organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o361-o362

3-(2,3-Dioxoindolin-1-yl)propane­nitrile

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cX-Ray Structure Analysis Unit, University of Regensburg, D-93053 Regensburg, Germany, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: qachchachi.fatimazahrae@gmail.com

(Received 19 February 2014; accepted 20 February 2014; online 26 February 2014)

The asymmetric unit of the title compound, C11H8N2O2, contains two independent mol­ecules (A and B). Each mol­ecule is build up from fused five- and six-membered rings with the former linked to a cyano­ethyl group. The indoline ring and two carbonyl O atoms of each mol­ecule are nearly coplanar, with the largest deviations from the mean planes being 0.0198 (9) (mol­ecule A) and 0.0902 (9) Å (mol­ecule B), each by a carbonyl O atom. The fused ring system is nearly perpendicular to the mean plane passing through the cyano­ethyl chains, as indicated by the dihedral angles between them of 69.72 (9) (mol­ecule A) and 69.15 (9)° (mol­ecule B). In the crystal, mol­ecules are linked by C—H⋯O and ππ [inter­centroid distance between inversion-related indoline (A) rings = 3.6804 (7) Å] inter­actions into a double layer that stacks along the a-axis direction.

Related literature

For biological activity of indoline derivatives, see: Bhrigu et al. (2010[Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229-235.]); Ramachandran (2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289-294.]); Smitha et al. (2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]). For similar structures, see: Qachchachi et al. (2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.], 2014[Qachchachi, F.-Z., Ouazzani Chahdi, F., Misbahi, H., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o229.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8N2O2

  • Mr = 200.19

  • Triclinic, [P \overline 1]

  • a = 7.1967 (2) Å

  • b = 9.9909 (3) Å

  • c = 13.5534 (5) Å

  • α = 77.508 (3)°

  • β = 81.551 (3)°

  • γ = 77.717 (3)°

  • V = 924.44 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 123 K

  • 0.26 × 0.17 × 0.12 mm

Data collection
  • Agilent SuperNova (Single source at offset, Atlas) diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.827, Tmax = 0.917

  • 5751 measured reflections

  • 3546 independent reflections

  • 3292 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.07

  • 3546 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1 0.95 2.50 3.2787 (14) 139
C20—H20B⋯O1 0.99 2.45 3.4287 (14) 170
C6—H6⋯O4i 0.95 2.51 3.1740 (14) 127
C5—H5⋯O3i 0.95 2.63 3.5085 (14) 153
C9—H9B⋯O1ii 0.99 2.49 3.2269 (13) 131
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+2, -z+2.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Heterocyclic compounds are acquiring more importance in recent years because of their broad pharmacological activities. Isatin and its derivatives are used in organic synthesis and in evaluating new product possessing different biological activities. Isatin derivatives have been reported to show considerable pharmacological actions such as, anti-convulsant, anti-anixity and anti-psychoactives activities (Bhrigu et al., 2010; Ramachandran, 2011; Smitha et al., 2008). As a continuation of our research work devoted to the development of isatin derivatives (Qachchachi et al., 2013; Qachchachi et al., 2014), we report the synthesis of new indoline-2,3-dione derivative by action of alkyl halides to explore other applications.

Each independent molecule of title compound is build up from a fused five- and six-membered rings linked, to a cyano­ethyl chain and to two carbonyl oxygen atoms as shown in Fig. 1. The indoline ring and the two ketonic oxygen atoms are nearly coplanar, with the largest deviation from the mean plane being 0.0198 (9) Å for O1 atom, and 0.0902 (9) Å for the O4 atom, respectively, in the first and second molecule. The fused ring system planes, (N1, C1 to C8) and (N3, C12 to C19), are nearly perpendicular to the mean plane passing through the cyano­ethyl chains (N2, C9–C11 and N4, C20–C22) as indicated by the dihedral angles between them of 69.47 (9) and 69.06 (9)°, respectviely. The two molecules in the asymmetric unit have a similar conformation, except the cyano­ethyl group orientation as shown in Fig. 2.

In the crystal, the molecules are linked by C—H···O hydrogen bonds, Table 1, and ππ inter­actions between the five- and six-membered rings of the N1-containing molecule [inter-centroid distance = 3.6804 (7) Å for symmetry operation: 1-x, 1-y, 2-z] to form double layers that stack along the a axis.

Synthesis and crystallization top

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (30 ml) was added, potassium carbonate (0.61 g, 4.4 mmol), a catalytic qu­antity of tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol) and 3-bromo­propane­nitrile (0.3 ml, 3.7 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield: 52%; M.pt: 383 K).

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.95 Å (aromatic) and C—H = 0.99 Å (methyl­ene), and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq.

Related literature top

For biological activity of indoline derivatives, see: Bhrigu et al. (2010); Ramachandran (2011); Smitha et al. (2008). For similar structures, see: Qachchachi et al. (2013, 2014).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular plot the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View showing the fitting of the two molecules in the asymmetric unit.
3-(2,3-Dioxoindolin-1-yl)propanenitrile top
Crystal data top
C11H8N2O2Z = 4
Mr = 200.19F(000) = 416
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.1967 (2) ÅCell parameters from 4004 reflections
b = 9.9909 (3) Åθ = 4.6–73.3°
c = 13.5534 (5) ŵ = 0.84 mm1
α = 77.508 (3)°T = 123 K
β = 81.551 (3)°Plate, orange
γ = 77.717 (3)°0.26 × 0.17 × 0.12 mm
V = 924.44 (5) Å3
Data collection top
Agilent SuperNova (Single source at offset, Atlas)
diffractometer
3546 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3292 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 10.3546 pixels mm-1θmax = 73.7°, θmin = 4.6°
ω scansh = 88
Absorption correction: analytical
(Clark & Reid, 1995)
k = 129
Tmin = 0.827, Tmax = 0.917l = 1616
5751 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2333P]
where P = (Fo2 + 2Fc2)/3
3546 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C11H8N2O2γ = 77.717 (3)°
Mr = 200.19V = 924.44 (5) Å3
Triclinic, P1Z = 4
a = 7.1967 (2) ÅCu Kα radiation
b = 9.9909 (3) ŵ = 0.84 mm1
c = 13.5534 (5) ÅT = 123 K
α = 77.508 (3)°0.26 × 0.17 × 0.12 mm
β = 81.551 (3)°
Data collection top
Agilent SuperNova (Single source at offset, Atlas)
diffractometer
3546 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
3292 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.917Rint = 0.013
5751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
3546 reflectionsΔρmin = 0.28 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35182 (15)0.75842 (11)1.04434 (8)0.0189 (2)
C20.27845 (15)0.61738 (11)1.07606 (8)0.0193 (2)
C30.27526 (15)0.57304 (11)0.98035 (8)0.0181 (2)
C40.33583 (14)0.67561 (11)0.90158 (8)0.0171 (2)
C50.34919 (16)0.66466 (11)0.80081 (8)0.0196 (2)
H50.39140.73400.74750.023*
C60.29746 (16)0.54636 (11)0.78129 (9)0.0213 (2)
H60.30440.53570.71280.026*
C70.23621 (16)0.44382 (11)0.85865 (9)0.0218 (2)
H70.20150.36520.84230.026*
C80.22547 (15)0.45570 (11)0.95987 (9)0.0201 (2)
H80.18530.38571.01330.024*
C90.44795 (16)0.90577 (11)0.87921 (8)0.0210 (2)
H9A0.52980.87840.81870.025*
H9B0.52780.93900.91890.025*
C100.28577 (18)1.02563 (12)0.84414 (9)0.0253 (2)
H10A0.34031.09760.79270.030*
H10B0.19740.98970.81130.030*
C110.17723 (17)1.09045 (11)0.92779 (9)0.0241 (2)
C120.35805 (16)0.79086 (12)1.50595 (9)0.0231 (2)
C130.30355 (17)0.93949 (12)1.53235 (9)0.0232 (2)
C140.22133 (16)1.02896 (12)1.44313 (9)0.0220 (2)
C150.22224 (15)0.94421 (12)1.37283 (8)0.0204 (2)
C160.15683 (16)1.00021 (12)1.27902 (9)0.0232 (2)
H160.15500.94301.23170.028*
C170.09340 (17)1.14485 (13)1.25670 (9)0.0265 (3)
H170.04771.18611.19270.032*
C180.09507 (18)1.23038 (13)1.32516 (10)0.0285 (3)
H180.05221.32831.30720.034*
C190.15933 (17)1.17260 (13)1.41961 (9)0.0262 (3)
H190.16091.22981.46700.031*
C200.35533 (17)0.68910 (12)1.35580 (9)0.0233 (2)
H20A0.49070.64541.36370.028*
H20B0.34520.72771.28270.028*
C210.23180 (18)0.57728 (12)1.39112 (9)0.0264 (3)
H21A0.28740.49721.35720.032*
H21B0.23450.54361.46530.032*
C220.03284 (19)0.62732 (13)1.36936 (9)0.0283 (3)
N10.38031 (13)0.78390 (9)0.94098 (7)0.01830 (19)
N20.09333 (16)1.14251 (11)0.99259 (9)0.0312 (2)
N30.30023 (14)0.80320 (10)1.41232 (7)0.0216 (2)
N40.12343 (17)0.66540 (14)1.35365 (10)0.0410 (3)
O10.37857 (12)0.82987 (8)1.10106 (6)0.02410 (18)
O20.23689 (12)0.56414 (9)1.16318 (6)0.02605 (19)
O30.33463 (13)0.96621 (9)1.61077 (6)0.0300 (2)
O40.43958 (13)0.68559 (9)1.55714 (6)0.0300 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0187 (5)0.0186 (5)0.0195 (5)0.0013 (4)0.0037 (4)0.0046 (4)
C20.0190 (5)0.0186 (5)0.0202 (5)0.0023 (4)0.0033 (4)0.0042 (4)
C30.0168 (5)0.0180 (5)0.0191 (5)0.0017 (4)0.0027 (4)0.0038 (4)
C40.0159 (5)0.0152 (5)0.0207 (5)0.0010 (4)0.0035 (4)0.0052 (4)
C50.0221 (5)0.0176 (5)0.0187 (5)0.0024 (4)0.0028 (4)0.0037 (4)
C60.0239 (5)0.0209 (5)0.0202 (5)0.0003 (4)0.0054 (4)0.0079 (4)
C70.0230 (5)0.0171 (5)0.0278 (6)0.0029 (4)0.0061 (4)0.0081 (4)
C80.0194 (5)0.0167 (5)0.0238 (5)0.0030 (4)0.0027 (4)0.0033 (4)
C90.0238 (5)0.0188 (5)0.0221 (5)0.0083 (4)0.0004 (4)0.0052 (4)
C100.0350 (6)0.0189 (5)0.0230 (6)0.0065 (5)0.0061 (5)0.0029 (4)
C110.0257 (6)0.0150 (5)0.0318 (6)0.0062 (4)0.0057 (5)0.0011 (5)
C120.0247 (6)0.0265 (6)0.0187 (5)0.0073 (4)0.0000 (4)0.0044 (4)
C130.0240 (6)0.0278 (6)0.0195 (5)0.0086 (4)0.0007 (4)0.0064 (4)
C140.0207 (5)0.0262 (6)0.0205 (5)0.0072 (4)0.0005 (4)0.0065 (4)
C150.0173 (5)0.0233 (5)0.0210 (5)0.0057 (4)0.0011 (4)0.0053 (4)
C160.0199 (5)0.0300 (6)0.0204 (5)0.0040 (4)0.0014 (4)0.0072 (4)
C170.0213 (6)0.0315 (6)0.0242 (6)0.0020 (5)0.0034 (4)0.0024 (5)
C180.0253 (6)0.0238 (6)0.0347 (7)0.0011 (5)0.0042 (5)0.0049 (5)
C190.0247 (6)0.0264 (6)0.0293 (6)0.0054 (4)0.0007 (5)0.0103 (5)
C200.0259 (6)0.0241 (6)0.0208 (5)0.0034 (4)0.0011 (4)0.0083 (4)
C210.0359 (7)0.0226 (6)0.0217 (6)0.0065 (5)0.0048 (5)0.0042 (4)
C220.0360 (7)0.0307 (6)0.0232 (6)0.0137 (5)0.0018 (5)0.0117 (5)
N10.0218 (4)0.0158 (4)0.0187 (4)0.0050 (3)0.0024 (3)0.0048 (3)
N20.0303 (5)0.0220 (5)0.0406 (6)0.0057 (4)0.0009 (5)0.0070 (5)
N30.0259 (5)0.0222 (5)0.0178 (4)0.0052 (4)0.0020 (4)0.0056 (4)
N40.0322 (7)0.0549 (8)0.0445 (7)0.0133 (5)0.0001 (5)0.0254 (6)
O10.0306 (4)0.0231 (4)0.0219 (4)0.0061 (3)0.0050 (3)0.0089 (3)
O20.0318 (4)0.0277 (4)0.0181 (4)0.0077 (3)0.0017 (3)0.0019 (3)
O30.0380 (5)0.0351 (5)0.0205 (4)0.0101 (4)0.0033 (4)0.0095 (4)
O40.0379 (5)0.0287 (4)0.0216 (4)0.0030 (4)0.0056 (4)0.0026 (3)
Geometric parameters (Å, º) top
C1—O11.2153 (14)C12—O41.2137 (15)
C1—N11.3612 (14)C12—N31.3655 (15)
C1—C21.5610 (15)C12—C131.5581 (16)
C2—O21.2079 (14)C13—O31.2120 (15)
C2—C31.4633 (15)C13—C141.4591 (17)
C3—C81.3886 (15)C14—C191.3898 (17)
C3—C41.4000 (15)C14—C151.4035 (16)
C4—C51.3812 (15)C15—C161.3811 (16)
C4—N11.4163 (13)C15—N31.4184 (15)
C5—C61.3990 (15)C16—C171.3997 (17)
C5—H50.9500C16—H160.9500
C6—C71.3910 (16)C17—C181.3935 (18)
C6—H60.9500C17—H170.9500
C7—C81.3919 (16)C18—C191.3880 (18)
C7—H70.9500C18—H180.9500
C8—H80.9500C19—H190.9500
C9—N11.4533 (14)C20—N31.4627 (14)
C9—C101.5311 (16)C20—C211.5277 (16)
C9—H9A0.9900C20—H20A0.9900
C9—H9B0.9900C20—H20B0.9900
C10—C111.4686 (17)C21—C221.4638 (19)
C10—H10A0.9900C21—H21A0.9900
C10—H10B0.9900C21—H21B0.9900
C11—N21.1465 (17)C22—N41.1437 (18)
O1—C1—N1127.39 (10)O3—C13—C14131.27 (11)
O1—C1—C2126.58 (10)O3—C13—C12123.77 (11)
N1—C1—C2106.03 (9)C14—C13—C12104.90 (9)
O2—C2—C3131.42 (10)C19—C14—C15121.09 (11)
O2—C2—C1123.65 (10)C19—C14—C13131.24 (11)
C3—C2—C1104.94 (9)C15—C14—C13107.57 (10)
C8—C3—C4120.97 (10)C16—C15—C14121.14 (11)
C8—C3—C2131.70 (10)C16—C15—N3128.32 (10)
C4—C3—C2107.33 (9)C14—C15—N3110.52 (10)
C5—C4—C3121.79 (10)C15—C16—C17117.12 (11)
C5—C4—N1127.51 (10)C15—C16—H16121.4
C3—C4—N1110.69 (9)C17—C16—H16121.4
C4—C5—C6116.62 (10)C18—C17—C16122.25 (11)
C4—C5—H5121.7C18—C17—H17118.9
C6—C5—H5121.7C16—C17—H17118.9
C7—C6—C5122.30 (10)C19—C18—C17120.05 (11)
C7—C6—H6118.9C19—C18—H18120.0
C5—C6—H6118.9C17—C18—H18120.0
C6—C7—C8120.37 (10)C18—C19—C14118.32 (11)
C6—C7—H7119.8C18—C19—H19120.8
C8—C7—H7119.8C14—C19—H19120.8
C3—C8—C7117.95 (10)N3—C20—C21112.93 (9)
C3—C8—H8121.0N3—C20—H20A109.0
C7—C8—H8121.0C21—C20—H20A109.0
N1—C9—C10113.21 (9)N3—C20—H20B109.0
N1—C9—H9A108.9C21—C20—H20B109.0
C10—C9—H9A108.9H20A—C20—H20B107.8
N1—C9—H9B108.9C22—C21—C20113.17 (10)
C10—C9—H9B108.9C22—C21—H21A108.9
H9A—C9—H9B107.7C20—C21—H21A108.9
C11—C10—C9112.92 (10)C22—C21—H21B108.9
C11—C10—H10A109.0C20—C21—H21B108.9
C9—C10—H10A109.0H21A—C21—H21B107.8
C11—C10—H10B109.0N4—C22—C21179.04 (15)
C9—C10—H10B109.0C1—N1—C4111.00 (9)
H10A—C10—H10B107.8C1—N1—C9124.54 (9)
N2—C11—C10179.16 (13)C4—N1—C9124.46 (9)
O4—C12—N3126.70 (11)C12—N3—C15110.66 (9)
O4—C12—C13127.01 (10)C12—N3—C20121.49 (10)
N3—C12—C13106.28 (10)C15—N3—C20126.46 (9)
O1—C1—C2—O21.10 (18)C19—C14—C15—N3177.06 (10)
N1—C1—C2—O2179.24 (10)C13—C14—C15—N30.37 (13)
O1—C1—C2—C3178.80 (11)C14—C15—C16—C171.18 (16)
N1—C1—C2—C30.85 (11)N3—C15—C16—C17177.39 (11)
O2—C2—C3—C80.7 (2)C15—C16—C17—C180.00 (17)
C1—C2—C3—C8179.16 (11)C16—C17—C18—C190.66 (19)
O2—C2—C3—C4179.23 (12)C17—C18—C19—C140.14 (18)
C1—C2—C3—C40.87 (11)C15—C14—C19—C181.04 (18)
C8—C3—C4—C50.18 (16)C13—C14—C19—C18176.84 (12)
C2—C3—C4—C5179.85 (10)N3—C20—C21—C2266.72 (13)
C8—C3—C4—N1179.42 (9)O1—C1—N1—C4179.14 (11)
C2—C3—C4—N10.61 (12)C2—C1—N1—C40.51 (11)
C3—C4—C5—C60.55 (16)O1—C1—N1—C90.68 (18)
N1—C4—C5—C6179.66 (10)C2—C1—N1—C9179.67 (9)
C4—C5—C6—C70.27 (16)C5—C4—N1—C1179.22 (10)
C5—C6—C7—C80.40 (17)C3—C4—N1—C10.04 (12)
C4—C3—C8—C70.50 (16)C5—C4—N1—C90.60 (17)
C2—C3—C8—C7179.47 (11)C3—C4—N1—C9179.78 (9)
C6—C7—C8—C30.77 (16)C10—C9—N1—C193.32 (12)
N1—C9—C10—C1169.07 (12)C10—C9—N1—C486.88 (12)
O4—C12—C13—O31.59 (19)O4—C12—N3—C15175.78 (11)
N3—C12—C13—O3179.97 (11)C13—C12—N3—C152.67 (12)
O4—C12—C13—C14176.08 (12)O4—C12—N3—C208.40 (18)
N3—C12—C13—C142.37 (12)C13—C12—N3—C20170.05 (9)
O3—C13—C14—C192.4 (2)C16—C15—N3—C12176.66 (11)
C12—C13—C14—C19175.05 (12)C14—C15—N3—C122.04 (13)
O3—C13—C14—C15178.60 (12)C16—C15—N3—C2010.05 (19)
C12—C13—C14—C151.18 (12)C14—C15—N3—C20168.64 (10)
C19—C14—C15—C161.74 (17)C21—C20—N3—C1280.57 (13)
C13—C14—C15—C16178.43 (10)C21—C20—N3—C15114.16 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O10.952.503.2787 (14)139
C20—H20B···O10.992.453.4287 (14)170
C6—H6···O4i0.952.513.1740 (14)127
C5—H5···O3i0.952.633.5085 (14)153
C9—H9B···O1ii0.992.493.2269 (13)131
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O10.952.503.2787 (14)139
C20—H20B···O10.992.453.4287 (14)170
C6—H6···O4i0.952.513.1740 (14)127
C5—H5···O3i0.952.633.5085 (14)153
C9—H9B···O1ii0.992.493.2269 (13)131
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z+2.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229–235.  CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Ouazzani Chahdi, F., Misbahi, H., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o229.  CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o361-o362
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds