-meth­­oxy­benzene­sulfonamido)-3-chloro-2H-indazol-2-yl]propionate

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: assoman_k@yahoo.fr

(Received 11 February 2014; accepted 12 February 2014; online 15 February 2014)

In the title compound, C21H22ClN3O6S, the fused five- and six-membered ring rings are almost perpendicular to the planes through the atoms forming the acetyl and the propionic ester groups, as indicated by the dihedral angles of 80.3 (2) and 88.3 (7)°, respectively. The dihedral angle between the indazole system and the 4-meth­oxy­benzene­sulfonyl group is 13.76 (6)°. The carbonyl O atom is split over two positions in a 0.60 (5):0.40 (5) ratio. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N inter­actions into a three-dimensional network.

Related literature

For the biological activity of sulfonamides, see: Lohou et al. (2012[Lohou, E., Sopkova, J., Schumann, P., Boulouard, M., Stiebing, S., Rault, S. & Collot, V. (2012). Bioorg. Med. Chem. 20, 5296-5304.]); Salerno et al. (2012[Salerno, L., Modica, M. N., Romeo, G., Pittala, V., Siracusa, M. A., Amato, M. E., Acquaviva, R., Di Giacomo, C. & Sorrenti, V. (2012). Eur. J. Med. Chem. 49, 118-126.]); Kaltenbach et al. (2003[Kaltenbach, R. F., Patel, M., Waltermire, R. E., Harris, G. D., Stone, B. R. P., Klabe, R. M., Garber, S., Bacheler, L. T., Cordova, B. C., Logue, K., Wright, M. R., Erickson-Viitanen, S. & Trainor, G. L. (2003). Bioorg. Med. Chem. Lett. 13, 605-686.]); Thangadurai et al. (2012[Thangadurai, A., Minu, M., Wakode, S., Agrawal, S. & Narasimhan, B. (2012). Med. Chem. Res. 21, 1509-1523.]); Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.]). For similar compounds, see: Abbassi et al. (2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2013[Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22ClN3O6S

  • Mr = 479.93

  • Triclinic, [P \overline 1]

  • a = 9.1442 (3) Å

  • b = 9.4376 (4) Å

  • c = 14.0931 (6) Å

  • α = 108.262 (2)°

  • β = 96.017 (2)°

  • γ = 103.313 (2)°

  • V = 1103.12 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.38 × 0.32 × 0.27 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 0.746

  • 26786 measured reflections

  • 6725 independent reflections

  • 4687 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.02

  • 6725 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 0.97 2.58 3.438 (3) 148
C21—H21A⋯O2Bii 0.96 2.44 3.273 (7) 144
C21—H21A⋯O2Aii 0.96 2.60 3.43 (2) 145
C2—H2B⋯O6iii 0.97 2.71 3.510 (3) 140
C14—H14C⋯N2iv 0.96 2.55 3.501 (2) 173
C14—H14B⋯O5v 0.96 2.45 3.348 (2) 155
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x, y+1, z; (iv) -x+1, -y, -z; (v) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

The indazole ring system is recognized to be a highly effective pharmacophore in medicinal chemistry as well as being the core of important nitro­gen-containing heterocycles that show a broad range of biological activities, such as nitric oxide syntheses and HIV protease inhibitors, anti-inflammatory and anti-cancer agents, and serotonin 5-HT3 receptor antagonists (Lohou et al., 2012; Salerno et al., 2012; Kaltenbach et al., 2003; Thangadurai et al., 2012; Abbassi et al., 2012). The present work is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Abbassi, et al., 2013; Chicha, et al., 2013).

The molecule of the title compound is built up from fused five- and six-membered rings linked to an acetyl-(4-meth­oxy-benzene­sulfonyl)-amino group and to a propionic ethyl ester as shown in Fig. 1. The indazole ring system makes dihedral angles of 80.3 (2) and 88.3 (7)°, with the two planes through the atoms forming the acetyl (O3C13C14) and the propionic ester (O1O2C3C4C5) groups, respectively. The plane through the 4-meth­oxy-benzene­sulfonyl group is nearly parallel to the indazole ring system, as indicated by the dihedral angle of 13.76 (6)°. In the crystal, the molecules are linked by C—H···O and C—H···N inter­actions to form a three-dimensional network (Fig. 2 and Table 1).

Synthesis and crystallization top

Ethyl 3-(3-chloro-7-nitro-2H-indazol-2-yl)propano­ate (1.48 mmol) was added to a mixture of indium powder (850 mg, 7.43 mmol) and acetic acid (8.35 ml, 150 mmol) in ethanol (5 ml). The reaction mixture was stirred at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-meth­oxy­benzene­sulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate: Hexane 2:8). The title compound was recrystallized from ethanol (Yield: 44%; M.pt: 394 K).

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, 0.97 Å and 0.93 Å for methyl-, methyl­ene- and aromatic-H, respectively, and with Uiso(H) = 1.5 Ueq for methyl-H and Uiso(H) = 1.2 Ueq for methyl­ene- and aromatic-H. The ester-O atom was rfined over two positions, O2A and O2B, in a 40:60 ratio.

Related literature top

For the biological activity of sulfonamides, see: Lohou et al. (2012); Salerno et al. (2012); Kaltenbach et al. (2003); Thangadurai et al. (2012); Abbassi et al. (2012). For similar compounds, see: Abbassi et al. (2013); Chicha et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial crystal packing for the title compound showing hydrogen bonds as dashed lines.
Ethyl 3-[7-(N-acetyl-4-methoxybenzenesulfonamido)-3-chloro-2H-indazol-2-yl]propionate top
Crystal data top
C21H22ClN3O6SZ = 2
Mr = 479.93F(000) = 500
Triclinic, P1Dx = 1.445 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1442 (3) ÅCell parameters from 6725 reflections
b = 9.4376 (4) Åθ = 2.4–30.5°
c = 14.0931 (6) ŵ = 0.31 mm1
α = 108.262 (2)°T = 296 K
β = 96.017 (2)°Block, colourless
γ = 103.313 (2)°0.38 × 0.32 × 0.27 mm
V = 1103.12 (8) Å3
Data collection top
Bruker X8 APEX
diffractometer
6725 independent reflections
Radiation source: fine-focus sealed tube4687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.700, Tmax = 0.746k = 1312
26786 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.2297P]
where P = (Fo2 + 2Fc2)/3
6725 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H22ClN3O6Sγ = 103.313 (2)°
Mr = 479.93V = 1103.12 (8) Å3
Triclinic, P1Z = 2
a = 9.1442 (3) ÅMo Kα radiation
b = 9.4376 (4) ŵ = 0.31 mm1
c = 14.0931 (6) ÅT = 296 K
α = 108.262 (2)°0.38 × 0.32 × 0.27 mm
β = 96.017 (2)°
Data collection top
Bruker X8 APEX
diffractometer
6725 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4687 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.746Rint = 0.030
26786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
6725 reflectionsΔρmin = 0.34 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0486 (3)0.8525 (3)0.54237 (17)0.0722 (6)
H1A1.04450.93080.60420.108*
H1B1.09230.90130.49750.108*
H1C1.11060.79030.55790.108*
C20.8924 (3)0.7528 (3)0.49251 (17)0.0745 (6)
H2A0.84740.70290.53730.089*
H2B0.82850.81500.47740.089*
C30.8483 (2)0.4891 (2)0.38663 (16)0.0538 (4)
C40.8705 (2)0.3834 (2)0.28825 (15)0.0522 (4)
H4A0.80130.28090.27260.063*
H4B0.97420.37430.29700.063*
C50.84382 (17)0.43617 (19)0.19883 (13)0.0449 (4)
H5A0.91640.53620.21220.054*
H5B0.86170.36250.13870.054*
C60.64292 (16)0.56845 (16)0.16545 (11)0.0358 (3)
C70.48449 (16)0.52038 (16)0.13433 (11)0.0345 (3)
C80.44533 (15)0.36588 (15)0.13440 (11)0.0327 (3)
C90.28989 (16)0.27675 (16)0.10605 (11)0.0355 (3)
C100.18252 (17)0.34113 (19)0.07555 (13)0.0435 (4)
H100.08040.28290.05510.052*
C110.2236 (2)0.4947 (2)0.07452 (13)0.0477 (4)
H110.14770.53470.05290.057*
C120.37178 (19)0.58583 (18)0.10434 (12)0.0429 (3)
H120.39730.68730.10480.051*
C130.25249 (17)0.01017 (17)0.03603 (12)0.0423 (3)
C140.3172 (2)0.01302 (19)0.05230 (13)0.0488 (4)
H14A0.40340.10380.02860.073*
H14B0.24050.02640.09810.073*
H14C0.34940.07610.08720.073*
C150.28344 (17)0.00934 (18)0.26812 (12)0.0426 (3)
C160.4413 (2)0.0666 (2)0.29788 (16)0.0613 (5)
H160.49280.15710.28870.074*
C170.5205 (2)0.0119 (3)0.34089 (19)0.0711 (6)
H170.62660.02480.35960.085*
C180.4447 (2)0.1454 (2)0.35699 (14)0.0516 (4)
C190.2880 (2)0.2002 (2)0.32867 (15)0.0548 (4)
H190.23600.28870.34000.066*
C200.20833 (19)0.1236 (2)0.28343 (16)0.0552 (5)
H200.10250.16200.26300.066*
C210.4639 (3)0.3534 (3)0.4150 (2)0.0850 (7)
H21A0.39280.33360.45970.127*
H21B0.54050.38920.44520.127*
H21C0.41030.43150.35100.127*
N10.68752 (13)0.44938 (14)0.17929 (9)0.0359 (3)
N20.56842 (13)0.32172 (13)0.16155 (10)0.0366 (3)
N30.24731 (14)0.12398 (13)0.11297 (10)0.0388 (3)
O10.90147 (18)0.63540 (16)0.39826 (10)0.0687 (4)
O2A0.827 (4)0.460 (2)0.4645 (11)0.074 (4)0.40 (5)
O2B0.763 (3)0.4365 (10)0.433 (2)0.097 (5)0.60 (5)
O30.20543 (16)0.13637 (13)0.04358 (10)0.0594 (3)
O40.21707 (17)0.26817 (15)0.28507 (11)0.0632 (4)
O50.02109 (13)0.02348 (18)0.18811 (13)0.0709 (4)
O60.53520 (17)0.21420 (19)0.39901 (13)0.0750 (4)
S10.17842 (4)0.11051 (5)0.21770 (4)0.04718 (12)
Cl10.76852 (5)0.74258 (5)0.18505 (4)0.05352 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0799 (15)0.0598 (12)0.0636 (13)0.0125 (11)0.0014 (11)0.0131 (10)
C20.0808 (15)0.0679 (14)0.0560 (12)0.0081 (11)0.0137 (11)0.0050 (10)
C30.0460 (9)0.0567 (11)0.0697 (12)0.0192 (8)0.0124 (8)0.0329 (9)
C40.0395 (8)0.0446 (9)0.0715 (12)0.0145 (7)0.0029 (8)0.0193 (8)
C50.0288 (7)0.0433 (8)0.0569 (10)0.0070 (6)0.0096 (6)0.0117 (7)
C60.0376 (7)0.0283 (7)0.0378 (7)0.0020 (5)0.0082 (6)0.0115 (5)
C70.0369 (7)0.0280 (6)0.0366 (7)0.0069 (5)0.0079 (6)0.0099 (5)
C80.0319 (7)0.0262 (6)0.0379 (7)0.0070 (5)0.0084 (5)0.0088 (5)
C90.0305 (6)0.0278 (6)0.0434 (8)0.0054 (5)0.0076 (6)0.0078 (5)
C100.0316 (7)0.0413 (8)0.0528 (9)0.0101 (6)0.0055 (6)0.0106 (7)
C110.0443 (9)0.0453 (9)0.0557 (10)0.0208 (7)0.0054 (7)0.0159 (7)
C120.0506 (9)0.0329 (7)0.0484 (9)0.0156 (6)0.0094 (7)0.0157 (6)
C130.0380 (8)0.0296 (7)0.0484 (9)0.0052 (6)0.0055 (6)0.0063 (6)
C140.0582 (10)0.0387 (8)0.0445 (9)0.0178 (7)0.0012 (7)0.0072 (7)
C150.0344 (7)0.0408 (8)0.0494 (9)0.0031 (6)0.0109 (6)0.0155 (7)
C160.0376 (9)0.0613 (12)0.0818 (14)0.0078 (8)0.0013 (9)0.0393 (10)
C170.0359 (9)0.0798 (15)0.0981 (16)0.0058 (9)0.0025 (9)0.0521 (13)
C180.0457 (9)0.0578 (11)0.0535 (10)0.0098 (8)0.0101 (7)0.0253 (8)
C190.0460 (9)0.0487 (10)0.0719 (12)0.0050 (7)0.0163 (8)0.0282 (9)
C200.0339 (8)0.0500 (10)0.0798 (13)0.0009 (7)0.0107 (8)0.0277 (9)
C210.0747 (15)0.0906 (18)0.117 (2)0.0263 (13)0.0257 (14)0.0693 (16)
N10.0290 (6)0.0305 (6)0.0447 (7)0.0029 (4)0.0062 (5)0.0124 (5)
N20.0291 (6)0.0274 (6)0.0511 (7)0.0045 (4)0.0076 (5)0.0130 (5)
N30.0328 (6)0.0280 (6)0.0501 (7)0.0027 (5)0.0085 (5)0.0102 (5)
O10.0901 (11)0.0518 (8)0.0469 (7)0.0014 (7)0.0122 (7)0.0092 (6)
O2A0.090 (8)0.069 (5)0.079 (5)0.023 (5)0.029 (5)0.044 (3)
O2B0.106 (9)0.078 (3)0.117 (9)0.013 (4)0.069 (8)0.041 (4)
O30.0734 (9)0.0294 (6)0.0623 (8)0.0020 (5)0.0003 (6)0.0112 (5)
O40.0792 (9)0.0511 (7)0.0686 (8)0.0254 (7)0.0410 (7)0.0198 (6)
O50.0303 (6)0.0794 (10)0.1197 (12)0.0092 (6)0.0205 (7)0.0597 (9)
O60.0554 (8)0.0882 (11)0.0985 (12)0.0154 (7)0.0105 (8)0.0603 (10)
S10.03440 (19)0.0441 (2)0.0676 (3)0.00900 (16)0.02084 (18)0.02352 (19)
Cl10.0495 (2)0.0355 (2)0.0679 (3)0.00609 (16)0.00440 (19)0.02249 (18)
Geometric parameters (Å, º) top
C1—C21.475 (3)C11—H110.9300
C1—H1A0.9600C12—H120.9300
C1—H1B0.9600C13—O31.2116 (19)
C1—H1C0.9600C13—N31.3996 (19)
C2—O11.464 (2)C13—C141.488 (2)
C2—H2A0.9700C14—H14A0.9600
C2—H2B0.9700C14—H14B0.9600
C3—O2B1.193 (6)C14—H14C0.9600
C3—O2A1.233 (10)C15—C201.377 (2)
C3—O11.305 (2)C15—C161.387 (2)
C3—C41.498 (3)C15—S11.7446 (18)
C4—C51.510 (3)C16—C171.370 (3)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—C181.389 (3)
C5—N11.4680 (19)C17—H170.9300
C5—H5A0.9700C18—O61.357 (2)
C5—H5B0.9700C18—C191.375 (2)
C6—N11.3413 (19)C19—C201.377 (3)
C6—C71.392 (2)C19—H190.9300
C6—Cl11.6959 (14)C20—H200.9300
C7—C121.410 (2)C21—O61.423 (3)
C7—C81.4194 (19)C21—H21A0.9600
C8—N21.3464 (18)C21—H21B0.9600
C8—C91.4168 (18)C21—H21C0.9600
C9—C101.367 (2)N1—N21.3602 (15)
C9—N31.4412 (18)N3—S11.6932 (14)
C10—C111.416 (2)O4—S11.4292 (13)
C10—H100.9300O5—S11.4260 (13)
C11—C121.367 (2)
C2—C1—H1A109.5C7—C12—H12121.2
C2—C1—H1B109.5O3—C13—N3120.00 (16)
H1A—C1—H1B109.5O3—C13—C14123.63 (15)
C2—C1—H1C109.5N3—C13—C14116.37 (13)
H1A—C1—H1C109.5C13—C14—H14A109.5
H1B—C1—H1C109.5C13—C14—H14B109.5
O1—C2—C1108.42 (19)H14A—C14—H14B109.5
O1—C2—H2A110.0C13—C14—H14C109.5
C1—C2—H2A110.0H14A—C14—H14C109.5
O1—C2—H2B110.0H14B—C14—H14C109.5
C1—C2—H2B110.0C20—C15—C16119.85 (17)
H2A—C2—H2B108.4C20—C15—S1119.72 (13)
O2B—C3—O2A30.9 (5)C16—C15—S1120.34 (13)
O2B—C3—O1126.8 (4)C17—C16—C15119.22 (16)
O2A—C3—O1116.2 (10)C17—C16—H16120.4
O2B—C3—C4119.1 (8)C15—C16—H16120.4
O2A—C3—C4128.4 (6)C16—C17—C18120.96 (17)
O1—C3—C4112.24 (16)C16—C17—H17119.5
C3—C4—C5114.43 (15)C18—C17—H17119.5
C3—C4—H4A108.7O6—C18—C19124.74 (17)
C5—C4—H4A108.7O6—C18—C17115.74 (16)
C3—C4—H4B108.7C19—C18—C17119.50 (18)
C5—C4—H4B108.7C18—C19—C20119.67 (16)
H4A—C4—H4B107.6C18—C19—H19120.2
N1—C5—C4111.86 (13)C20—C19—H19120.2
N1—C5—H5A109.2C19—C20—C15120.77 (15)
C4—C5—H5A109.2C19—C20—H20119.6
N1—C5—H5B109.2C15—C20—H20119.6
C4—C5—H5B109.2O6—C21—H21A109.5
H5A—C5—H5B107.9O6—C21—H21B109.5
N1—C6—C7108.02 (12)H21A—C21—H21B109.5
N1—C6—Cl1122.44 (11)O6—C21—H21C109.5
C7—C6—Cl1129.55 (12)H21A—C21—H21C109.5
C6—C7—C12135.94 (14)H21B—C21—H21C109.5
C6—C7—C8102.85 (13)C6—N1—N2112.93 (12)
C12—C7—C8121.18 (13)C6—N1—C5128.36 (12)
N2—C8—C9127.74 (13)N2—N1—C5118.31 (12)
N2—C8—C7112.71 (12)C8—N2—N1103.47 (11)
C9—C8—C7119.54 (13)C13—N3—C9123.30 (13)
C10—C9—C8118.45 (13)C13—N3—S1120.09 (11)
C10—C9—N3121.44 (13)C9—N3—S1116.51 (10)
C8—C9—N3120.08 (13)C3—O1—C2118.52 (17)
C9—C10—C11121.33 (14)C18—O6—C21118.14 (16)
C9—C10—H10119.3O5—S1—O4118.40 (9)
C11—C10—H10119.3O5—S1—N3109.15 (8)
C12—C11—C10121.85 (15)O4—S1—N3103.71 (7)
C12—C11—H11119.1O5—S1—C15109.27 (8)
C10—C11—H11119.1O4—S1—C15109.37 (9)
C11—C12—C7117.60 (14)N3—S1—C15106.18 (7)
C11—C12—H12121.2
O2B—C3—C4—C5126 (2)C7—C6—N1—C5171.20 (14)
O2A—C3—C4—C5161.7 (19)Cl1—C6—N1—C58.9 (2)
O1—C3—C4—C539.5 (2)C4—C5—N1—C6130.76 (16)
C3—C4—C5—N159.63 (19)C4—C5—N1—N257.11 (18)
N1—C6—C7—C12176.92 (16)C9—C8—N2—N1179.12 (14)
Cl1—C6—C7—C123.2 (3)C7—C8—N2—N10.16 (16)
N1—C6—C7—C81.25 (15)C6—N1—N2—C80.70 (16)
Cl1—C6—C7—C8178.68 (12)C5—N1—N2—C8172.61 (13)
C6—C7—C8—N20.88 (16)O3—C13—N3—C9175.04 (14)
C12—C7—C8—N2177.63 (13)C14—C13—N3—C94.8 (2)
C6—C7—C8—C9179.94 (13)O3—C13—N3—S11.2 (2)
C12—C7—C8—C91.4 (2)C14—C13—N3—S1179.00 (11)
N2—C8—C9—C10176.42 (14)C10—C9—N3—C1397.10 (18)
C7—C8—C9—C102.5 (2)C8—C9—N3—C1385.05 (18)
N2—C8—C9—N35.7 (2)C10—C9—N3—S179.22 (17)
C7—C8—C9—N3175.44 (12)C8—C9—N3—S198.63 (14)
C8—C9—C10—C111.6 (2)O2B—C3—O1—C218 (2)
N3—C9—C10—C11176.25 (14)O2A—C3—O1—C216.5 (14)
C9—C10—C11—C120.4 (3)C4—C3—O1—C2178.05 (17)
C10—C11—C12—C71.5 (2)C1—C2—O1—C3121.8 (2)
C6—C7—C12—C11177.37 (16)C19—C18—O6—C210.2 (3)
C8—C7—C12—C110.5 (2)C17—C18—O6—C21178.6 (2)
C20—C15—C16—C171.0 (3)C13—N3—S1—O563.19 (14)
S1—C15—C16—C17177.49 (17)C9—N3—S1—O5113.25 (12)
C15—C16—C17—C181.4 (3)C13—N3—S1—O4169.72 (12)
C16—C17—C18—O6179.3 (2)C9—N3—S1—O413.83 (13)
C16—C17—C18—C190.5 (3)C13—N3—S1—C1554.49 (13)
O6—C18—C19—C20177.76 (18)C9—N3—S1—C15129.06 (11)
C17—C18—C19—C200.9 (3)C20—C15—S1—O56.70 (18)
C18—C19—C20—C151.4 (3)C16—C15—S1—O5176.77 (16)
C16—C15—C20—C190.4 (3)C20—C15—S1—O4124.38 (15)
S1—C15—C20—C19176.12 (15)C16—C15—S1—O452.16 (17)
C7—C6—N1—N21.29 (17)C20—C15—S1—N3124.30 (15)
Cl1—C6—N1—N2178.64 (10)C16—C15—S1—N359.16 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.972.583.438 (3)148
C21—H21A···O2Bii0.962.443.273 (7)144
C21—H21A···O2Aii0.962.603.43 (2)145
C2—H2B···O6iii0.972.713.510 (3)140
C14—H14C···N2iv0.962.553.501 (2)173
C14—H14B···O5v0.962.453.348 (2)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.972.583.438 (3)148
C21—H21A···O2Bii0.962.443.273 (7)144
C21—H21A···O2Aii0.962.603.43 (2)145
C2—H2B···O6iii0.972.713.510 (3)140
C14—H14C···N2iv0.962.553.501 (2)173
C14—H14B···O5v0.962.453.348 (2)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaltenbach, R. F., Patel, M., Waltermire, R. E., Harris, G. D., Stone, B. R. P., Klabe, R. M., Garber, S., Bacheler, L. T., Cordova, B. C., Logue, K., Wright, M. R., Erickson-Viitanen, S. & Trainor, G. L. (2003). Bioorg. Med. Chem. Lett. 13, 605–686.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLohou, E., Sopkova, J., Schumann, P., Boulouard, M., Stiebing, S., Rault, S. & Collot, V. (2012). Bioorg. Med. Chem. 20, 5296–5304.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSalerno, L., Modica, M. N., Romeo, G., Pittala, V., Siracusa, M. A., Amato, M. E., Acquaviva, R., Di Giacomo, C. & Sorrenti, V. (2012). Eur. J. Med. Chem. 49, 118–126.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThangadurai, A., Minu, M., Wakode, S., Agrawal, S. & Narasimhan, B. (2012). Med. Chem. Res. 21, 1509–1523.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o307-o308
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds