organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o338-o339

Methyl 1-benzyl-5-methyl-2,4-di­phenyl-1H-pyrrole-3-carboxyl­ate

aDepartment of Chemistry, Dartmouth College, Hanover, New Hampshire 03755-3564, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 12 February 2014; accepted 13 February 2014; online 22 February 2014)

In the title compound, C26H23NO2, the dihedral angles between the pyrrole ring and the two phenyl rings are 58.1 (6) and 71.5 (5)°. The mean planes of the 5-methyl­benzene ring and the carboxyl group are twisted by 89.5 (3) and 22.1 (9)°, respectively, from the pyrrole ring. In the crystal, weak C—H⋯O inter­actions lead to supra­molecular layers in the ab plane.

Related literature

For previous münchnone-based approaches to atorvastatin, see: Pandey & Rao (2004[Pandey, P. S. & Rao, T. S. (2004). Bioorg. Med. Chem. Lett. 14, 129-131.]); Park et al. (2008[Park, W. K. C., Kennedy, R. M., Larsen, S. D., Miller, S., Roth, B. D., Song, Y., Steinbaugh, B. A., Sun, K., Tait, B. D., Kowala, M. C., Trivedi, B. K., Auerbach, B., Askew, V., Dillon, L., Hanselman, J. C., Lin, Z., Lu, G. H., Robertson, A. & Sekerke, C. (2008). Bioorg. Med. Chem. Lett. 18, 1151-1156.]); Roth et al. (1991[Roth, B. D., Blankley, C. J., Chucholowski, A. W., Ferguson, E., Hoefle, M. L., Ortwine, D. F., Newton, R. S., Sekerke, C. S., Sliskovic, D. R., Stratton, C. D. & Wilson, M. W. (1991). J. Med. Chem. 34, 357-366.]). For other examples of the synthesis of pyrroles via 1,3-dipolar cyclo­additions with münchnones, see: Lopchuk & Gribble (2011a[Lopchuk, J. M. & Gribble, G. W. (2011a). Heterocycles, 82, 1617-1631.],b[Lopchuk, J. M. & Gribble, G. W. (2011b). Tetrahedron Lett. 52, 4106-4108.]); Lopchuk et al. (2013[Lopchuk, J. M., Hughes, R. P. & Gribble, G. W. (2013). Org. Lett. 15, 5218-5221.]). For related crystal structures, see: Grassi et al. (2002[Grassi, G., Cordaro, M., Bruno, G. & Nicolo, F. (2002). Helv. Chim. Acta, 85, 196-205.]); Fang et al. (2012[Fang, Z., Yuan, H., Liu, Y., Tong, Z., Li, H., Yang, J., Barry, B.-D., Liu, J., Liao, P., Zhang, J., Liu, Q. & Bi, X. (2012). Chem. Commun. 48, 8802-8804.]); Donohoe et al. (2010[Donohoe, T. J., Race, N. J., Bower, J. F. & Callens, C. K. A. (2010). Org. Lett. 12, 4094-4097.]); Sun et al. (2004[Sun, X., Wang, C., Li, Z., Zhang, S. & Xi, Z. (2004). J. Am. Chem. Soc. 126, 7172-7173.]); Zhang et al. (2011[Zhang, S., Zhao, J., Zhang, W.-X. & Xi, Z. (2011). Org. Lett. 13, 1626-1629.]).

[Scheme 1]

Experimental

Crystal data
  • C26H23NO2

  • Mr = 381.45

  • Orthorhombic, P 21 21 21

  • a = 8.8056 (2) Å

  • b = 10.6638 (2) Å

  • c = 21.8315 (5) Å

  • V = 2050.00 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.12 mm

Data collection
  • Agilent Xcalibur (Eos Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.720, Tmax = 1.000

  • 12873 measured reflections

  • 3991 independent reflections

  • 3525 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.06

  • 3991 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack parameter determined using 1348 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.02 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O1i 0.99 2.56 3.177 (3) 120
C26—H26A⋯O2ii 0.98 2.59 3.383 (3) 138
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

During the course of our studies toward a total synthesis of atorvastatin, methyl 1-benzyl-5-methyl-2,4-di­phenyl-1H-pyrrole-3-carboxyl­ate (I), a penta­substituted pyrrole, was generated from the reaction of a münchnone with methyl 3-phenyl­propiolate. Previously published work on münchnone-based routes toward atorvastatin found that the key münchnone cyclo­additions were either low yielding or unselective and delivered 1:1 mixtures of regioisomers (Pandey et al., 2004; Park et al., 2008; Roth et al., 1991). However, our recent studies on the 1,3-dipolar cyclo­addition of münchnones showed that high regioselectivies can be obtained by proper selection and combination of the münchnone, dipolarophile, and solvent (Lopchuk et al., 2011a, Lopchuk et al., 2011b; Lopchuk et al., 2013).

A variety of related highly substituted pyrrole crystal structures have been reported including N-((2-methyl-4,5-di­phenyl-1H-pyrrole-3-carbonyl)­oxy)benzamide (Grassi et al., 2002), N,1,5-tri­benzyl-4-(2-chloro­phenyl)-2-methyl-1H-pyrrole-3-carbo­thio­amide (Fang et al., 2012), 1-(2-benzyl-5-iso­propyl-4-phenyl-1H-pyrrol-3-yl)-2-methyl­propan-1-one (Sun et al., 2004), 5-(4-fluoro­phenyl)-2-iso­propyl-N,4-di­phenyl-1H-pyrrole-3-carboxamide (Donohoe et al., 2010), and 1-(2-benzoyl-5-iso­propyl-4-phenyl-1H-pyrrol-3-yl)-2-methyl­propan-1-one (Zhang et al., 2011). In continuation of our work on münchnone-based routes this paper reports the crystal structure of the title compound, (I), C26H23NO2,

In (I), the dihedral angles between the mean planes of the two phenyl rings (C5–C10 and C11–C16) with that of the pyrrole ring (N1/C1–C4) are 58.1 (6) and 71.5 (5)°, respectively (Fig. 1). The mean planes of the 5-methyl benzene ring (C18–C23) and carboxyl group (O1/O2/C24/C25) are also twisted by 89.5 (3) and 22.1 (9)°, respectively, from that of the pyrrole ring. In the crystal, while no classical hydrogen bonds are observed, weak C—H···O inter­molecular inter­actions are observed (Table 1) which lead to supra­molecular layers in the ab plane.

Synthesis and crystallization top

A round bottom flask was charged with N-benzoyl-N-benzyl­alanine (424 mg, 1.5 mmol), methyl 3-phenyl­propiolate (80 mg, 0.5 mmol), and dry THF (20 ml). The reaction was placed under nitro­gen and N,N'-diiso­propyl­carbodi­imide (234 ml, 1.5 mmol) added at room temperature. The mixture was heated to reflux for 24 h (Fig. 2). The reaction was cooled to room temperature and concentrated in vacuo. The residue was directly purified by flash chromatography to afford pyrrole I as a clear, colorless oil which solidified upon standing (158 mg, 83%). Pyrrole I was obtained as the major isomer (96:4 ratio of I:II). Single crystals suitable for diffraction were grown from di­chloro­methane (slow evaporation) at ambient temperature [M.pt. 454- 455 K].

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95 Å (CH), 0.99 Å (CH2) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealized methyl groups were refined as rotating.

Related literature top

For previous münchnone-based approaches to atorvastatin, see: Pandey & Rao (2004); Park et al. (2008); Roth et al. (1991). For other examples of the synthesis of pyrroles via 1,3-dipolar cycloadditions with münchnones, see: Lopchuk & Gribble (2011a,b); Lopchuk et al. (2013). For related crystal structures, see: Grassi et al. (2002); Fang et al. (2012); Donohoe et al. (2010); Sun et al. (2004); Zhang et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I), C26H23NO2, showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Reaction scheme for C26H23NO2.
Methyl 1-benzyl-5-methyl-2,4-diphenyl-1H-pyrrole-3-carboxylate top
Crystal data top
C26H23NO2Dx = 1.236 Mg m3
Mr = 381.45Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 4659 reflections
a = 8.8056 (2) Åθ = 4.1–72.4°
b = 10.6638 (2) ŵ = 0.61 mm1
c = 21.8315 (5) ÅT = 173 K
V = 2050.00 (8) Å3Irregular, colourless
Z = 40.28 × 0.22 × 0.12 mm
F(000) = 808
Data collection top
Agilent Xcalibur (Eos Gemini)
diffractometer
3991 independent reflections
Radiation source: Enhance (Cu) X-ray Source3525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0416 pixels mm-1θmax = 72.6°, θmin = 4.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1311
Tmin = 0.720, Tmax = 1.000l = 2626
12873 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0691P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.24 e Å3
3991 reflectionsΔρmin = 0.20 e Å3
264 parametersAbsolute structure: Flack parameter determined using 1348 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (18)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H23NO2V = 2050.00 (8) Å3
Mr = 381.45Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.8056 (2) ŵ = 0.61 mm1
b = 10.6638 (2) ÅT = 173 K
c = 21.8315 (5) Å0.28 × 0.22 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos Gemini)
diffractometer
3991 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3525 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 1.000Rint = 0.041
12873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.24 e Å3
S = 1.06Δρmin = 0.20 e Å3
3991 reflectionsAbsolute structure: Flack parameter determined using 1348 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
264 parametersAbsolute structure parameter: 0.02 (18)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9445 (2)0.4206 (2)0.84521 (12)0.0598 (7)
O20.7077 (2)0.43820 (19)0.87973 (9)0.0393 (5)
N10.7361 (2)0.1689 (2)0.72021 (10)0.0315 (5)
C10.6106 (3)0.1444 (2)0.75598 (12)0.0309 (5)
C20.6162 (3)0.2209 (2)0.80673 (12)0.0286 (5)
C30.7518 (3)0.2943 (2)0.80125 (11)0.0288 (5)
C40.8227 (3)0.2603 (2)0.74693 (12)0.0310 (6)
C50.5074 (3)0.2152 (2)0.85815 (12)0.0307 (5)
C60.3528 (3)0.2348 (3)0.84848 (13)0.0366 (6)
H60.31740.25540.80860.044*
C70.2498 (3)0.2246 (3)0.89631 (15)0.0451 (7)
H70.14480.23850.88900.054*
C80.2991 (4)0.1945 (3)0.95452 (15)0.0467 (7)
H80.22840.18610.98710.056*
C90.4528 (4)0.1765 (3)0.96491 (14)0.0458 (7)
H90.48760.15731.00500.055*
C100.5561 (3)0.1864 (3)0.91732 (13)0.0369 (6)
H100.66110.17340.92500.044*
C110.9580 (3)0.3149 (2)0.71660 (11)0.0319 (6)
C120.9505 (3)0.4354 (3)0.69197 (14)0.0402 (6)
H120.85800.48110.69380.048*
C131.0765 (4)0.4889 (3)0.66490 (15)0.0437 (7)
H131.07060.57150.64880.052*
C141.2107 (3)0.4232 (3)0.66111 (13)0.0413 (7)
H141.29720.46040.64250.050*
C151.2193 (3)0.3033 (3)0.68443 (14)0.0419 (7)
H151.31140.25730.68130.050*
C161.0935 (3)0.2494 (3)0.71249 (14)0.0386 (6)
H161.10050.16720.72900.046*
C170.7718 (3)0.1039 (3)0.66289 (12)0.0355 (6)
H17A0.75080.01340.66840.043*
H17B0.88180.11310.65460.043*
C180.6847 (3)0.1500 (3)0.60767 (13)0.0357 (6)
C190.6183 (4)0.2672 (3)0.60486 (15)0.0450 (7)
H190.62250.32130.63940.054*
C200.5454 (4)0.3065 (4)0.55163 (18)0.0598 (9)
H200.50000.38730.55000.072*
C210.5387 (5)0.2287 (4)0.50119 (17)0.0668 (11)
H210.48880.25550.46490.080*
C220.6049 (5)0.1122 (4)0.50404 (16)0.0688 (11)
H220.60160.05850.46940.083*
C230.6765 (4)0.0727 (3)0.55703 (15)0.0529 (8)
H230.72050.00860.55860.063*
C240.8137 (3)0.3888 (2)0.84308 (12)0.0316 (5)
C250.7587 (4)0.5348 (3)0.92114 (14)0.0446 (7)
H25A0.79740.60610.89750.067*
H25B0.83970.50160.94730.067*
H25C0.67360.56230.94670.067*
C260.5022 (3)0.0412 (3)0.73991 (14)0.0387 (6)
H26A0.46060.05600.69890.058*
H26B0.41920.03940.76980.058*
H26C0.55580.03930.74050.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0366 (12)0.0751 (16)0.0676 (15)0.0174 (11)0.0058 (11)0.0342 (14)
O20.0370 (11)0.0398 (11)0.0411 (10)0.0007 (8)0.0007 (8)0.0131 (9)
N10.0321 (11)0.0329 (11)0.0294 (11)0.0004 (9)0.0020 (8)0.0042 (9)
C10.0296 (12)0.0307 (13)0.0324 (13)0.0007 (10)0.0031 (10)0.0002 (10)
C20.0284 (12)0.0276 (12)0.0299 (12)0.0008 (10)0.0038 (10)0.0016 (10)
C30.0283 (12)0.0273 (12)0.0308 (12)0.0015 (10)0.0030 (10)0.0002 (10)
C40.0301 (13)0.0303 (13)0.0325 (13)0.0006 (10)0.0016 (10)0.0015 (10)
C50.0318 (13)0.0263 (12)0.0339 (13)0.0025 (10)0.0008 (10)0.0031 (10)
C60.0329 (14)0.0388 (15)0.0382 (15)0.0016 (11)0.0021 (11)0.0008 (12)
C70.0303 (14)0.0480 (18)0.0569 (19)0.0003 (13)0.0058 (13)0.0027 (14)
C80.0483 (17)0.0467 (17)0.0452 (17)0.0068 (13)0.0180 (14)0.0043 (14)
C90.0546 (19)0.0511 (18)0.0317 (14)0.0035 (15)0.0047 (13)0.0018 (13)
C100.0349 (14)0.0403 (15)0.0354 (14)0.0021 (12)0.0004 (11)0.0008 (11)
C110.0321 (13)0.0350 (14)0.0285 (12)0.0026 (10)0.0000 (10)0.0051 (10)
C120.0409 (15)0.0354 (15)0.0443 (15)0.0004 (12)0.0041 (12)0.0057 (13)
C130.0517 (18)0.0359 (16)0.0436 (16)0.0072 (12)0.0050 (14)0.0007 (12)
C140.0412 (16)0.0508 (17)0.0320 (13)0.0128 (12)0.0068 (11)0.0053 (13)
C150.0316 (15)0.0529 (17)0.0413 (15)0.0013 (12)0.0022 (11)0.0034 (13)
C160.0351 (14)0.0402 (15)0.0406 (15)0.0010 (11)0.0015 (11)0.0052 (12)
C170.0365 (14)0.0373 (14)0.0328 (13)0.0038 (11)0.0005 (11)0.0079 (11)
C180.0338 (14)0.0413 (15)0.0319 (14)0.0047 (12)0.0047 (10)0.0002 (11)
C190.0449 (16)0.0459 (18)0.0443 (16)0.0021 (14)0.0027 (13)0.0018 (13)
C200.058 (2)0.062 (2)0.060 (2)0.0049 (17)0.0040 (17)0.0243 (18)
C210.069 (2)0.094 (3)0.0374 (17)0.016 (2)0.0051 (16)0.0245 (19)
C220.086 (3)0.090 (3)0.0295 (16)0.013 (2)0.0009 (17)0.0045 (17)
C230.064 (2)0.058 (2)0.0362 (15)0.0005 (16)0.0042 (14)0.0082 (15)
C240.0309 (13)0.0313 (13)0.0325 (13)0.0025 (10)0.0015 (10)0.0001 (11)
C250.0581 (19)0.0387 (16)0.0369 (15)0.0006 (14)0.0044 (14)0.0110 (12)
C260.0351 (14)0.0369 (14)0.0440 (16)0.0066 (11)0.0027 (12)0.0084 (12)
Geometric parameters (Å, º) top
O1—C241.202 (3)C13—H130.9500
O2—C241.337 (3)C13—C141.376 (4)
O2—C251.442 (3)C14—H140.9500
N1—C11.379 (3)C14—C151.378 (4)
N1—C41.368 (3)C15—H150.9500
N1—C171.465 (3)C15—C161.390 (4)
C1—C21.377 (4)C16—H160.9500
C1—C261.499 (4)C17—H17A0.9900
C2—C31.433 (3)C17—H17B0.9900
C2—C51.477 (4)C17—C181.511 (4)
C3—C41.388 (4)C18—C191.381 (4)
C3—C241.465 (4)C18—C231.381 (4)
C4—C111.482 (4)C19—H190.9500
C5—C61.394 (4)C19—C201.392 (5)
C5—C101.395 (4)C20—H200.9500
C6—H60.9500C20—C211.380 (6)
C6—C71.387 (4)C21—H210.9500
C7—H70.9500C21—C221.374 (6)
C7—C81.381 (5)C22—H220.9500
C8—H80.9500C22—C231.383 (5)
C8—C91.385 (5)C23—H230.9500
C9—H90.9500C25—H25A0.9800
C9—C101.385 (4)C25—H25B0.9800
C10—H100.9500C25—H25C0.9800
C11—C121.394 (4)C26—H26A0.9800
C11—C161.386 (4)C26—H26B0.9800
C12—H120.9500C26—H26C0.9800
C12—C131.381 (4)
C24—O2—C25116.0 (2)C14—C15—H15119.9
C1—N1—C17124.5 (2)C14—C15—C16120.2 (3)
C4—N1—C1109.9 (2)C16—C15—H15119.9
C4—N1—C17125.6 (2)C11—C16—C15120.4 (3)
N1—C1—C26121.2 (2)C11—C16—H16119.8
C2—C1—N1108.3 (2)C15—C16—H16119.8
C2—C1—C26130.3 (3)N1—C17—H17A108.6
C1—C2—C3106.6 (2)N1—C17—H17B108.6
C1—C2—C5124.3 (2)N1—C17—C18114.8 (2)
C3—C2—C5128.8 (2)H17A—C17—H17B107.5
C2—C3—C24129.3 (2)C18—C17—H17A108.6
C4—C3—C2107.7 (2)C18—C17—H17B108.6
C4—C3—C24123.0 (2)C19—C18—C17123.0 (3)
N1—C4—C3107.4 (2)C23—C18—C17118.1 (3)
N1—C4—C11122.5 (2)C23—C18—C19118.9 (3)
C3—C4—C11129.8 (2)C18—C19—H19119.9
C6—C5—C2120.8 (2)C18—C19—C20120.3 (3)
C6—C5—C10118.2 (2)C20—C19—H19119.9
C10—C5—C2120.9 (2)C19—C20—H20119.8
C5—C6—H6119.6C21—C20—C19120.3 (4)
C7—C6—C5120.9 (3)C21—C20—H20119.8
C7—C6—H6119.6C20—C21—H21120.4
C6—C7—H7119.8C22—C21—C20119.3 (3)
C8—C7—C6120.3 (3)C22—C21—H21120.4
C8—C7—H7119.8C21—C22—H22119.8
C7—C8—H8120.3C21—C22—C23120.5 (4)
C7—C8—C9119.4 (3)C23—C22—H22119.8
C9—C8—H8120.3C18—C23—C22120.7 (4)
C8—C9—H9119.7C18—C23—H23119.6
C10—C9—C8120.5 (3)C22—C23—H23119.6
C10—C9—H9119.7O1—C24—O2122.4 (3)
C5—C10—H10119.7O1—C24—C3125.0 (3)
C9—C10—C5120.6 (3)O2—C24—C3112.6 (2)
C9—C10—H10119.7O2—C25—H25A109.5
C12—C11—C4119.8 (2)O2—C25—H25B109.5
C16—C11—C4121.5 (2)O2—C25—H25C109.5
C16—C11—C12118.7 (3)H25A—C25—H25B109.5
C11—C12—H12119.7H25A—C25—H25C109.5
C13—C12—C11120.5 (3)H25B—C25—H25C109.5
C13—C12—H12119.7C1—C26—H26A109.5
C12—C13—H13119.8C1—C26—H26B109.5
C14—C13—C12120.4 (3)C1—C26—H26C109.5
C14—C13—H13119.8H26A—C26—H26B109.5
C13—C14—H14120.1H26A—C26—H26C109.5
C13—C14—C15119.8 (3)H26B—C26—H26C109.5
C15—C14—H14120.1
N1—C1—C2—C30.3 (3)C5—C2—C3—C244.4 (4)
N1—C1—C2—C5175.1 (2)C5—C6—C7—C80.2 (5)
N1—C4—C11—C12105.7 (3)C6—C5—C10—C90.5 (4)
N1—C4—C11—C1674.9 (4)C6—C7—C8—C91.1 (5)
N1—C17—C18—C1921.3 (4)C7—C8—C9—C101.2 (5)
N1—C17—C18—C23161.1 (3)C8—C9—C10—C50.4 (5)
C1—N1—C4—C30.5 (3)C10—C5—C6—C70.6 (4)
C1—N1—C4—C11174.4 (2)C11—C12—C13—C140.9 (5)
C1—N1—C17—C1880.0 (3)C12—C11—C16—C150.1 (4)
C1—C2—C3—C40.6 (3)C12—C13—C14—C150.0 (5)
C1—C2—C3—C24179.0 (3)C13—C14—C15—C160.9 (4)
C1—C2—C5—C659.7 (4)C14—C15—C16—C110.8 (5)
C1—C2—C5—C10118.3 (3)C16—C11—C12—C131.0 (4)
C2—C3—C4—N10.7 (3)C17—N1—C1—C2178.6 (2)
C2—C3—C4—C11173.8 (3)C17—N1—C1—C263.4 (4)
C2—C3—C24—O1157.7 (3)C17—N1—C4—C3178.2 (2)
C2—C3—C24—O222.4 (4)C17—N1—C4—C116.9 (4)
C2—C5—C6—C7177.4 (3)C17—C18—C19—C20177.1 (3)
C2—C5—C10—C9177.5 (3)C17—C18—C23—C22176.7 (3)
C3—C2—C5—C6126.6 (3)C18—C19—C20—C210.0 (5)
C3—C2—C5—C1055.4 (4)C19—C18—C23—C220.9 (5)
C3—C4—C11—C1267.9 (4)C19—C20—C21—C220.1 (6)
C3—C4—C11—C16111.5 (3)C20—C21—C22—C230.6 (6)
C4—N1—C1—C20.1 (3)C21—C22—C23—C181.0 (6)
C4—N1—C1—C26175.3 (2)C23—C18—C19—C200.4 (5)
C4—N1—C17—C18101.5 (3)C24—C3—C4—N1178.9 (2)
C4—C3—C24—O121.8 (4)C24—C3—C4—C116.7 (4)
C4—C3—C24—O2158.1 (2)C25—O2—C24—O11.6 (4)
C4—C11—C12—C13178.4 (3)C25—O2—C24—C3178.3 (2)
C4—C11—C16—C15179.3 (3)C26—C1—C2—C3174.3 (3)
C5—C2—C3—C4175.1 (2)C26—C1—C2—C50.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.992.563.177 (3)120
C26—H26A···O2ii0.982.593.383 (3)138
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.992.563.177 (3)120
C26—H26A···O2ii0.982.593.383 (3)138
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

JML acknowledges support from a Graduate Assistance in Areas of National Need (GAANN) fellowship. GWG acknowledges support by the Donors of the Petroleum Research Fund (PRF), administered by the American Chemical Society, and by Wyeth. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonohoe, T. J., Race, N. J., Bower, J. F. & Callens, C. K. A. (2010). Org. Lett. 12, 4094–4097.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFang, Z., Yuan, H., Liu, Y., Tong, Z., Li, H., Yang, J., Barry, B.-D., Liu, J., Liao, P., Zhang, J., Liu, Q. & Bi, X. (2012). Chem. Commun. 48, 8802–8804.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrassi, G., Cordaro, M., Bruno, G. & Nicolo, F. (2002). Helv. Chim. Acta, 85, 196–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationLopchuk, J. M. & Gribble, G. W. (2011a). Heterocycles, 82, 1617–1631.  CAS Google Scholar
First citationLopchuk, J. M. & Gribble, G. W. (2011b). Tetrahedron Lett. 52, 4106–4108.  Web of Science CrossRef CAS Google Scholar
First citationLopchuk, J. M., Hughes, R. P. & Gribble, G. W. (2013). Org. Lett. 15, 5218–5221.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPandey, P. S. & Rao, T. S. (2004). Bioorg. Med. Chem. Lett. 14, 129–131.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPark, W. K. C., Kennedy, R. M., Larsen, S. D., Miller, S., Roth, B. D., Song, Y., Steinbaugh, B. A., Sun, K., Tait, B. D., Kowala, M. C., Trivedi, B. K., Auerbach, B., Askew, V., Dillon, L., Hanselman, J. C., Lin, Z., Lu, G. H., Robertson, A. & Sekerke, C. (2008). Bioorg. Med. Chem. Lett. 18, 1151–1156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRoth, B. D., Blankley, C. J., Chucholowski, A. W., Ferguson, E., Hoefle, M. L., Ortwine, D. F., Newton, R. S., Sekerke, C. S., Sliskovic, D. R., Stratton, C. D. & Wilson, M. W. (1991). J. Med. Chem. 34, 357–366.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Wang, C., Li, Z., Zhang, S. & Xi, Z. (2004). J. Am. Chem. Soc. 126, 7172–7173.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, S., Zhao, J., Zhang, W.-X. & Xi, Z. (2011). Org. Lett. 13, 1626–1629.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o338-o339
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds