inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Rb2Lu[Si4O10]F, a tubular chain silicate

aUniversity of Innsbruck, Institute of Mineralogy & Petrography, Innrain 52, A-6020 Innsbruck, Austria
*Correspondence e-mail: volker.kahlenberg@uibk.ac.at

(Received 26 January 2014; accepted 10 February 2014; online 19 February 2014)

Single crystals of Rb2Lu[Si4O10]F (dirubidium lutetium tetra­silicate fluoride) were obtained in flux-synthesis experiments in the system SiO2–Lu2O3–RbF. The compound belongs to the group of tubular chain silicates, i.e. it is based on multiple chains of condensed [SiO4] tetra­hedra forming closed columns. The periodicity of the unbranched multiple chains is four and corresponds to the length of the b axis. Adjacent columns are connected by Lu3+ cations, which are coordinated by four oxide and two fluoride anions in the form of slightly distorted octa­hedra. By sharing common fluoride corners, the single octa­hedra are linked into chains running parallel to the silicate tubes. Electroneutrality is achieved by the incorporation of additional Rb+ cations. All four symmetrically independent rubidium ions, four out of twelve oxide as well as the two fluoride anions are located on mirror planes. The remaining atoms reside on general positions.

Related literature

Oxosilicates that contain monovalent alkali cations, trivalent rare earth elements and additional fluorine anions have potential application in the field of luminescense (Jacobsen & Meyer, 1994[Jacobsen, H. & Meyer, G. (1994). Z. Kristallogr. 209, 348-350.]; Tang et al., 2008[Tang, M.-F., Chiang, P.-Y., Su, Y.-H., Jung, Y.-C., Hou, G.-Y., Chang, B.-C. & Lii, K.-H. (2008). Inorg. Chem. 47, 8985-8989.]; Schäfer & Schleid, 2007[Schäfer, M. C. & Schleid, Th. (2007). Z. Anorg. Allg. Chem. 633, 1018-1023.], 2011[Schäfer, M. C. & Schleid, Th. (2011). Z. Anorg. Allg. Chem. 637, 1152-1157.]; Kahlenberg & Manninger, 2014[Kahlenberg, V. & Manninger, T. (2014). Acta Cryst. E70, i11.]). For structures isotypic to that of the title compound, see: Chigarov et al. (1983[Chigarov, M. I., Mamedov, Kh. S. & Kulieva, T. Z. (1983). Sov. Phys. Crystallogr. 28, 708-709.]); Hung et al. (2003[Hung, L.-I., Wang, S.-L., Kao, H.-M. & Lii, K.-H. (2003). Inorg. Chem. 42, 4057-4061.]). For general aspects of the crystal chemistry of silicates, see: Liebau (1985[Liebau, F. (1985). Structural Chemistry of Silicates, p. 347. Berlin, Heidelberg, New York, Tokyo: Springer.]). For the definition of distortion parameters, see: Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). For bond-valence analysis, see: Brown (2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 292. Oxford University Press.]). For the definition and calculation of similarity descriptors, see: Tasci et al. (2012[Tasci, E. S., de la Flor, G., Orobengoa, D., Capillas, C., Perez-Mato, J. M. & Aroyo, M. I. (2012). EPJ Web of Conferences, 22, 00009.]); Bergerhoff et al. (1999[Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147-156.]). For the Inorganic Structure Database, see: ICSD (2014[ICSD (2014). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA. http://www.fiz-karlsruhe.de/ecid/Internet/en/DB/icsd/ .]).

Experimental

Crystal data
  • Rb2Lu[Si4O10]F

  • Mr = 637.27

  • Monoclinic, P 21 /m

  • a = 11.6695 (3) Å

  • b = 8.52379 (18) Å

  • c = 11.8165 (3) Å

  • β = 111.753 (3)°

  • V = 1091.67 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 18.4 mm−1

  • T = 298 K

  • 0.32 × 0.08 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur (Ruby, Gemini ultra) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.106, Tmax = 0.562

  • 15185 measured reflections

  • 2388 independent reflections

  • 2276 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.037

  • S = 1.2

  • 2388 reflections

  • 178 parameters

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS for Windows (Dowty, 2011[Dowty, E. (2011). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Up to now several alkali-REE-fluoride silicates (REE is a rare earth metal) including compounds such as KEu2[Si4O10]F (Jacobsen & Meyer, 1994), K9(REE)3[Si12O32]F2 (Tang et al., 2008; Kahlenberg & Manninger, 2014), Cs2Y[Si4O10]F2 (Schäfer & Schleid, 2007) or Rb3Sc2[Si4O10]F5 (Schäfer & Schleid, 2011) have been reported. In the course of an ongoing project on the synthesis of new representatives of this class, single-crystals of the previously unknown compound Rb2Lu[Si4O10]F have been structurally characterized. Following Liebau's classification of oxosilicates (Liebau, 1985), the crystal structure of this phase belongs to the group of tubular chain silicates and is based on unbranched multiple silicate chains running along [010] (Fig. 1). The periodicity of the chains is four. Alternatively, the tubular chains can also be thought of as being built from the condensation of an infinite number of fundamental rings with mean planes perpendicular to the chain direction (Liebau, 1985). In Rb2Lu[Si4O10]F these rings are eight-membered (Fig. 2) and exhibit a twisted chair conformation. Within the tubes, cages can be identified that are formed by additional four-, six- and eight-membered rings, the mean planes of which are running parallel to the chains. These six- and eight-membered rings are in boat configurations.

According to the Si:O ratio of 1:2.5 the structure is exclusively based on tertiary (Q3) [SiO4] tetrahedra. This structural feature is also reflected in the spread of the Si—O bond lengths. Each of the four crystallographically independent tetrahedra has one short (1.569 (3)–1.581 (3) Å) Si—O bond involving the non-bridging O atoms. The distances between Si and the bridging O atoms are considerably longer. The O–Si–O angles show a significant scatter throughout all present [SiO4] tetrahedra. Nevertheless, the values are in the expected limits for silicates (Liebau, 1985). Numerically, the degree of distortion can be expressed by the quadratic elongation λ and the angle variance σ2 (Robinson et al., 1971). For the four tetrahedra these two parameters vary between 1.001 and 1.005 (for λ) and 5.29 and 23.24 (for σ2) indicating that the deviation from regularity is not very pronounced. The Lu3+ cations are octahedrally coordinated by four oxygen and two additional fluoride anions (Fig. 3). The latter two are in trans-configuration. By sharing common fluorine corners, the octahedra in turn form chains running parallel to the directions of the silicate tubes (Fig. 4). However, these chains are not straight. The polyhedra are tilted with tilt angles (Lu—F1—Lu) and (Lu—F2—Lu) of 160.5 (3) and 156.3 (3)°, respectively. Charge compensation is achieved by the incorporation of additional Rb+ ions. The coordination numbers of these cations are as follows: Rb1, Rb3: 10-coordinate, including one F atom each; Rb2: 10-coordinate; Rb4: 9-coordinate, including one F atom (Fig. 5–8). The Rb2 cations, which are exclusively coordinated by O atoms, are located within the abovementioned cages of the tubes. The remaining rubidium cations reside in tunnel-like cavities formed by [SiO4]-tetrahedra and [LuO4F2]-octahedra. A side view of the crystal structure is given in Fig. 9.

Bond valence sum calculations using the parameter sets for the Rb–O, Rb–F, Lu–O, Lu–F and Si–O bonds given by Brown (2002) resulted in the following values (in v.u.) for the cation-anion interactions up to 3.4 Å: Rb(1): 1.152, Rb(2): 1.324, Rb(3): 1.008, Rb(4): 0.936, Lu: 3.140, Si(1): 4.062, Si(2): 4.044, Si(3): 4.082 and Si(4): 4.028.

The present compound is isostructural with K2Lu[Si4O10](OH) (Chigarov et al., 1983) and K2In[Si4O10](OH) (Hung et al., 2003). For the calculation of several quantitative descriptors for the characterization of the degree of similarity between the crystal structures of Rb2Lu[Si4O10]F and K2Lu[Si4O10](OH) containing the same REE, the program COMPSTRU (Tasci et al., 2012) was employed. For the two structures, the degree of lattice distortion (S), i.e. the spontaneous strain obtained from the eigenvalues of the finite Lagrangian strain tensor calculated in a Cartesian reference system, has a value of (S) = 0.0053. For further investigations on an atomic level, the proton positions of the hydroxyl groups in K2Lu[Si4O10](OH) have been neglected. After a transformation to the standard setting according to a' = b, b' = c and c' = a and the application of an origin shift of p = (0, 1/2, 1/2) the structure of K2Lu[Si4O10](OH) was mapped on the most similar configuration of Rb2Lu[Si4O10]F. The calculations revealed the following atomic displacements (in Å) between the corresponding atoms in Rb2Lu[Si4O10]F (first entry) and K2Lu[Si4O10](OH) (second entry): Rb1—K1: 0.091; Rb2—K3: 0.063; Rb3—K2: 0.275; Rb4—K4: 0.064; Lu—Lu: 0.098; Si1—Si1: 0.055; Si2—Si2: 0.114; Si3—Si4: 0.089; Si4—Si3: 0.095; O1—O4: 0.083; O2—O13: 0.134; O3—O9: 0.067; O4—O5: 0.207; O5—O3: 0.168; O6—O11: 0.149; O7—O10: 0.101; O8—O2: 0.116; O9—O7: 0.082; O10—O14: 0.173; O11—O6: 0.247; O12—O8: 0.134; F1—O1: 0.246; F2—O12: 0.125, i.e. the maximum displacement is 0.275 Å. The measure of similarity (Δ) as defined by Bergerhoff et al. (1999) has a value of 0.022.

Related literature top

Oxosilicates that contain monovalent alkali cations, trivalent rare earth elements and additional fluorine anions have potential application in the field of luminescense (Jacobsen & Meyer, 1994; Tang et al., 2008; Schäfer & Schleid, 2007, 2011; Kahlenberg & Manninger, 2014). For structures isotypic to that of the title compound, see: Chigarov et al. (1983); Hung et al. (2003). For general aspects of the crystal chemistry of silicates, see: Liebau (1985). For the definition of distortion parameters, see: Robinson et al. (1971). For bond-valence analysis, see: Brown (2002). For the definition and calculation of similarity descriptors, see: Tasci et al. (2012); Bergerhoff et al. (1999). For the Inorganic Structure Database, see: ICSD (2014).

Experimental top

Single-crystals of Rb2Lu[Si4O10]F were obtained in the course of a series of flux syntheses experiments aiming on the preparation of new Rb-REE-fluoride silicates. 0.1 g of the nutrient consisting of a mixture of Lu2O3:SiO2 in the molar ratio 1:4 was homogenized in an agate mortar with 0.1 g RbF, transferred into a platinum tube and welded shut. The container was heated in a laboratory chamber furnace from 373 K to 1373 K with a ramp of 50 K/h and isothermed for 2 h at the target temperature. Subsequently, the sample was cooled down to 1073 K with a rate of 5 K and, finally, the temperature was reduced to 373 K with a rate of 100 K/h. After the removal of the platinum tube the solidified melt cake was immediately crashed in an agate mortar and transferred to a glass slide under a polarizing binocular. A first optical inspection revealed the presence of two phases: a polycrystalline matrix of RbF in which transparent birefringent single-crystals up to 400µm in size were embedded. One of the optically biaxial crystals showing sharp extinction when observed between crossed polarizers was selected for further structural studies and was mounted on the tip of a glass fiber using fingernail hardener as glue.

Refinement top

Similar sets of lattice parameters could be found in the recent WEB-based version of the Inorganic Crystal Structure Database (ICSD, 2014) for the chemically closely related compounds K2Lu[Si4O10]F (Chigarov et al., 1983) and K2In[Si4O10](OH) (Hung et al., 2003) pointing to isostructural relationships, which were confirmed by subsequent structure analysis. A data set corresponding to a hemisphere of reciprocal space was collected.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2011); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A single tubular chain consisting of [SiO4]-tetrahedra in a projection parallel to [101]. Large blue spheres represent Rb2 cations.
[Figure 2] Fig. 2. Connectivity of the silicon atoms within a single tubular chain (view perpedicular to (011)). Red spheres represent the Q3- connected Si atoms. Large blue spheres represent Rb2 cations. The sizes of the different ring types are indicated.
[Figure 3] Fig. 3. Representation of the coordination polyhedron around Lu. Ellipsoids are drawn at the 60% level. [Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y, -z + 1.]
[Figure 4] Fig. 4. Projection of a single chain of corner-sharing [LuO4F2]-octahedra parallel to [001]. Small grey and green spheres represent oxygen and fluoride anions, respectively.
[Figure 5] Fig. 5. Representation of the coordination polyhedron around Rb1. Ellipsoids are drawn at the 60% probability level. [Symmetry codes: (i) x, 3/2 - y, z; (ii) x, 1/2 - y, z; (iii) x, 1 + y, z; (iv) 1 - x, -1/2 + y, 1 - z; (v) 1 - x, 2 - y, 1 - z; (vi) 1 - x, 1/2 + y, 1 - z.]
[Figure 6] Fig. 6. Representation of the coordination polyhedron around Rb2. Ellipsoids are drawn at the 60% probability level. [Symmetry codes: (i) x, 1/2 - y, -1 + z; (ii) x, y, -1 + z; (iii) x, 3/2 - y, z; (iv) x, -1 + y, z; (v) -x, -1/2 + y, 1 - z; (vi) -x, 1/2 + y, 1 - z; (vii) -x, -y, 1 - z; (viii) 1 - x, -1/2 + y, 1 - z.]
[Figure 7] Fig. 7. Representation of the coordination polyhedron around Rb3. Ellipsoids are drawn at the 60% probability level. [Symmetry codes: (i) -x, 1/2 + y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) x, 3/2 - y, z; (iv) x, 1/2 - y, z; (v) x, 1 + y, z.]
[Figure 8] Fig. 8. Representation of the coordination polyhedron around Rb4. Ellipsoids are drawn at the 60% probability level. [Symmetry codes: (i) x, 3/2 - y, z; (ii) x, -1 + y, z; (iii) x, 3/2 - y, -1 + z; (iv) x, -1 + y, -1 + z; (v) x, y, -1 + z; (vi) x, 1/2 - y, z; (vii) 1 - x, -1/2 + y, 1 - z.]
[Figure 9] Fig. 9. Side view of the crystal structure of Rb2Lu[Si4O10]F. [SiO4]- and [LuO4F2]-polyhedra are shown in light-grey and blue. Small grey spheres represent oxygen atoms. Fluoride and rubidium ions are given as green and pink spheres, respectively.
Dirubidium lutetium tetrasilicate fluoride top
Crystal data top
Rb2Lu[Si4O10]FF(000) = 1160
Mr = 637.27Dx = 3.877 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 8764 reflections
a = 11.6695 (3) Åθ = 3.0–29.4°
b = 8.52379 (18) ŵ = 18.4 mm1
c = 11.8165 (3) ÅT = 298 K
β = 111.753 (3)°Prism, colourless
V = 1091.67 (5) Å30.32 × 0.08 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini ultra)
diffractometer
2388 independent reflections
Graphite monochromator2276 reflections with I > 2σ(I)
Detector resolution: 10.3575 pixels mm-1Rint = 0.028
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)]
h = 1414
Tmin = 0.106, Tmax = 0.562k = 1010
15185 measured reflectionsl = 1414
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.017Secondary atom site location: difference Fourier map
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.008P)2 + 3.5409P]
where P = (Fo2 + 2Fc2)/3
S = 1.2(Δ/σ)max = 0.001
2388 reflectionsΔρmax = 0.67 e Å3
178 parametersΔρmin = 0.69 e Å3
0 restraints
Crystal data top
Rb2Lu[Si4O10]FV = 1091.67 (5) Å3
Mr = 637.27Z = 4
Monoclinic, P21/mMo Kα radiation
a = 11.6695 (3) ŵ = 18.4 mm1
b = 8.52379 (18) ÅT = 298 K
c = 11.8165 (3) Å0.32 × 0.08 × 0.08 mm
β = 111.753 (3)°
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini ultra)
diffractometer
2388 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)]
2276 reflections with I > 2σ(I)
Tmin = 0.106, Tmax = 0.562Rint = 0.028
15185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017178 parameters
wR(F2) = 0.0370 restraints
S = 1.2Δρmax = 0.67 e Å3
2388 reflectionsΔρmin = 0.69 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Lu0.293348 (13)0.003290 (17)0.709429 (13)0.00494 (5)
Rb10.44695 (5)0.750.54955 (5)0.01305 (11)
Rb20.08212 (5)0.250.07908 (5)0.01314 (11)
Rb30.00057 (5)0.750.52863 (5)0.01827 (13)
Rb40.46419 (5)0.250.03113 (5)0.01750 (12)
Si10.38671 (9)0.06260 (11)0.22969 (8)0.00464 (19)
Si20.01773 (9)0.06858 (11)0.75550 (9)0.00508 (19)
Si30.24334 (9)0.43354 (11)0.38343 (8)0.00493 (19)
Si40.22493 (9)0.93232 (11)0.96450 (8)0.00543 (19)
O10.4021 (3)0.750.2204 (3)0.0099 (8)
O20.7259 (3)0.750.6326 (4)0.0129 (8)
O30.2743 (2)0.9946 (3)0.1053 (2)0.0084 (5)
O40.3423 (2)0.9684 (3)0.3435 (2)0.0100 (5)
O50.0274 (3)0.250.7485 (3)0.0112 (8)
O60.1052 (2)0.9599 (3)0.7182 (2)0.0090 (5)
O70.0945 (2)0.0289 (3)0.9002 (2)0.0084 (5)
O80.1833 (3)0.750.9630 (3)0.0100 (8)
O90.5102 (2)0.0289 (3)0.2481 (2)0.0110 (5)
O100.0957 (2)0.0320 (3)0.6743 (2)0.0096 (5)
O110.3210 (2)0.9616 (3)0.9020 (2)0.0095 (5)
O120.2534 (3)0.0222 (3)0.5157 (2)0.0156 (6)
F10.2695 (3)0.750.6782 (3)0.0142 (7)
F20.3190 (3)0.250.7478 (3)0.0172 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu0.00544 (8)0.00452 (8)0.00516 (8)0.00016 (5)0.00231 (6)0.00015 (5)
Rb10.0146 (3)0.0120 (2)0.0119 (2)00.0043 (2)0
Rb20.0170 (3)0.0114 (2)0.0131 (2)00.0080 (2)0
Rb30.0248 (3)0.0133 (3)0.0122 (3)00.0016 (2)0
Rb40.0143 (3)0.0133 (3)0.0212 (3)00.0024 (2)0
Si10.0050 (5)0.0044 (4)0.0044 (4)0.0007 (4)0.0015 (4)0.0002 (4)
Si20.0043 (5)0.0047 (5)0.0053 (4)0.0002 (4)0.0007 (4)0.0003 (4)
Si30.0049 (5)0.0052 (5)0.0044 (4)0.0007 (4)0.0013 (4)0.0001 (4)
Si40.0055 (5)0.0057 (5)0.0042 (4)0.0006 (4)0.0009 (4)0.0007 (4)
O10.0112 (19)0.0054 (17)0.0149 (19)00.0071 (16)0
O20.0094 (19)0.0051 (17)0.021 (2)00.0015 (16)0
O30.0070 (12)0.0113 (13)0.0050 (12)0.0022 (10)0.0001 (10)0.0006 (10)
O40.0100 (13)0.0113 (13)0.0101 (12)0.0043 (10)0.0053 (11)0.0006 (10)
O50.0093 (19)0.0069 (18)0.0156 (19)00.0027 (16)0
O60.0048 (12)0.0099 (12)0.0097 (12)0.0021 (10)0.0002 (10)0.0001 (10)
O70.0074 (13)0.0118 (13)0.0063 (12)0.0036 (10)0.0029 (10)0.0007 (10)
O80.0134 (19)0.0035 (17)0.0127 (18)00.0045 (16)0
O90.0082 (13)0.0091 (13)0.0145 (13)0.0019 (10)0.0028 (11)0.0004 (11)
O100.0084 (13)0.0127 (13)0.0076 (12)0.0016 (10)0.0030 (10)0.0011 (10)
O110.0089 (13)0.0137 (13)0.0069 (12)0.0010 (10)0.0042 (10)0.0023 (10)
O120.0179 (15)0.0221 (15)0.0075 (12)0.0039 (11)0.0054 (11)0.0023 (11)
F10.0164 (17)0.0044 (14)0.0194 (17)00.0039 (14)0
F20.0220 (18)0.0056 (15)0.0250 (18)00.0100 (15)0
Geometric parameters (Å, º) top
Si1—O91.581 (3)Rb1—O4xi3.332 (3)
Si1—O1i1.6157 (11)Rb2—O7xii2.875 (2)
Si1—O4i1.631 (3)Rb2—O7xiii2.875 (2)
Si1—O3i1.640 (2)Rb2—O6iii2.921 (3)
Si2—O101.579 (3)Rb2—O6xiv2.921 (3)
Si2—O6i1.625 (3)Rb2—O8xiv2.949 (4)
Si2—O51.6259 (14)Rb2—O3iv3.058 (2)
Si2—O71.645 (3)Rb2—O3i3.058 (2)
Si3—O12ii1.569 (3)Rb2—O7xv3.214 (3)
Si3—O6iii1.630 (3)Rb2—O7xvi3.214 (3)
Si3—O4iv1.631 (3)Rb2—O2v3.312 (4)
Si3—O2v1.6318 (15)Rb3—O10xvi2.909 (3)
Si4—O111.574 (3)Rb3—O10xiv2.909 (2)
Si4—O81.6264 (14)Rb3—O10vii2.927 (3)
Si4—O3vi1.634 (3)Rb3—O10ii2.927 (3)
Si4—O7vii1.648 (3)Rb3—F12.988 (3)
Lu—F22.1487 (7)Rb3—O12xvi3.407 (3)
Lu—O122.167 (3)Rb3—O12xiv3.407 (3)
Lu—O9viii2.175 (3)Rb3—O5xiv3.409 (4)
Lu—F1i2.1906 (6)Rb3—O63.426 (3)
Lu—O102.200 (2)Rb3—O6iv3.426 (3)
Lu—O11i2.205 (2)Rb4—O11xi2.949 (3)
Rb1—O9v2.938 (3)Rb4—O11v2.949 (3)
Rb1—O9ix2.938 (3)Rb4—O11xvii3.045 (3)
Rb1—O4iv2.947 (3)Rb4—O11xviii3.045 (3)
Rb1—O42.947 (3)Rb4—O9ii3.065 (3)
Rb1—F12.989 (3)Rb4—O93.065 (3)
Rb1—O23.031 (4)Rb4—F2xii3.142 (3)
Rb1—O12ii3.158 (3)Rb4—O3iv3.444 (3)
Rb1—O12vii3.158 (3)Rb4—O3i3.444 (3)
Rb1—O4x3.332 (3)
F2—Lu—O1296.25 (12)O6i—Si2—O7104.51 (14)
F2—Lu—O9viii91.29 (11)O5—Si2—O7106.84 (17)
O12—Lu—O9viii92.79 (10)O12ii—Si3—O6iii112.89 (15)
F2—Lu—F1i177.69 (12)O12ii—Si3—O4iv111.44 (15)
O12—Lu—F1i86.05 (11)O6iii—Si3—O4iv109.22 (14)
O9viii—Lu—F1i88.38 (11)O12ii—Si3—O2v114.08 (18)
F2—Lu—O1089.16 (11)O6iii—Si3—O2v104.29 (16)
O12—Lu—O1089.57 (10)O4iv—Si3—O2v104.34 (17)
O9viii—Lu—O10177.53 (9)O11—Si4—O8114.10 (17)
F1i—Lu—O1091.08 (11)O11—Si4—O3vi112.49 (14)
F2—Lu—O11i89.10 (11)O8—Si4—O3vi108.21 (17)
O12—Lu—O11i173.81 (10)O11—Si4—O7vii113.66 (14)
O9viii—Lu—O11i90.18 (9)O8—Si4—O7vii104.55 (16)
F1i—Lu—O11i88.61 (11)O3vi—Si4—O7vii102.93 (13)
O10—Lu—O11i87.40 (9)Si1vii—O1—Si1ii162.7 (3)
O9—Si1—O1i112.24 (17)Si3ix—O2—Si3v146.9 (3)
O9—Si1—O4i110.99 (14)Si4xii—O3—Si1vii132.77 (16)
O1i—Si1—O4i107.06 (17)Si3iv—O4—Si1vii142.83 (17)
O9—Si1—O3i111.24 (14)Si2ii—O5—Si2144.0 (2)
O1i—Si1—O3i107.75 (16)Si2vii—O6—Si3xvi144.19 (17)
O4i—Si1—O3i107.32 (13)Si2—O7—Si4i129.48 (16)
O10—Si2—O6i111.85 (14)Si4—O8—Si4iv145.7 (3)
O10—Si2—O5113.95 (17)Luvii—F1—Luii160.51 (16)
O6i—Si2—O5106.95 (16)Lu—F2—Luii156.30 (18)
O10—Si2—O7112.13 (14)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z; (iii) x, y1/2, z+1; (iv) x, y+3/2, z; (v) x+1, y+1, z+1; (vi) x, y, z+1; (vii) x, y+1, z; (viii) x+1, y, z+1; (ix) x+1, y+1/2, z+1; (x) x+1, y+2, z+1; (xi) x+1, y1/2, z+1; (xii) x, y, z1; (xiii) x, y+1/2, z1; (xiv) x, y+1, z+1; (xv) x, y, z+1; (xvi) x, y+1/2, z+1; (xvii) x, y1, z1; (xviii) x, y+3/2, z1.

Experimental details

Crystal data
Chemical formulaRb2Lu[Si4O10]F
Mr637.27
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)11.6695 (3), 8.52379 (18), 11.8165 (3)
β (°) 111.753 (3)
V3)1091.67 (5)
Z4
Radiation typeMo Kα
µ (mm1)18.4
Crystal size (mm)0.32 × 0.08 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur (Ruby, Gemini ultra)
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2006), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.106, 0.562
No. of measured, independent and
observed [I > 2σ(I)] reflections
15185, 2388, 2276
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.037, 1.2
No. of reflections2388
No. of parameters178
Δρmax, Δρmin (e Å3)0.67, 0.69

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2011), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

 

References

First citationBergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147–156.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, p. 292. Oxford University Press.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChigarov, M. I., Mamedov, Kh. S. & Kulieva, T. Z. (1983). Sov. Phys. Crystallogr. 28, 708–709.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDowty, E. (2011). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHung, L.-I., Wang, S.-L., Kao, H.-M. & Lii, K.-H. (2003). Inorg. Chem. 42, 4057–4061.  Web of Science CrossRef PubMed CAS Google Scholar
First citationICSD (2014). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA. http://www.fiz-karlsruhe.de/ecid/Internet/en/DB/icsd/Google Scholar
First citationJacobsen, H. & Meyer, G. (1994). Z. Kristallogr. 209, 348–350.  CrossRef CAS Web of Science Google Scholar
First citationKahlenberg, V. & Manninger, T. (2014). Acta Cryst. E70, i11.  CrossRef IUCr Journals Google Scholar
First citationLiebau, F. (1985). Structural Chemistry of Silicates, p. 347. Berlin, Heidelberg, New York, Tokyo: Springer.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchäfer, M. C. & Schleid, Th. (2007). Z. Anorg. Allg. Chem. 633, 1018–1023.  Google Scholar
First citationSchäfer, M. C. & Schleid, Th. (2011). Z. Anorg. Allg. Chem. 637, 1152–1157.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, M.-F., Chiang, P.-Y., Su, Y.-H., Jung, Y.-C., Hou, G.-Y., Chang, B.-C. & Lii, K.-H. (2008). Inorg. Chem. 47, 8985–8989.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTasci, E. S., de la Flor, G., Orobengoa, D., Capillas, C., Perez-Mato, J. M. & Aroyo, M. I. (2012). EPJ Web of Conferences, 22, 00009.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds