organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­methyl­phosphor­yl)methanaminium hydrogen oxalate–oxalic acid (2/1)

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de

(Received 24 January 2014; accepted 9 February 2014; online 15 February 2014)

The reaction of (di­methyl­phosphor­yl)methanamine (dpma) with oxalic acid in ethanol yielded the title solvated salt, C3H11NOP+·C2HO4·0.5C2H2O4. Its asymmetric unit consists of one dpmaH+ cation, one hydrogen oxalate anion and a half-mol­ecule of oxalic acid located around a twofold rotation axis. The H atom of the hydrogen oxalate anion is statistically disordered over two positions that are trans to each other. The hydrogen oxalate monoanion is not planar (bend angle ∼16°) whereas the oxalic acid molecule shows a significantly smaller bend angle (∼7°). In the crystal, the components are connected by strong O—H⋯O and much weaker N—H⋯O hydrogen bonds, leading to the formation of layers extending parallel to (001). The structure was refined from a racemically twinned crystal with twin components in an approximate 1:1 ratio.

Related literature

For transition metal complexes of the cationic dpmaH+ ligand, see: Reiss (2013a[Reiss, G. J. (2013a). Acta Cryst. E69, m248-m249.],c[Reiss, G. J. (2013c). Acta Cryst. E69, m250-m251.]). For simple dpmaH+ salts, see: Reiss & Jörgens (2012[Reiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899-o2900.]); Bianga et al. (2013[Bianga, C. M., Eggeling, J. & Reiss, G. J. (2013). Acta Cryst. E69, o1639-o1640.]); Buhl et al. (2013[Buhl, D., Gün, H., Jablonka, A. & Reiss, G. J. (2013). Crystals, 3, 350-362.]); Lambertz et al. (2013[Lambertz, C., Luppa, A. & Reiss, G. J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 227-228.]); Reiss (2013b[Reiss, G. J. (2013b). Acta Cryst. E69, o1253-o1254.],d[Reiss, G. J. (2013d). Z. Kristallogr. New Cryst. Struct. 228, 431-433.]).

[Scheme 1]

Experimental

Crystal data
  • C3H11NOP+·C2HO4·0.5C2H2O4

  • Mr = 242.14

  • Orthorhombic, P 21 21 2

  • a = 11.1482 (6) Å

  • b = 13.0903 (7) Å

  • c = 7.0432 (4) Å

  • V = 1027.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.52 × 0.24 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 92924 measured reflections

  • 3002 independent reflections

  • 2990 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.052

  • S = 1.05

  • 3002 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: refined as an inversion twin

  • Absolute structure parameter: 0.54 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O2i 0.77 (3) 1.73 (4) 2.4959 (17) 177 (4)
O4—H4⋯O4ii 0.81 (4) 1.67 (4) 2.4694 (18) 171 (4)
N1—H1N⋯O6iii 0.84 (2) 2.56 (2) 3.2106 (16) 135.4 (19)
N1—H1N⋯O7 0.84 (2) 2.27 (2) 2.9939 (17) 144 (2)
N1—H2N⋯O5 0.86 (2) 2.03 (2) 2.8760 (14) 168 (2)
N1—H3N⋯O3iv 0.91 (2) 1.92 (2) 2.8030 (15) 166.2 (19)
N1—H3N⋯O4iv 0.91 (2) 2.49 (2) 3.0419 (16) 120.0 (16)
O6—H6⋯O1v 0.89 (3) 1.59 (3) 2.4701 (14) 168 (3)
Symmetry codes: (i) -x+1, -y, z; (ii) -x+2, -y, z; (iii) -x+1, -y+1, z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The (dimethylphosphoryl)methanaminium (dpmaH+) cation is able to build various hydrogen-bonded, one dimensional structures (Bianga et al., 2013; Buhl et al., 2013; Lambertz et al., 2013; Reiss, 2013a,b, Reiss & Jörgens, 2012). However, we have shown that structures with a higher dimensional cross-linking by hydrogen bonds are also possible (Reiss, 2013c,d). Furthermore, it has been shown that the dpmaH+ cation is able to coordinate transition metal cations by the oxygen atom of its phosphoryl group (Reiss, 2013a,c). In this contribution we present a further example of a dpmaH+ salt, 2(C3H11NPO+ C2HO4-).C2H2O4, owing a complex hydrogen bonding scheme.

As illustrated in Fig. 1 the asymmetric unit of the title structure consists of one (dimethylphosphoryl)methanaminium (dpmaH+) cation, one hydrogen oxalate monoanion in general positions and one half of an oxalic acid molecule located around a twofold rotation axis. The geometric parameters of the dpmaH+ cation, the hydrogen oxalate monoanion and the oxalic acid molecule are generally in the expected ranges. The hydrogen oxalate monoanion is, as might be expected, not planar (bent angle ~ 16°). The oxalic acid molecule has an imposed twofold rotation symmetry. This neutral molecule shows significantly smaller bent angles (~7°) than the hydrogen oxalate monoanion. The neutral molecules, cations and anions are connected by strong O—H···O and much weaker N—H···O hydrogen bonds (Table 1). The O···O distances range from 2.4694 (18) Å to 2.4959 (17) Å whereas the N···O distances are 2.8030 (15) Å, 2.8760 (14) Å and 2.9939 (17) Å. The latter may be interpreted at least as a weak hydrogen bond.

For the further structural discussion we only consider the shorter hydrogen bonding connections (Fig. 1; O···O and N···O < 2.9 Å). The dpmaH+ cation appears, under this assumption, as a twofold hydrogen bond donor (connected to two anions) and a single hydrogen bond acceptor (connected to an oxalic acid molecule). As shown in Fig. 2, two dpmaH+ cations are connected to one oxalic acid molecule by two symmetry-related O—H···O hydrogen bonds of medium strength. The hydrogen oxalate monoanion acts as a single hydrogen bond donor and a twofold hydrogen bond acceptor. The hydrogen oxalate anions form head-to-tail connected polar chains running along [100] via medium strength O—H···O hydrogen bonds, as illustrated in Fig. 3. Caused by a 1:1 disorder of the hydrogen atom of this anion (attached to O2/O4) polar chains are present, which are oriented along and against [100], respectively. These chains are connected to the dpmaH+ cation through N—H···O hydrogen bonds into a two-dimensional-structure parallel to (001). Characteristic for this arrangement are gaps between the anion chains and the oxalic acid molecules and the hydrophobic areas where neighbouring layers are facing each other (Fig. 4).

Related literature top

For transition metal complexes of the cationic dpmaH+ ligand, see: Reiss (2013a,c). For simple dpmaH+ salts, see: Reiss & Jörgens (2012); Bianga et al. (2013); Buhl et al. (2013); Lambertz et al. (2013); Reiss (2013b,d).

Experimental top

The title compound, 2(C3H11NPO+ C2HO4-).C2H2O4, was prepared by dissolving 1.01 g dpma and 1.17 g oxalic acid in 5 ml ethanol. Within a few days under ambient conditions, colourless crystals were obtained by slow evaporation of the solvent.

Refinement top

For the disordered hydrogen atom at the hydrogen oxalate anion the split positions were refined freely with a ratio of 1:1. One common Uiso value was refined for both sites. All other H atoms were identified in difference syntheses and refined freely with individual Uiso values.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular moieties of the title structure. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: ' = 1 - x, 1 - y, z.]
[Figure 2] Fig. 2. Two dpmaH+ cations connected via an oxalic acid molecule. Displacement ellipsoids as in Fig. 1. [Symmetry codes: ' = 0.5 + x, 0.5 - y, 1 - z; '' = 1.5 - x, -0.5 + y, 1 - z; ''' = 2 - x, -y, z.]
[Figure 3] Fig. 3. Part of the polar chain oriented along [100], built by head-to-tail connected hydrogen oxalate anions. For clarity, just one of the disordered hydrogen atoms is shown. Displacement ellipsoids as in Fig. 1. [Symmetry code: ' = 2 - x, -y, z.]
[Figure 4] Fig. 4. The two-dimensional framework parallel to (001) constructed by hydrogen bonding interactions (dashed lines).
(Dimethylphosphoryl)methanaminium hydrogen oxalate; oxalic acid top
Crystal data top
C3H11NOP+·C2HO4·0.5C2H2O4Dx = 1.565 Mg m3
Mr = 242.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 9422 reflections
a = 11.1482 (6) Åθ = 2.9–35.9°
b = 13.0903 (7) ŵ = 0.29 mm1
c = 7.0432 (4) ÅT = 296 K
V = 1027.84 (10) Å3Lath, colourless
Z = 40.52 × 0.24 × 0.14 mm
F(000) = 508
Data collection top
Bruker APEXII CCD
diffractometer
2990 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.020
Graphite monochromatorθmax = 30.0°, θmin = 2.4°
φ and ω scansh = 1515
92924 measured reflectionsk = 1818
3002 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.030P)2 + 0.150P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3002 reflectionsΔρmax = 0.24 e Å3
192 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.54 (7)
Crystal data top
C3H11NOP+·C2HO4·0.5C2H2O4V = 1027.84 (10) Å3
Mr = 242.14Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 11.1482 (6) ŵ = 0.29 mm1
b = 13.0903 (7) ÅT = 296 K
c = 7.0432 (4) Å0.52 × 0.24 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2990 reflections with I > 2σ(I)
92924 measured reflectionsRint = 0.020
3002 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052Δρmax = 0.24 e Å3
S = 1.05Δρmin = 0.16 e Å3
3002 reflectionsAbsolute structure: refined as an inversion twin
192 parametersAbsolute structure parameter: 0.54 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.59355 (2)0.16995 (2)0.76357 (4)0.02120 (7)
O10.66126 (9)0.07493 (7)0.71183 (16)0.0320 (2)
C10.45282 (14)0.14728 (13)0.8751 (3)0.0401 (3)
H1A0.402 (3)0.101 (2)0.800 (4)0.077 (8)*
H1B0.415 (2)0.216 (2)0.902 (4)0.066 (7)*
H1C0.467 (3)0.120 (2)0.997 (4)0.069 (8)*
C20.67941 (16)0.25082 (12)0.9144 (2)0.0362 (3)
H2A0.696 (3)0.208 (2)1.021 (4)0.066 (8)*
H2B0.637 (2)0.3147 (18)0.947 (3)0.048 (6)*
H2C0.754 (2)0.268 (2)0.851 (4)0.069 (8)*
C30.55056 (10)0.24000 (9)0.55333 (18)0.0226 (2)
H3A0.5027 (19)0.1946 (16)0.482 (3)0.039 (5)*
H3B0.5075 (19)0.3008 (15)0.593 (3)0.038 (5)*
N10.65260 (10)0.27530 (8)0.43508 (17)0.0253 (2)
H1N0.6245 (19)0.3065 (17)0.341 (3)0.043 (5)*
H2N0.694 (2)0.2243 (17)0.397 (3)0.040 (5)*
H3N0.6989 (19)0.3213 (16)0.497 (3)0.037 (5)*
O20.60038 (7)0.04219 (7)0.26969 (15)0.02816 (18)
O30.67262 (8)0.10318 (7)0.38932 (17)0.0314 (2)
O40.89578 (8)0.03192 (7)0.33626 (19)0.0354 (2)
O50.82187 (8)0.12549 (7)0.30304 (17)0.0312 (2)
H20.539 (3)0.014 (3)0.272 (5)0.035 (7)*0.5
H40.962 (3)0.007 (3)0.328 (5)0.035 (7)*0.5
C40.68433 (9)0.01553 (8)0.33008 (17)0.0212 (2)
C50.81095 (9)0.03311 (9)0.32141 (17)0.0212 (2)
H60.283 (2)0.476 (2)0.220 (4)0.070 (8)*
O60.34552 (9)0.51669 (8)0.19359 (19)0.0380 (3)
O70.45436 (10)0.37300 (8)0.2131 (2)0.0404 (3)
C60.44455 (11)0.46465 (10)0.20114 (19)0.0271 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01823 (12)0.01867 (12)0.02670 (13)0.00132 (9)0.00031 (11)0.00042 (10)
O10.0279 (4)0.0260 (4)0.0421 (5)0.0105 (3)0.0041 (4)0.0037 (4)
C10.0283 (6)0.0398 (8)0.0521 (9)0.0016 (6)0.0134 (7)0.0109 (7)
C20.0451 (8)0.0336 (7)0.0299 (6)0.0056 (6)0.0105 (6)0.0022 (5)
C30.0179 (5)0.0198 (5)0.0300 (5)0.0019 (4)0.0031 (4)0.0012 (4)
N10.0271 (5)0.0211 (4)0.0275 (5)0.0033 (4)0.0014 (4)0.0007 (4)
O20.0134 (3)0.0272 (4)0.0439 (5)0.0003 (3)0.0022 (4)0.0045 (4)
O30.0184 (4)0.0201 (4)0.0557 (6)0.0023 (3)0.0030 (4)0.0049 (4)
O40.0126 (3)0.0220 (4)0.0715 (7)0.0001 (3)0.0009 (4)0.0047 (4)
O50.0194 (4)0.0187 (4)0.0556 (6)0.0024 (3)0.0005 (4)0.0019 (4)
C40.0131 (4)0.0197 (5)0.0307 (5)0.0016 (4)0.0017 (4)0.0027 (4)
C50.0129 (4)0.0203 (4)0.0305 (5)0.0011 (4)0.0010 (4)0.0004 (4)
O60.0199 (4)0.0279 (5)0.0661 (8)0.0022 (3)0.0020 (4)0.0074 (5)
O70.0291 (5)0.0237 (4)0.0685 (8)0.0027 (4)0.0058 (5)0.0032 (5)
C60.0224 (5)0.0237 (5)0.0351 (6)0.0033 (4)0.0017 (4)0.0014 (4)
Geometric parameters (Å, º) top
P1—O11.5000 (9)N1—H2N0.86 (2)
P1—C21.7791 (15)N1—H3N0.91 (2)
P1—C11.7796 (15)O2—C41.2759 (14)
P1—C31.8064 (12)O2—H20.77 (3)
C1—H1A0.99 (3)O3—C41.2278 (15)
C1—H1B1.01 (3)O4—C51.2767 (14)
C1—H1C0.95 (3)O4—H40.81 (4)
C2—H2A0.96 (3)O5—C51.2223 (14)
C2—H2B0.99 (2)C4—C51.5497 (15)
C2—H2C0.97 (3)O6—C61.2984 (15)
C3—N11.4836 (16)O6—H60.89 (3)
C3—H3A0.94 (2)O7—C61.2076 (15)
C3—H3B0.97 (2)C6—C6i1.544 (2)
N1—H1N0.84 (2)
O1—P1—C2111.58 (7)N1—C3—H3B106.5 (12)
O1—P1—C1114.37 (7)P1—C3—H3B108.3 (12)
C2—P1—C1108.05 (9)H3A—C3—H3B112.9 (17)
O1—P1—C3110.81 (6)C3—N1—H1N107.9 (15)
C2—P1—C3109.28 (7)C3—N1—H2N110.4 (15)
C1—P1—C3102.28 (7)H1N—N1—H2N109 (2)
P1—C1—H1A112.1 (17)C3—N1—H3N112.0 (13)
P1—C1—H1B107.9 (15)H1N—N1—H3N105.7 (19)
H1A—C1—H1B114 (2)H2N—N1—H3N111.2 (19)
P1—C1—H1C108.4 (18)C4—O2—H2111 (3)
H1A—C1—H1C110 (2)C5—O4—H4113 (3)
H1B—C1—H1C104 (2)O3—C4—O2126.07 (10)
P1—C2—H2A103.0 (16)O3—C4—C5119.62 (10)
P1—C2—H2B112.4 (13)O2—C4—C5114.31 (10)
H2A—C2—H2B114 (2)O5—C5—O4126.48 (10)
P1—C2—H2C109.1 (17)O5—C5—C4120.09 (10)
H2A—C2—H2C110 (2)O4—C5—C4113.42 (9)
H2B—C2—H2C109 (2)C6—O6—H6110.0 (18)
N1—C3—P1114.51 (8)O7—C6—O6126.95 (12)
N1—C3—H3A109.3 (12)O7—C6—C6i121.53 (15)
P1—C3—H3A105.6 (12)O6—C6—C6i111.48 (13)
O1—P1—C3—N161.08 (10)O2—C4—C5—O516.86 (17)
C2—P1—C3—N162.27 (11)O3—C4—C5—O415.53 (18)
C1—P1—C3—N1176.61 (10)O2—C4—C5—O4163.53 (12)
O3—C4—C5—O5164.08 (13)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2ii0.77 (3)1.73 (4)2.4959 (17)177 (4)
O4—H4···O4iii0.81 (4)1.67 (4)2.4694 (18)171 (4)
N1—H1N···O6i0.84 (2)2.56 (2)3.2106 (16)135.4 (19)
N1—H1N···O70.84 (2)2.27 (2)2.9939 (17)144 (2)
N1—H2N···O50.86 (2)2.03 (2)2.8760 (14)168 (2)
N1—H3N···O3iv0.91 (2)1.92 (2)2.8030 (15)166.2 (19)
N1—H3N···O4iv0.91 (2)2.49 (2)3.0419 (16)120.0 (16)
O6—H6···O1v0.89 (3)1.59 (3)2.4701 (14)168 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x+3/2, y+1/2, z+1; (v) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O2i0.77 (3)1.73 (4)2.4959 (17)177 (4)
O4—H4···O4ii0.81 (4)1.67 (4)2.4694 (18)171 (4)
N1—H1N···O6iii0.84 (2)2.56 (2)3.2106 (16)135.4 (19)
N1—H1N···O70.84 (2)2.27 (2)2.9939 (17)144 (2)
N1—H2N···O50.86 (2)2.03 (2)2.8760 (14)168 (2)
N1—H3N···O3iv0.91 (2)1.92 (2)2.8030 (15)166.2 (19)
N1—H3N···O4iv0.91 (2)2.49 (2)3.0419 (16)120.0 (16)
O6—H6···O1v0.89 (3)1.59 (3)2.4701 (14)168 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+1, y+1, z; (iv) x+3/2, y+1/2, z+1; (v) x1/2, y+1/2, z+1.
 

Acknowledgements

We acknowledge the support for the publication fee by the "Lehrförderfond" of the Heinrich-Heine-Universität Düsseldorf.

References

First citationBianga, C. M., Eggeling, J. & Reiss, G. J. (2013). Acta Cryst. E69, o1639-o1640.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuhl, D., Gün, H., Jablonka, A. & Reiss, G. J. (2013). Crystals, 3, 350–362.  CSD CrossRef CAS Google Scholar
First citationLambertz, C., Luppa, A. & Reiss, G. J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 227–228.  CAS Google Scholar
First citationReiss, G. J. (2013a). Acta Cryst. E69, m248–m249.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2013b). Acta Cryst. E69, o1253–o1254.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2013c). Acta Cryst. E69, m250–m251.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2013d). Z. Kristallogr. New Cryst. Struct. 228, 431–433.  CAS Google Scholar
First citationReiss, G. J. & Jörgens, S. (2012). Acta Cryst. E68, o2899–o2900.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds