inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cd4As2Br3

aUniversité Houari-Boumedienne, Faculté de Chimie, Laboratoire Sciences des Matériaux, BP 32 El-Alia Bab-Ezzouar, Algeria, bCentre de Diffractométrie X, Sciences Chimiques de Rennes, UMR 6226 CNRS Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, France, and cDepartomento Inorgánica, Facultad C.C. Químicas, Universidad Complutense, 28040 Madrid, Spain
*Correspondence e-mail: mkarsdz@yahoo.fr

(Received 17 February 2014; accepted 20 February 2014; online 26 February 2014)

Single crystals of Cd4As2Br3 (tetra­cadmium biarsenide tri­bromide) were grown by a chemical transport reaction. The structure is isotypic with the members of the cadmium and mercury pnictidohalides family with general formula M4A2X3 (M = Cd, Hg; A = P, As, Sb; X = Cl, Br, I) and contains two independent As atoms on special positions with site symmetry -3 and two independent Cd atoms, of which one is on a special position with site symmetry -3. The Cd4As2Br3 structure consists of AsCd4 tetra­hedra sharing vertices with isolated As2Cd6 octa­hedra that contain As–As dumbbells in the centre of the octahedron. The Br atoms are located in the voids of this three-dimensional arrangement and bridge the different polyhedra through Cd⋯Br contacts.

Related literature

For structural data of the title compound extracted from X-ray powder diffraction data, see: Suchow & Stemple (1963[Suchow, L. & Stemple, N. R. (1963). J. Electrochem. Soc. 110, 766-769.]); Rebbah & Deschanvres (1981[Rebbah, A. & Deschanvres, A. (1981). Ann. Chim. 6, 585-590.]). For classification and bond character of cadmium and mercury pnictidohalides, see: Rebbah & Rebbah (1994[Rebbah, H. & Rebbah, A. (1994). J. Solid State Chem. 113, 1-8.]). For the relationship between the crystal and electronic structures based on the Zintl–Klemn concept for inter­preting and predicting the properties of these phases, see: Shevelkov & Shatruk (2001[Shevelkov, A. V. & Shatruk, M. M. (2001). Russ. Chem. Bull. Int. Ed. 113, 337-352.]). For isotypic cadmium pnictidohalides, see: Gallay et al. (1975[Gallay, J., Allais, G. & Deschanvres, A. (1975). Acta Cryst. B31, 2274-2276.]); Kassama et al. (1994[Kassama, I., Kheit, M. & Rebbah, A. (1994). J. Solid State Chem. 113, 248-251.]) and for isotypic mercury pnictidohalides, see: Labbé et al. (1989[Labbé, Ph., Ledésert, M., Raveau, B. & Rebbah, A. (1989). Z. Kristallogr. 187, 117-123.]); Shevelkov et al. (1996[Shevelkov, A. V., Dikarev, E. V. & Popovkin, B. A. (1996). J. Solid State Chem. 126, 324-327.]).

Experimental

Crystal data
  • Cd4As2Br3

  • Mr = 839.17

  • Cubic, [P a \overline 3]

  • a = 12.625 (4) Å

  • V = 2012.4 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 26.70 mm−1

  • T = 150 K

  • 0.21 × 0.20 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.005, Tmax = 0.011

  • 6624 measured reflections

  • 1485 independent reflections

  • 1238 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.09

  • 1485 reflections

  • 29 parameters

  • Δρmax = 1.93 e Å−3

  • Δρmin = −1.57 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (Roisnel, 2013[Roisnel, T. (2013). CRYSCAL. University of Rennes, France.]).

Supporting information


Comment top

Le composé Cd4As2Br3 a été étudié au préalable par diffraction des rayons X sur poudre (Suchow & Stemple, 1963; Rebbah & Deschanvres, 1981). Ce composé appartient à la famille des composés semi-conducteurs de formule générale M4A2X3 (M = Cd, Hg; A = P, As, Sb; X = Cl, Br, I), connue sous le nom de halogénopnictures de cadmium et de mercure (Rebbah & Rebbah, 1994; Shevelkov & Shatruk, 2001). La principale caractéristique de ces composés polyanioniques est la présence de liaisons anion-anion (AA). Dans le composé Cd4As2Br3 il existe deux types d'atomes d'arsenic ayant une coordination tétraédrique légèrement déformée. Les atomes d'arsenic de type As1 sont entourés de trois atomes Cd1 et un atome As1 de même type formant ainsi un doublet As12. Les distances anion-anion As1—As1 [2.3945 (19) Å] et Cd1—As1 [2.5595 (5) Å] sont comparables à celles observées dans d'autres composés polyanioniques de la même famille: Cd4As2I3 [As1—As1 = 2.397 (5) Å et Cd1—As1 = 2.574 (5) Å], Gallay et al. (1975); Hg4As2I3 [As1—As1 = 2.415 (2) Å], Labbé et al. (1989); Hg4As2Br3 [As1—As1 = 2.37 (2) Å], Shevelkov et al. (1996). Les angles Cd1—As1—Cd1 et As1—As1—Cd1 qui valent 107.99 (2)° et 110.91 (2)° respectivement, indiquent un tétraèdre légèrement distordu. Les deux tétraèdres correspondant à une même liaison As1—As1 forment un groupement octaédrique As(1)2Cd6. Les atomes d'arsenic de type As2 ne forment pas de paire anionique et sont entourés de quatre atomes de cadmium: un atome Cd2 à 2.5655 (13) Å et trois atomes Cd1 à 2.5400 (6) Å, ces distances sont très voisines de celles autour de l'atome As1. Le tétraèdre As2Cd4 est aussi légèrement distordu avec des angles Cd1—As2—Cd1 et Cd1—As2—Cd2 de 118.414 (12)° et 97.29 (3)° respectivement. La charpente de cette structure est ainsi form\'ee par des octaèdres As12Cd6 déterminant des files parallèles dans les trois directions. L'interconnexion des ces files est assurées par les tétraèdres As2Cd4, déterminant des cavités occupées par les atomes de brome. Ces atomes de brome assurent la cohésion de la structure par l'intermédiaire de liaisons Cd—Br en reliant d'une part deux groupements octaédriques As12Cd6 et d'autre part un groupement octaédrique As12Cd6 avec un groupement tétraédrique As2Cd4. La plus courte distance 2.7596 (7) Å est proche de celles trouvées dans Cd4P2Br3 [2.733 (2) Å, Kassama et al. 1994] ou dans Cd4PAsBr3 [2.760 (5) Å, Rebbah & Deschanvres, 1981]. Enfin l'équilibre des charges dans ce composé peut s'écrire: Cd4+2As1-2As2-3Br3-.

Related literature top

For structural data of the title compound extracted from X-ray powder diffraction data, see: Suchow & Stemple (1963); Rebbah & Deschanvres (1981). For classification and bond character of cadmium and mercury pnictidohalides, see: Rebbah & Rebbah (1994). For the relationship between the crystal and electronic structures including the Zintl–Klemn approach for interpreting and predicting the properties of these phases, see: Shevelkov & Shatruk (2001). For isotypic cadmium pnictidohalides, see: Gallay et al. (1975); Kassama et al. (1994) and for isotypic mercury pnictidohalides, see: Labbé et al. (1989); Shevelkov et al. (1996).

Experimental top

Les cristaux de Cd4As2Br3 ont été préparés par transport en phase vapeur à partir d'un mélange stoechiométrique des éléments Cd, As et de CdBr2. Le mélange est broyé puis introduit dans un tube en quartz scellé; des cristaux de couleur rouge foncée sont obtenus après un chauffage à 1073 K durant une semaine.

Refinement top

La structure a été déterminée par isotypie aux halogénopnictures de cadmium et de mercure de formule générale M4A2X3 (M = Cd, Hg; A = P, As, Sb; X = Cl, Br, I). En fin d'affinement, la carte de densité électronique obtenue est: ρmax = 1.932 e Å-3 (localisée à 0.61 Å de C d1) et ρmin = -1.571 e Å-3 (localisée à 1.16 Å de Br1).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (Roisnel, 2013).

Figures top
[Figure 1] Fig. 1. Structure de Cd4As2Br3 montrant les files octaédriques As(1)2Cd6 (en gris) reliées par les tétraèdres As(2)Cd4 (en violet).
[Figure 2] Fig. 2. Environnement tétraèdrique distordu des atomes de As, avec un déplacement des ellipsoīdes à 95% de probabilité.
Tetracadmium diarsenide tribromide top
Crystal data top
Cd4As2Br3Dx = 5.54 Mg m3
Mr = 839.17Mo Kα radiation, λ = 0.71073 Å
Cubic, Pa3Cell parameters from 1340 reflections
Hall symbol: -P 2ac 2ab 3θ = 2.8–34.9°
a = 12.625 (4) ŵ = 26.70 mm1
V = 2012.4 (6) Å3T = 150 K
Z = 8Prism, red
F(000) = 29040.21 × 0.2 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
1238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
CCD rotation images, thin slices scansθmax = 34.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1715
Tmin = 0.005, Tmax = 0.011k = 2010
6624 measured reflectionsl = 1219
1485 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0052P)2 + 11.0012P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max = 0.003
S = 1.09Δρmax = 1.93 e Å3
1485 reflectionsΔρmin = 1.57 e Å3
29 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00161 (12)
Crystal data top
Cd4As2Br3Z = 8
Mr = 839.17Mo Kα radiation
Cubic, Pa3µ = 26.70 mm1
a = 12.625 (4) ÅT = 150 K
V = 2012.4 (6) Å30.21 × 0.2 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
1485 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1238 reflections with I > 2σ(I)
Tmin = 0.005, Tmax = 0.011Rint = 0.088
6624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0052P)2 + 11.0012P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 1.93 e Å3
1485 reflectionsΔρmin = 1.57 e Å3
29 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.02627 (4)0.01237 (4)0.24906 (3)0.00853 (12)
Cd20.21971 (3)0.21971 (3)0.21971 (3)0.00892 (16)
As10.44525 (4)0.44525 (4)0.44525 (4)0.00244 (19)
As20.10239 (5)0.10239 (5)0.10239 (5)0.00298 (19)
Br10.18751 (5)0.43173 (4)0.26201 (5)0.00566 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0091 (2)0.0118 (2)0.00468 (19)0.00282 (14)0.00066 (14)0.00389 (14)
Cd20.00892 (16)0.00892 (16)0.00892 (16)0.00209 (14)0.00209 (14)0.00209 (14)
As10.00244 (19)0.00244 (19)0.00244 (19)0.00002 (17)0.00002 (17)0.00002 (17)
As20.00298 (19)0.00298 (19)0.00298 (19)0.00131 (18)0.00131 (18)0.00131 (18)
Br10.0036 (2)0.0050 (2)0.0083 (3)0.00048 (17)0.00135 (18)0.00099 (18)
Geometric parameters (Å, º) top
Cd1—As22.5400 (5)As1—As1vi2.3945 (19)
Cd1—As1i2.5595 (5)As1—Cd1vii2.5594 (9)
Cd1—Br1ii2.7933 (11)As1—Cd1viii2.5595 (5)
Cd1—Br1iii2.9999 (8)As1—Cd1ix2.5595 (5)
Cd2—As22.5655 (13)As2—Cd1v2.5400 (6)
Cd2—Br1iv2.7596 (11)As2—Cd1iv2.5400 (5)
Cd2—Br12.7596 (7)Br1—Cd1x2.7932 (11)
Cd2—Br1v2.7596 (7)Br1—Cd1vii2.9999 (8)
As2—Cd1—As1i140.50 (3)Cd1vii—As1—Cd1viii107.99 (2)
As2—Cd1—Br1ii118.24 (3)As1vi—As1—Cd1ix110.91 (2)
As1i—Cd1—Br1ii97.55 (2)Cd1vii—As1—Cd1ix107.99 (2)
As2—Cd1—Br1iii106.62 (2)Cd1viii—As1—Cd1ix107.99 (2)
As1i—Cd1—Br1iii91.57 (2)Cd1v—As2—Cd1118.414 (12)
Br1ii—Cd1—Br1iii85.291 (15)Cd1v—As2—Cd1iv118.414 (14)
As2—Cd2—Br1iv125.922 (19)Cd1—As2—Cd1iv118.416 (17)
As2—Cd2—Br1125.923 (19)Cd1v—As2—Cd297.29 (3)
Br1iv—Cd2—Br189.07 (3)Cd1—As2—Cd297.29 (3)
As2—Cd2—Br1v125.922 (17)Cd1iv—As2—Cd297.29 (3)
Br1iv—Cd2—Br1v89.07 (3)Cd2—Br1—Cd1x112.19 (2)
Br1—Cd2—Br1v89.07 (2)Cd2—Br1—Cd1vii108.48 (2)
As1vi—As1—Cd1vii110.91 (3)Cd1x—Br1—Cd1vii104.66 (2)
As1vi—As1—Cd1viii110.91 (2)
As1i—Cd1—As2—Cd1v90.34 (7)Br1iv—Cd2—As2—Cd1129.443 (19)
Br1ii—Cd1—As2—Cd1v117.28 (4)Br1—Cd2—As2—Cd1110.56 (2)
Br1iii—Cd1—As2—Cd1v23.66 (5)Br1v—Cd2—As2—Cd19.442 (19)
As1i—Cd1—As2—Cd1iv114.45 (6)Br1iv—Cd2—As2—Cd1iv110.56 (2)
Br1ii—Cd1—As2—Cd1iv37.93 (6)Br1—Cd2—As2—Cd1iv9.443 (19)
Br1iii—Cd1—As2—Cd1iv131.55 (4)Br1v—Cd2—As2—Cd1iv129.44 (2)
As1i—Cd1—As2—Cd212.05 (5)As2—Cd2—Br1—Cd1x27.93 (3)
Br1ii—Cd1—As2—Cd2140.33 (2)Br1iv—Cd2—Br1—Cd1x163.39 (3)
Br1iii—Cd1—As2—Cd2126.06 (2)Br1v—Cd2—Br1—Cd1x107.53 (3)
Br1iv—Cd2—As2—Cd1v9.443 (19)As2—Cd2—Br1—Cd1vii143.055 (14)
Br1—Cd2—As2—Cd1v129.44 (2)Br1iv—Cd2—Br1—Cd1vii81.486 (14)
Br1v—Cd2—As2—Cd1v110.557 (19)Br1v—Cd2—Br1—Cd1vii7.60 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y1/2, z+1/2; (iii) y+1/2, z1/2, x; (iv) y, z, x; (v) z, x, y; (vi) x+1, y+1, z+1; (vii) z, x+1/2, y+1/2; (viii) y+1/2, z, x+1/2; (ix) x+1/2, y+1/2, z; (x) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaCd4As2Br3
Mr839.17
Crystal system, space groupCubic, Pa3
Temperature (K)150
a (Å)12.625 (4)
V3)2012.4 (6)
Z8
Radiation typeMo Kα
µ (mm1)26.70
Crystal size (mm)0.21 × 0.2 × 0.17
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.005, 0.011
No. of measured, independent and
observed [I > 2σ(I)] reflections
6624, 1485, 1238
Rint0.088
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.09
No. of reflections1485
No. of parameters29
w = 1/[σ2(Fo2) + (0.0052P)2 + 11.0012P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.93, 1.57

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 2012) and CRYSCAL (Roisnel, 2013).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGallay, J., Allais, G. & Deschanvres, A. (1975). Acta Cryst. B31, 2274–2276.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKassama, I., Kheit, M. & Rebbah, A. (1994). J. Solid State Chem. 113, 248–251.  CrossRef CAS Web of Science Google Scholar
First citationLabbé, Ph., Ledésert, M., Raveau, B. & Rebbah, A. (1989). Z. Kristallogr. 187, 117–123.  Google Scholar
First citationRebbah, A. & Deschanvres, A. (1981). Ann. Chim. 6, 585–590.  CAS Google Scholar
First citationRebbah, H. & Rebbah, A. (1994). J. Solid State Chem. 113, 1–8.  CrossRef CAS Web of Science Google Scholar
First citationRoisnel, T. (2013). CRYSCAL. University of Rennes, France.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShevelkov, A. V., Dikarev, E. V. & Popovkin, B. A. (1996). J. Solid State Chem. 126, 324–327.  CrossRef CAS Web of Science Google Scholar
First citationShevelkov, A. V. & Shatruk, M. M. (2001). Russ. Chem. Bull. Int. Ed. 113, 337–352.  Web of Science CrossRef Google Scholar
First citationSuchow, L. & Stemple, N. R. (1963). J. Electrochem. Soc. 110, 766–769.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds