organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Prop-2-yn­yl)indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bInstitut National des Plantes Médicinales et Aromatiques, Université Sidi Mohamed Ben Abdallah, BP 2202 Fès, Morocco, cX-Ray Structure Analysis Unit, University of Regensburg, D-93053 Regensburg, Germany, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: fatimazahrae_qachchachi@yahoo.fr

(Received 19 February 2014; accepted 20 February 2014; online 26 February 2014)

The structure of the title compound, C11H7NO2, is isotypic to that of its homologue, 1-octylindoline-2,3-dione [Qachchachi et al. (2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.]). Acta Cryst. E69, o1801]. The indoline ring and the two carbonyl O atoms are approximately coplanar, the largest deviation from the mean plane being 0.021 (1) Å for one of the O atoms. The mean plane through the fused ring system is nearly perpendicular to the propynyl group, as indicated by the N—C—C—C torsion angle of 77.9 (1)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and ππ inter­actions between benzene rings [inter­centroid distance = 3.5630 (10) Å], forming a three-dimensional structure.

Related literature

For the biological activity of indoline derivatives, see: Malhotra et al. (2011[Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743-751.]); Ramachandran (2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem., 1, 289-294.]); Smitha et al. (2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]). For the structure of 1-octylindoline-2,3-dione, see: Qachchachi et al. (2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.]).

[Scheme 1]

Experimental

Crystal data
  • C11H7NO2

  • Mr = 185.18

  • Triclinic, [P \overline 1]

  • a = 7.0939 (7) Å

  • b = 7.9452 (7) Å

  • c = 8.5658 (6) Å

  • α = 80.464 (7)°

  • β = 85.760 (7)°

  • γ = 63.881 (9)°

  • V = 427.50 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 123 K

  • 0.15 × 0.13 × 0.02 mm

Data collection
  • Agilent SuperNova (Single source at offset, Atlas) diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.910, Tmax = 0.981

  • 3081 measured reflections

  • 1627 independent reflections

  • 1438 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.07

  • 1627 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.95 2.62 3.3901 (17) 139
C9—H9A⋯O1ii 0.99 2.61 3.4747 (18) 146
C9—H9B⋯O2iii 0.99 2.37 3.2987 (17) 156
Symmetry codes: (i) -x+1, -y-1, -z; (ii) x, y+1, z; (iii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Isatin (1H-indole-2,3-dione) is a synthetically versatile substrate,used for the synthesis of a large variety of heterocyclic compounds, such as indoles and quinolines, and as a raw material for drug synthesis. Isatin has also been found in mammalian tissues, and its function as a modulator of biochemical processes has been the subject of several discussions. Isatin and its derivatives have aroused great attention in recent years due to their wide variety of biological activities, relevant to application as insecticides and fungicides and in a broad range of drug therapies, including as anti-cancer agents, anti-biotics and anti-depressants (Malhotra et al., 2011; Ramachandran, 2011; Smitha et al., 2008). In our work, we are inter­ested in developing a new isatin derivative with the addition of alkyl halides to explore other applications (Scheme 1).

The molecule of title compound is build up from a fused five- and six-membered rings linked, to the propynyl chain and to two carbonyl group O atoms as shown in Fig. 1. The indoline ring and the two carbonyl O atoms are nearly co-planar, with the largest deviation from the mean plane being 0.021 (1) Å for the O1 atom. The fused ring system plan is nearly perpendicular to the the propynyl chain as indicated by N1—C9—C10—C11 torsion angle of 77.9 (1)°. The structure of the title compound is similar to that of its homologue 1-octylindoline-2,3-dione (Qachchachi et al., 2013).

In the crystal, the molecules are linked by C—H···O1 hydrogen bonds, Table 1 and Fig. 2, to form layers in hte bc plane. Layers are connected by ππ inter­actions between centrosymmetrically related benzene rings [3.5630 (10) Å; symmetry operation: -x, -y, -z] in the way to build a three-dimensional network.

Synthesis and crystallization top

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (30 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic qu­antity of tetra-n- butyl­ammonium (0.1 g, 0.4 mmol) and 3-bromo­prop-1-yne (0.3 ml, 3.7 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as red crystals in 88% yield (M.pt: 423 K).

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.95 Å (aromatic, acetyl­enic) and C—H = 0.99 Å (methyl­ene), and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (aromatic, acetyl­enic and methyl­ene).

Related literature top

For the biological activity of indoline derivatives, see: Malhotra et al. (2011); Ramachandran (2011); Smitha et al. (2008). For the structure of 1-octylindoline-2,3-dione, see: Qachchachi et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular hydrogen interactions in the title compound. Hydrogen bonds are shown as dashed lines.
1-(Prop-2-ynyl)indoline-2,3-dione top
Crystal data top
C11H7NO2Z = 2
Mr = 185.18F(000) = 192
Triclinic, P1Dx = 1.439 Mg m3
Hall symbol: -P 1Melting point: 423 K
a = 7.0939 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.9452 (7) ÅCell parameters from 1851 reflections
c = 8.5658 (6) Åθ = 5.2–73.3°
α = 80.464 (7)°µ = 0.83 mm1
β = 85.760 (7)°T = 123 K
γ = 63.881 (9)°Plate, red
V = 427.50 (6) Å30.15 × 0.13 × 0.02 mm
Data collection top
Agilent SuperNova (Single source at offset, Atlas)
diffractometer
1627 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1438 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.3546 pixels mm-1θmax = 73.5°, θmin = 5.2°
ω scansh = 88
Absorption correction: analytical
(Clark & Reid, 1995)
k = 99
Tmin = 0.910, Tmax = 0.981l = 710
3081 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.0993P]
where P = (Fo2 + 2Fc2)/3
1627 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H7NO2γ = 63.881 (9)°
Mr = 185.18V = 427.50 (6) Å3
Triclinic, P1Z = 2
a = 7.0939 (7) ÅCu Kα radiation
b = 7.9452 (7) ŵ = 0.83 mm1
c = 8.5658 (6) ÅT = 123 K
α = 80.464 (7)°0.15 × 0.13 × 0.02 mm
β = 85.760 (7)°
Data collection top
Agilent SuperNova (Single source at offset, Atlas)
diffractometer
1627 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1438 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.981Rint = 0.029
3081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
1627 reflectionsΔρmin = 0.22 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25017 (19)0.06257 (19)0.05480 (16)0.0180 (3)
C20.1753 (2)0.2210 (2)0.05932 (17)0.0211 (3)
H20.15100.34210.03680.025*
C30.1367 (2)0.1959 (2)0.20994 (16)0.0225 (3)
H30.08470.30280.29060.027*
C40.1719 (2)0.0202 (2)0.24516 (16)0.0224 (3)
H40.14400.00840.34860.027*
C50.2481 (2)0.1391 (2)0.12896 (16)0.0204 (3)
H50.27290.26020.15170.025*
C60.2867 (2)0.11607 (19)0.02066 (16)0.0186 (3)
C70.3621 (2)0.25174 (19)0.16566 (16)0.0201 (3)
C80.3703 (2)0.1326 (2)0.29023 (16)0.0204 (3)
C90.2676 (2)0.2094 (2)0.29379 (16)0.0222 (3)
H9A0.29860.30390.21980.027*
H9B0.36440.16480.38490.027*
C100.0499 (2)0.29983 (19)0.34996 (16)0.0210 (3)
C110.1255 (2)0.3711 (2)0.39699 (17)0.0249 (3)
H110.26570.42800.43460.030*
N10.30354 (18)0.04896 (16)0.21361 (13)0.0203 (3)
O10.40885 (16)0.41925 (14)0.19499 (12)0.0263 (3)
O20.42444 (16)0.19092 (15)0.42712 (12)0.0262 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0119 (6)0.0223 (6)0.0210 (6)0.0082 (5)0.0020 (5)0.0050 (5)
C20.0172 (6)0.0193 (6)0.0270 (7)0.0082 (5)0.0014 (5)0.0040 (5)
C30.0177 (6)0.0251 (7)0.0230 (7)0.0093 (5)0.0003 (5)0.0010 (5)
C40.0196 (7)0.0296 (7)0.0192 (6)0.0116 (6)0.0015 (5)0.0050 (5)
C50.0161 (6)0.0230 (7)0.0230 (6)0.0085 (5)0.0023 (5)0.0066 (5)
C60.0143 (6)0.0196 (6)0.0218 (6)0.0073 (5)0.0015 (5)0.0039 (5)
C70.0142 (6)0.0222 (7)0.0229 (6)0.0073 (5)0.0008 (5)0.0033 (5)
C80.0150 (6)0.0247 (7)0.0223 (7)0.0096 (5)0.0014 (5)0.0031 (5)
C90.0219 (7)0.0248 (7)0.0240 (7)0.0120 (6)0.0005 (5)0.0089 (5)
C100.0260 (7)0.0204 (6)0.0193 (6)0.0117 (6)0.0025 (5)0.0042 (5)
C110.0240 (7)0.0240 (7)0.0271 (7)0.0103 (6)0.0003 (6)0.0057 (5)
N10.0196 (6)0.0213 (6)0.0204 (6)0.0085 (5)0.0003 (4)0.0051 (4)
O10.0261 (5)0.0193 (5)0.0307 (5)0.0079 (4)0.0018 (4)0.0012 (4)
O20.0266 (5)0.0343 (6)0.0197 (5)0.0153 (5)0.0027 (4)0.0016 (4)
Geometric parameters (Å, º) top
C1—C21.379 (2)C6—C71.4622 (18)
C1—C61.4034 (18)C7—O11.2072 (17)
C1—N11.4131 (17)C7—C81.5589 (18)
C2—C31.402 (2)C8—O21.2111 (18)
C2—H20.9500C8—N11.3663 (18)
C3—C41.387 (2)C9—N11.4631 (17)
C3—H30.9500C9—C101.470 (2)
C4—C51.394 (2)C9—H9A0.9900
C4—H40.9500C9—H9B0.9900
C5—C61.3872 (19)C10—C111.188 (2)
C5—H50.9500C11—H110.9500
C2—C1—C6121.15 (12)O1—C7—C6131.72 (13)
C2—C1—N1128.42 (13)O1—C7—C8123.44 (12)
C6—C1—N1110.42 (12)C6—C7—C8104.83 (11)
C1—C2—C3117.21 (13)O2—C8—N1127.55 (13)
C1—C2—H2121.4O2—C8—C7126.40 (13)
C3—C2—H2121.4N1—C8—C7106.05 (11)
C4—C3—C2122.21 (13)N1—C9—C10111.50 (11)
C4—C3—H3118.9N1—C9—H9A109.3
C2—C3—H3118.9C10—C9—H9A109.3
C3—C4—C5120.08 (12)N1—C9—H9B109.3
C3—C4—H4120.0C10—C9—H9B109.3
C5—C4—H4120.0H9A—C9—H9B108.0
C6—C5—C4118.27 (13)C11—C10—C9179.14 (16)
C6—C5—H5120.9C10—C11—H11180.0
C4—C5—H5120.9C8—N1—C1111.08 (11)
C5—C6—C1121.08 (13)C8—N1—C9123.22 (12)
C5—C6—C7131.32 (13)C1—N1—C9125.25 (12)
C1—C6—C7107.60 (11)
C6—C1—C2—C30.27 (19)O1—C7—C8—O20.7 (2)
N1—C1—C2—C3179.20 (13)C6—C7—C8—O2179.86 (13)
C1—C2—C3—C40.2 (2)O1—C7—C8—N1179.02 (13)
C2—C3—C4—C50.0 (2)C6—C7—C8—N10.16 (14)
C3—C4—C5—C60.04 (19)O2—C8—N1—C1178.89 (13)
C4—C5—C6—C10.04 (19)C7—C8—N1—C10.81 (14)
C4—C5—C6—C7178.89 (13)O2—C8—N1—C96.2 (2)
C2—C1—C6—C50.20 (19)C7—C8—N1—C9173.50 (11)
N1—C1—C6—C5179.30 (12)C2—C1—N1—C8179.43 (13)
C2—C1—C6—C7179.30 (12)C6—C1—N1—C81.55 (16)
N1—C1—C6—C71.60 (15)C2—C1—N1—C96.9 (2)
C5—C6—C7—O10.9 (3)C6—C1—N1—C9174.06 (12)
C1—C6—C7—O1178.03 (14)C10—C9—N1—C890.49 (15)
C5—C6—C7—C8179.97 (14)C10—C9—N1—C181.16 (16)
C1—C6—C7—C81.05 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.623.3901 (17)139
C9—H9A···O1ii0.992.613.4747 (18)146
C9—H9B···O2iii0.992.373.2987 (17)156
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.623.3901 (17)139
C9—H9A···O1ii0.992.613.4747 (18)146
C9—H9B···O2iii0.992.373.2987 (17)156
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751.  Web of Science CrossRef CAS Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem., 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds